JPS5852493A - Plating method for iron-zinc intermetallic compound alloy - Google Patents

Plating method for iron-zinc intermetallic compound alloy

Info

Publication number
JPS5852493A
JPS5852493A JP14964181A JP14964181A JPS5852493A JP S5852493 A JPS5852493 A JP S5852493A JP 14964181 A JP14964181 A JP 14964181A JP 14964181 A JP14964181 A JP 14964181A JP S5852493 A JPS5852493 A JP S5852493A
Authority
JP
Japan
Prior art keywords
plating
bath
sulfate
current density
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14964181A
Other languages
Japanese (ja)
Inventor
Mitsuo Azuma
東 光郎
Junichi Morita
順一 森田
Takashi Watanabe
孝 渡辺
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14964181A priority Critical patent/JPS5852493A/en
Publication of JPS5852493A publication Critical patent/JPS5852493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To obtain high speed plating which is highly resistant to corrosion and forms no eta phase by specifying the titled plating conditions by high current density for steel materials for automobiles, household electrical appliances, etc. CONSTITUTION:Metals are plated on steel materials by sing a sulfate bath of 0.4-0.9 Zn<++>/Fe<++> weight ratio in the plating bath, >=100g/l and within solutibility limit in sulfate (as hydrate) conc., and 0.8-2.3pH and by using an insoluble electrode at 60- 200A/dm<2> current density and 40-80 deg.C bath temp. Thus >=1 kind of plating layers of GAMMA, LAMBDA1, zeta phases having excellent corrosion resistance are obtained. Here, if said ion ratios are in excess of the upper limit, the adhesiveness to the chemically converted layer and corrosion resistance are degraded. If below the lower limit, no intermetallic compds. are formed, and the compsn. contg. more iron than GAMMA phase is resulted, with correspondingly degraded adhesiveness of the plating layers and no improvement in corrosion resistance. If the sulfate concn. is below the lower limit, it is difficult to obtain the balance of said ions and impossible to maintain high current density. If the pH is too low, the results are similar to those when the ion ratios are in excess of the upper limit, and conversely if it is in excess of 2.3., stable high speed plating is difficult.

Description

【発明の詳細な説明】 本発明は、鋼材上に防食性にすぐれた、r相、δl相お
よびζ相の内、少く共1種からなる鉄−亜鉛金属間化合
物層を形成させ、かつ実質的に考相が存在しない鉄−亜
鉛合金高速めつき方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention forms an iron-zinc intermetallic compound layer having excellent anti-corrosion properties and consisting of at least one of r-phase, δl-phase and ζ-phase on a steel material. This invention relates to a method for high-speed plating of iron-zinc alloys in which there is no phase difference.

鋼材(銅帯、鋼板、鋼管または形鋼等を含む。)は強度
が大きく、加工性に富み大量に供給しうる材料であるた
め重要な金属材料であり自動車用、家電用などに多量に
使用されている。しかしながら錆びやすく腐食しやすい
という欠点を有するほか、溶接性、加工性、化成処理性
、塗装性などにおいてより高度のq#性が要求されつつ
ある。このため、鋼材の表面処理が極めて重要であるが
従来、鋼材の上に、代表的には亜鉛めっきを施し、その
上に化成処理を行い、さらに電着塗料等の塗料を塗装す
る方法が行われていた。亜鉛めっきについては、最近、
電気めっき法により、Fe −zn合金めりきを鋼材上
に施すことにより、さらに耐食性、溶接性、塗装性など
を改良する試みが行われている。たとえば%Fe80.
・フH202501/It、 Zn80.−7H202
20り/2、(NH,)、80.120り/2、KcQ
 10り/2、およびクエン酸α5P/1からなる浴を
用いてpH2,9、温度50℃、電流密度40ム/ d
m”の条件で2097 m”の亜鉛−鉄メツキ被覆を行
うと、亜鉛70重量へ、鉄30重量%の被覆が得られる
。このものの塗装耐食性は純亜鉛からなる電気亜鉛メッ
キ鋼材のそれと何ら変ることなく極めて性能が劣り、 
10重量%の鉄を含有するいわゆる合金化亜鉛メッキ鋼
材より格段劣る結果となる。
Steel materials (including copper strips, steel plates, steel pipes, steel sections, etc.) are important metal materials because they are strong, highly workable, and can be supplied in large quantities, and are used in large quantities for automobiles, home appliances, etc. has been done. However, in addition to having the disadvantage of being easily rusted and corroded, higher q# properties are being required in terms of weldability, processability, chemical conversion treatment properties, paintability, etc. For this reason, surface treatment of steel is extremely important, but conventional methods have typically involved galvanizing the steel, applying chemical conversion treatment on top of that, and then painting with paint such as electrodeposition paint. I was worried. Regarding galvanizing, recently,
Attempts have been made to further improve corrosion resistance, weldability, paintability, etc. by applying Fe-zn alloy plating to steel materials by electroplating. For example, %Fe80.
・FH202501/It, Zn80. -7H202
20ri/2, (NH,), 80.120ri/2, KcQ
pH 2.9, temperature 50°C, current density 40 μm/d using a bath consisting of 10R/2 and citric acid α5P/1.
If a zinc-iron plating coating of 2097 m'' is carried out under conditions of 2097 m'', a coating of 70% by weight zinc and 30% by weight iron is obtained. The corrosion resistance of this coating is no different from that of electrogalvanized steel made of pure zinc, and its performance is extremely inferior.
This result is significantly inferior to that of so-called alloyed galvanized steel containing 10% by weight of iron.

これは、メッキ層が主としてV(イータ−)相からなる
ためと思われ、実質的にη相を形成せしめないFe −
Zn合金めつき方法の開発が望まれていた。
This seems to be because the plating layer mainly consists of the V (eta) phase, and the Fe-
It has been desired to develop a method for plating Zn alloys.

一方、自動車用、家電用、建材用などの大量用途に適す
るためには、めっき処理も量産性が必要である。このた
め高電流密度によるFe −Zn合金めっきが考えられ
たが、来び、このだめの条件が明確となっていなかった
On the other hand, in order to be suitable for mass-scale applications such as automobiles, home appliances, and building materials, the plating process must also be mass-producible. For this reason, Fe--Zn alloy plating using high current density was considered, but the conditions for this failure were not clear.

本発明者は、このような知見に基づき、鋭意研究を重ね
九結果、鋼材上に防食性にすぐれた、F(ガンマ)相、
δl(デルタ)相およびζ(ゼータ)相の内の1種もし
くは2種以上からなり、かつ実質的にη相を形成せしめ
ない鉄(Fe)−亜鉛(Zn)金属間化合物合金の高速
めつき方法を開発するに■ 至ったものである。
Based on this knowledge, the present inventor has conducted extensive research and has found that the F (gamma) phase, which has excellent anti-corrosion properties, can be applied to steel materials.
High-speed plating of iron (Fe)-zinc (Zn) intermetallic compound alloy consisting of one or more types of δl (delta) phase and ζ (zeta) phase, and which does not substantially form η phase This led to the development of a method.

すなわち、本発明はめつき浴として、浴中のzn++/
Fθ0重量比がα4〜α9、硫酸塩(含水物として)濃
度が1ooy7tt以上作業温度における溶解限以内、
pgが08〜2.3である硫酸塩浴を用い、電流密度6
0〜200 A / (L!11”、浴温40〜80℃
の条件下で、不溶解性陽極を用い、鋼材上に電気めっき
することを特徴とするものである。
That is, in the present invention, as a plating bath, zn++/
Fθ0 weight ratio is α4 to α9, sulfate (as hydrated substance) concentration is 1ooy7tt or more, within the solubility limit at the working temperature,
Using a sulfate bath with a pg of 08-2.3, a current density of 6
0~200 A/(L!11", bath temperature 40~80℃
It is characterized by electroplating on steel materials using an insoluble anode under the following conditions.

以下、本発明方法について詳述する。The method of the present invention will be described in detail below.

まず、硫酸塩浴中のzn++/1?θ+1重量比α4〜
α9とすることが必要である。このために、硫酸亜鉛、
および硫酸第1鉄を用いてめっき浴を調整する際にこの
比の範囲内となるよう制御する。浴中のzn++/Fe
++重量比がα9を超えると、遊離の亜鉛が析出し、化
成処理層との密着性や防食性を低下させる。また、α4
未満では、金属間化合物を形成させず、形成されるめっ
き層は、r相(Fe5Z%□、又はFosZnzo :
 Zn含量72〜80%)よりも’Fe含有率の多い組
成となり、めっき層の密着性が不良となり防食性が向上
しない。
First, zn++/1? in a sulfate bath? θ+1 weight ratio α4~
It is necessary to set it to α9. For this, zinc sulfate,
When preparing a plating bath using ferrous sulfate, the ratio is controlled within this range. zn++/Fe in bath
If the ++ weight ratio exceeds α9, free zinc will precipitate, reducing the adhesion to the chemical conversion layer and the corrosion resistance. Also, α4
If the content is less than 10%, no intermetallic compound is formed and the formed plating layer is r-phase (Fe5Z%□, or FosZnzo:
The composition has a higher Fe content than Zn content (72 to 80%), resulting in poor adhesion of the plating layer and no improvement in corrosion resistance.

硫酸塩濃度は1oOP/41以上、溶解限以内とする。The sulfate concentration should be 1oOP/41 or more and within the solubility limit.

100り71未満のときは、上記zn++ / Fe+
+重量比のバランスをとることが困難となるほか、電導
度が下が秒、高電流密度を維持できない。
When it is less than 100 to 71, the above zn++ / Fe+
+ It becomes difficult to balance the weight ratio, and if the conductivity is low, high current density cannot be maintained.

めっき浴のpHは08〜2.3の範囲とする。pHが余
り低いと、めっき層中のZn含有量が4<な9、上述の
浴中zn++ /、e++重量比がα9を超えた場合と
同様の不都合を生じる。逆にpEが2.3を超えると水
酸化鉄が沈澱し易くなる力ど、めっき浴の劣化が起りや
すく安定した高速めつきが施し難くなる。通常はめつき
によりpHが下がり、金属イオンの補給によりpHが元
の値に戻るため、浴pHが一定値に維持させることとな
るが、必要があれば、pHの調整は硫酸、アンモニア、
または水の補給等で行うことができる。本発明のめつき
浴のpHは低いのでめっき成分金属は相当大きな溶解速
度を有するので、補給は容易であり、めっき浴のpHの
微変動から金属制御から金属成分の消耗・補給程度も推
定し得る。
The pH of the plating bath is in the range of 08 to 2.3. If the pH is too low, problems similar to those in the case where the Zn content in the plating layer is 4<9 and the above-mentioned bath zn++ /, e++ weight ratio exceeds α9 will occur. On the other hand, if pE exceeds 2.3, iron hydroxide tends to precipitate, the plating bath tends to deteriorate, and it becomes difficult to perform stable high-speed plating. Normally, plating lowers the pH, and replenishing metal ions returns the pH to its original value, so the bath pH is maintained at a constant value, but if necessary, the pH can be adjusted using sulfuric acid, ammonia,
Alternatively, this can be done by replenishing water. Since the pH of the plating bath of the present invention is low, the plating component metal has a considerably high dissolution rate, so replenishment is easy, and the degree of consumption and replenishment of metal components can be estimated from metal control based on slight fluctuations in the pH of the plating bath. obtain.

つぎに、電流密度は60〜200 A / am2の範
囲とする。高速めつきのためには、鉄−亜鉛メッキの効
率は、液のpH,温度、流速等を最適の条件に整えても
高々80%程度のため、少なくとも電流密度け60 A
/cl−以上とすることが重要であり、これ未満ではめ
っき時間が長くなり、連続めっき装置も極めて長くなり
量産性にも支障をきたすよう忙なる。200 A / 
am”を超えると特に陰極面からの水素ガス発生量が著
しく、これらのガスがめつき層に吸蔵されて防食性を低
下させる恐れがある上、両極間の通電抵抗を増大させる
ので高速めつきを連続的に行うことが難しくなってくる
Next, the current density is in the range of 60 to 200 A/am2. For high-speed plating, the efficiency of iron-zinc plating is about 80% at most even if the pH, temperature, flow rate, etc. of the solution are set to the optimum conditions, so a current density of at least 60 A is required.
It is important that the plating temperature is at least /cl-, and if it is less than this, the plating time will be long and the continuous plating equipment will be extremely long, which will be too busy and will hinder mass production. 200 A/
am'', the amount of hydrogen gas generated especially from the cathode surface is significant, and these gases may be occluded in the plating layer, reducing the corrosion protection.In addition, high-speed plating is not possible as it increases the current carrying resistance between the two electrodes. It becomes difficult to do it continuously.

浴温もめっきの安定性のためには40〜80℃の範囲に
制御することが必要である。40℃未満ではめっき浴温
の定温制御が困難であり、しかもめつき層と鋼材との密
着性も劣るため好ましくない。
It is also necessary to control the bath temperature within the range of 40 to 80°C for the stability of plating. If it is less than 40°C, it is difficult to control the plating bath temperature at a constant temperature, and the adhesion between the plating layer and the steel material is also poor, which is not preferable.

また80℃超では、液の蒸発が大きく、さらに装置材質
の選択も難しくなるので好ましくない。
Further, if the temperature exceeds 80°C, evaporation of the liquid will be large and it will also be difficult to select the material of the device, which is not preferable.

つぎに本発明では、可溶性陽極を用いず、不溶解性陽極
を用いることによって高速めっきを可能とした。可溶性
陽極では、電極消耗による取換えが煩雑であるばかりで
なく、高電流密度下では、電極不働態化現象を起し、高
速めっきそのものが不可能となる。本発明の不溶解性陽
極は、たとえば鉛合金系、あるいは白金、ロジウム、イ
リジク人などの貴金属系、あるいはこれらの酸化物系な
どが適当である。かかる不溶解性陽極を用いたときけ高
電流密度下で安定しためっき電流を確保でき、したがっ
て、めっき皮膜の制御が極めて容易となる。
Next, in the present invention, high-speed plating is made possible by using an insoluble anode instead of a soluble anode. In the case of a soluble anode, not only is it troublesome to replace the electrode due to wear, but also the electrode becomes passivated under high current density, making high-speed plating impossible. The insoluble anode of the present invention is suitably made of, for example, a lead alloy, or a precious metal such as platinum, rhodium, or iris, or an oxide thereof. When such an insoluble anode is used, a stable plating current can be ensured under high current density, and therefore, the control of the plating film becomes extremely easy.

なお、本発明においては、pHを低く保ち、また硫酸塩
濃度を高くし浴温導性をできるだけ付与し。
In the present invention, the pH is kept low and the sulfate concentration is increased to provide bath temperature conductivity as much as possible.

高電流密度適用時のめっき焼けの防止、浴電圧の低減を
狙っているが、本発明のめっき浴には、硫酸アンモニウ
ム、硫酸ソーダ、硫酸アルミニウムなどの電導性付与剤
を、鉄イオンや亜鉛イオンの溶解性を損わない程度、た
とえば5〜80 y / J2添加することは差支えな
い。
The aim is to prevent plating burn and reduce bath voltage when high current densities are applied, but the plating bath of the present invention contains conductivity imparting agents such as ammonium sulfate, sodium sulfate, and aluminum sulfate, as well as iron ions and zinc ions. It may be added to an extent that does not impair solubility, for example, 5 to 80 y/J2.

上記した条件により得られためっき層は、ζ相、δl相
およびζ相の少なくとも1種がらなり実質的にη相を有
しないFa −Zn金属間化合物である。
The plating layer obtained under the above conditions is an Fa-Zn intermetallic compound consisting of at least one of ζ phase, δl phase, and ζ phase and substantially no η phase.

δl相は主としてFeZn7の組成を有し、Zn B&
6〜93重量%を含有し、ζ相は主としてFe1s Z
%□およびFe3 Zn□。の混晶であり、 Zn 7
2〜80重量%を含有し、ζ相は主としてF’92nz
3の組成を有し、zn9r5h8〜94..5重量%を
含有するとされており、また、η相は、純亜鉛に相当す
る。このようにして得られたF相、δl相およびζ相の
少なくとも1種からなり、実質的にイ相を有しないFe
−Zn金属間化合物は高度の防食性を有しており、また
、自動車用には寒冷地で道路に散布した溶雪用の塩によ
る塩害や、また小石などの飛散に対する耐穴明性にもす
ぐれている@ たとえば、このような用途に対しては、5〜25y/m
2程度の厚さのめっき層とし、その上に化成処理層との
密着性や電着塗料等の塗装性を強化する上層めっきを施
すことが好ましい。本発明方法によるめっき層の厚さは
、防食性の点から5 P / m”以上が好ましいが、
25P/m”を超えると生産性の観点からは電気めっき
で製造するメリットが少なくなるのみならず加工性や溶
接性も悪化する。上層のめっき層としては、たとえば、
めっき浴としてZn++/ Fe”+重量比系α02〜
α151.硫酸塩濃度(含水塩として)が計1oo y
/f1以上溶解限噂以”内(作業温度) 、pHが08
〜2.3である硫酸塩浴を用い、電流密度60〜200
 A / 4m2、浴温40〜80℃の条件下で、不溶
性陽極を用い、鋼材上に電気めっき、することによって
得られたFe  Zn固溶体合金めっき層をα5〜7 
f / m2の厚さで形成させる。上記において、Zn
  /Fe  重量比が015を超えると固溶体合金が
形成されず、化成処理性が充分でない。
The δl phase mainly has a composition of FeZn7, with ZnB&
6 to 93% by weight, and the ζ phase is mainly Fe1s Z
%□ and Fe3Zn□. It is a mixed crystal of Zn 7
2 to 80% by weight, and the ζ phase is mainly F'92nz
zn9r5h8-94. .. It is said to contain 5% by weight, and the η phase corresponds to pure zinc. The Fe thus obtained consists of at least one of the F phase, δl phase and ζ phase, and has substantially no I phase.
-Zn intermetallic compounds have a high degree of corrosion resistance, and for automobiles, they are also effective against salt damage caused by snow melting salt sprayed on roads in cold regions, as well as resistance to punctures from flying pebbles. Excellent @ For example, for such applications, 5 to 25 y/m
It is preferable to form a plating layer with a thickness of about 2 mm, and to apply an upper layer plating on top of the plating layer to enhance adhesion with the chemical conversion treatment layer and coatability with electrodeposition paint or the like. The thickness of the plating layer formed by the method of the present invention is preferably 5 P/m" or more from the viewpoint of corrosion resistance, but
If it exceeds 25P/m'', the merits of manufacturing by electroplating will be reduced from the viewpoint of productivity, and the workability and weldability will also deteriorate.For example, as the upper plating layer,
As a plating bath, Zn++/Fe”+ weight ratio system α02~
α151. Sulfate concentration (as hydrated salt) total 1oo y
/f1 or above and within the rumored solubility limit (working temperature), pH is 08
Using a sulfate bath with a current density of ~2.3 and a current density of 60 to 200
A Fe-Zn solid solution alloy plating layer obtained by electroplating on steel material using an insoluble anode under the conditions of A/4 m2 and bath temperature of 40 to 80 °C is α5 to 7.
Formed with a thickness of f/m2. In the above, Zn
/Fe If the weight ratio exceeds 0.15, no solid solution alloy is formed and chemical conversion treatment properties are insufficient.

また002未満では防食性が不充分である。その他の条
件設定の理由は、本発明金属間化合物形成の場合と同様
である。
Further, if it is less than 002, the corrosion resistance is insufficient. The reasons for setting other conditions are the same as in the case of forming the intermetallic compound of the present invention.

固溶体合金めっき層の厚さはα5y /rn”未満では
化成処理性が良好でなく、ブリスター等の塗膜欠陥を生
じやすい。またγf / m”超としても化成処理性は
それ程向上しない。好ましくけ1〜3 f / m2の
範囲である。
If the thickness of the solid solution alloy plating layer is less than α5y/rn", the chemical conversion treatment property will not be good and coating defects such as blisters will easily occur. If the thickness exceeds γf/m", the chemical conversion treatment property will not improve much. It is preferably in the range of 1 to 3 f/m2.

本発明方法による金属間化合物合金めっき層の上に、上
記固溶体合金めっき層を複層めっきしても5.5〜32
り/ m”程度の厚さとなる。従来の亜鉛めっき後、加
熱して鉄と亜鉛を合金化した合金化溶融亜鉛めっき鋼板
の場合におりては通常めっき層が平均45り/ m”以
上あるのに比し、著しく薄層のめっき層であるKも拘わ
らず同等以上の耐食性、溶接性、加工性などのすぐれ、
た性能を発揮する。
Even if the above-mentioned solid solution alloy plating layer is multilayer plated on the intermetallic compound alloy plating layer by the method of the present invention, the 5.5 to 32
The thickness is approximately 45 l/m" or more on average in the case of hot-dip galvanized steel sheets, which are made by heating and alloying iron and zinc after conventional galvanizing. Despite the fact that K has a significantly thinner plating layer, it has superior corrosion resistance, weldability, workability, etc.
Demonstrates excellent performance.

以下実施例により本発明をさらに詳しく説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 第1表に示す条件で通常の冷延鋼板上にFe −Zn金
属間化合物合金電気めっきを施した。めっき条件は第1
弐に示したように変化させた。浴組成はZnBO,・7
H,0とFe50.−7H20と“を合算量テ500 
p/ftとナルヨうKL、また、(NH,)280.3
0 P/ I−を用いた。
Example 1 Fe--Zn intermetallic compound alloy electroplating was performed on a normal cold-rolled steel sheet under the conditions shown in Table 1. Plating conditions are the first
I changed it as shown in 2. The bath composition is ZnBO, 7
H,0 and Fe50. -7H20 and “total amount te500
p/ft and Naruyo KL, also (NH,)280.3
0 P/I- was used.

陽極として、チタン基板に白金めっきしたものを不溶解
性陽極として用いた。めっき量は、20y/m2となる
よう、めっき時間を変えることによって調整した。めっ
き量およびめっき層の相は、それぞれ原子吸光法および
X線回折法で求めた。評価結果を第1表に示した。
As an anode, a titanium substrate plated with platinum was used as an insoluble anode. The amount of plating was adjusted to 20 y/m2 by changing the plating time. The amount of plating and the phase of the plating layer were determined by atomic absorption method and X-ray diffraction method, respectively. The evaluation results are shown in Table 1.

実施例2 実施例1の実験No、30条件で鋼材上に電気めっきを
施し、その上に次の条件でFe −Zn固溶体電気めっ
き、化成処理、ついでカチオン゛Iル着塗装を行111
表 厳比較のための水側0 1Fe −Zn固溶体電気めっきの条件:めりき浴中の
zn++ / IPe++重量比α07 (Zn5O,
・7a、o30p/fi、FsBO,・7H204’7
0P/i)、硫酸塩濃度500y/児、浴pH12、浴
温60℃、電流密度100 A / am”で陽極にチ
タン基板に白金めっきしたものを用い、めっき量5り/
mlAとした。
Example 2 Electroplating was performed on a steel material under the experiment No. 30 conditions of Example 1, and then Fe-Zn solid solution electroplating, chemical conversion treatment, and cationic I-layer coating were performed on the steel material under the following conditions.111
Conditions for water side 01Fe-Zn solid solution electroplating for strict comparison: Zn++/IPe++ weight ratio α07 (Zn5O,
・7a, o30p/fi, FsBO, ・7H204'7
0P/i), sulfate concentration 500y/child, bath pH 12, bath temperature 60℃, current density 100 A/am'', using a platinum-plated titanium substrate as the anode, plating amount 5y/day.
mlA.

比較例1 通常の冷延鋼板上に実施例2と同じ条件でFe −Zn
固溶体電気めっき、りん酸塩処理、ついでカチオン電着
塗装を行い、物性を試験し、評価を第2表に示した。
Comparative Example 1 Fe-Zn was deposited on a normal cold-rolled steel plate under the same conditions as Example 2.
Solid solution electroplating, phosphate treatment, and cationic electrodeposition coating were performed to test the physical properties, and the evaluations are shown in Table 2.

比較例2および3 従来法による亜鉛めっき鋼板(膜厚60y/m2、比較
例2)および合金化溶融亜鉛めっき鋼板(膜厚45 P
 / m2、比較例3)について、性能を試験し、評価
を第2表に示した。
Comparative Examples 2 and 3 Galvanized steel sheet by conventional method (film thickness 60y/m2, Comparative Example 2) and alloyed hot-dip galvanized steel sheet (film thickness 45P)
/ m2, Comparative Example 3) was tested for performance, and the evaluation is shown in Table 2.

第  2  表 なお、第1表および第2表における 評価けつぎのように行った。Table 2 In addition, in Tables 1 and 2 It was like evaluation after evaluation.

A、めっき層密着性 めっき面に白色ビニルテープを貼り付け、鏡面を内側に
して01曲げを行ない、テープに付着しためつき層の剥
離を測定した()(ラダ1)ングテスト)OBl  り
ん酸塩処理性 りん酸塩処理は7オスフオフイライト(Phospho
phyllite、 Zn2F@(PO4)1)系浸漬
処理型薬剤である日本ペイント特製GrS−D−200
0を使用し、これをTA16〜1B、AR18〜20.
 Zn++11000900pp%Fe”50〜lQO
ppmに調整したものに試料を、120秒浸漬して行っ
た。
A. Adhesion of the plating layer A white vinyl tape was pasted on the plating surface, the mirror surface was turned inside and 01 bending was performed, and the peeling of the plating layer adhering to the tape was measured. Salt treatment phosphate treatment is 7 osphofluorite (Phospho
Nippon Paint special GrS-D-200, which is a phyllite, Zn2F@(PO4)1)-based immersion treatment chemical.
0, and this was applied to TA16-1B, AR18-20.
Zn++11000900pp%Fe”50~1QO
The sample was immersed in a solution adjusted to ppm for 120 seconds.

(1)皮膜量 りん酸塩皮膜量は、皮膜′fK:2重量%OrOs溶液
で溶解して求めた0 (2)P比率 により求めた。
(1) Film amount The phosphate film amount was determined from the 0 (2) P ratio determined by dissolving the film in a 2% by weight OrOs solution.

0%塗装後の耐食性 上記りん酸塩処理した後の試料板を120℃XIO分間
空焼きし、この上に日本ペイント特製のノくワードツブ
U−30をカチオン電着塗装した。クロスカット剥離中
、耐赤さび性、赤さび発生時間の3つの評価は、この段
階の試料を使用した。又、耐水密着性については、乾燥
膜厚20μとなるよう上記カチオン電着塗装を施した塗
装板上に、日本ペイント特製アミラックTP −16R
を乾燥膜厚25μとなるように塗装、焼付しく140℃
×20分間)、さらに上塗りと、して日本ペイント■製
アミラック030を乾燥膜厚が30μとなるよう塗装焼
付(140℃×20分間)行った試料について評価した
Corrosion resistance after 0% coating The sample plate after the above phosphate treatment was air-baked at 120°C for XIO minutes, and Nokuward Tube U-30, manufactured by Nippon Paint, was cationically electrodeposited thereon. Samples at this stage were used for three evaluations: cross-cut peeling, red rust resistance, and red rust generation time. In addition, regarding water-resistant adhesion, Nippon Paint special Amirac TP-16R was applied to the painted board that had been coated with the above cationic electrodeposition coating to a dry film thickness of 20 μm.
Painted to a dry film thickness of 25 μm and baked at 140°C.
Evaluation was made on a sample which was coated with Amirac 030 manufactured by Nippon Paint ■ for 20 minutes) and baked (140° C. for 20 minutes) to a dry film thickness of 30 μm.

(1)耐水密着性 上塗9j&装板を40℃の湯に240時間浸漬し、浸漬
終了後すみやかに鋼素地に達する2mm角の基盤目を1
00個刻み、セロテープで剥離し、塗膜剥離面積比で評
価した。
(1) Water resistant adhesion Top coat 9j & plated board is immersed in hot water at 40℃ for 240 hours, and after the immersion is finished, immediately apply one 2 mm square base line to the steel substrate.
The film was peeled off with cellophane tape in 00 pieces, and evaluated based on the peeled area ratio.

(2)クロスカット剥離中 カチオン電着塗料の乾燥膜厚20μ塗装板に、鋼素地に
達するクロスカットを施こし、塩水噴霧試験(360時
間、J工82371 )を行い、その剥離中(片側mm
 )で判定した。
(2) During cross-cut peeling A board coated with a cationic electrodeposition paint with a dry film thickness of 20 μm was cross-cut to reach the steel substrate, and a salt spray test (360 hours, J Engineering 82371) was performed.
).

(3)耐赤さび性 カチオン電着塗料の乾燥膜厚20μ塗装板で、塩水噴霧
試験(360時間、J工82371)後のクロスカット
部の赤さび発生状況を観察した。
(3) Red Rust Resistance On a plate coated with a cationic electrodeposition paint with a dry film thickness of 20 μm, the occurrence of red rust at the cross-cut portion was observed after a salt spray test (360 hours, J Engineering 82371).

(4)赤さび発生時間 カチオン電着塗料の乾燥膜厚5μ塗装板で、クロスカッ
トをせず、塩水噴霧試験(J工82371 )を行い、
赤さび発生までの時間を測定した。
(4) Red rust generation time A salt water spray test (J Engineering 82371) was conducted on a board coated with cationic electrodeposition paint with a dry film thickness of 5μ without cross-cutting.
The time until red rust appeared was measured.

代理人 弁理士 井 上 雅 生Agent: Patent attorney Masao Inoue

Claims (1)

【特許請求の範囲】[Claims] L めりき浴として、浴中のZn” / Fe++重量
曳がα4〜α9、且つ両金属の硫酸塩濃度が計100 
F/It以上溶解限以内、 pHが08〜2.3である
硫酸塩浴を用い、電流密度60−200 A / am
” 、浴温40〜80℃の条件下で、不溶解性陽極を用
い、鋼材上に電気めっきすることを特徴とする鉄−亜鉛
金属間化合物合金めっき方法。
L As a plating bath, the Zn''/Fe++ weight ratio in the bath is α4 to α9, and the sulfate concentration of both metals is 100 in total.
Use a sulfate bath with a pH of 08 to 2.3, F/It or higher and within the solubility limit, and a current density of 60 to 200 A/am.
", an iron-zinc intermetallic compound alloy plating method characterized by electroplating on a steel material using an insoluble anode at a bath temperature of 40 to 80°C.
JP14964181A 1981-09-24 1981-09-24 Plating method for iron-zinc intermetallic compound alloy Pending JPS5852493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14964181A JPS5852493A (en) 1981-09-24 1981-09-24 Plating method for iron-zinc intermetallic compound alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14964181A JPS5852493A (en) 1981-09-24 1981-09-24 Plating method for iron-zinc intermetallic compound alloy

Publications (1)

Publication Number Publication Date
JPS5852493A true JPS5852493A (en) 1983-03-28

Family

ID=15479663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14964181A Pending JPS5852493A (en) 1981-09-24 1981-09-24 Plating method for iron-zinc intermetallic compound alloy

Country Status (1)

Country Link
JP (1) JPS5852493A (en)

Similar Documents

Publication Publication Date Title
US4510209A (en) Two layer-coated steel materials and process for producing the same
JP3967519B2 (en) Zn-Mg electroplated metal plate and method for producing the same
JP5334499B2 (en) Surface-treated metal plate with excellent paint adhesion and method for producing the same
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
JPS598354B2 (en) Composite coated steel plate
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPS5852493A (en) Plating method for iron-zinc intermetallic compound alloy
JP2001020050A (en) HOT DIP Zn-Al-Mg PLATED STEEL EXCELLENT IN CORROSION RESISTANCE IN NONCOATED PART AND COATED EDGE PART AND ITS PRODUCTION
JPS5852494A (en) Iron-zinc alloy plated steel material
JP2006057149A (en) Phosphated galvanized-steel sheet superior in corrosion resistance and blackening resistance
JPS5852492A (en) Plating method for iron-zinc solid solution alloy
JPS59162294A (en) Steel sheet having two-layered zn plating provided with superior workability and its manufacture
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JP2509940B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JP2001059198A (en) Zn-Co PLATED METALLIC SHEET EXCELLENT IN CORROSION RESISTANCE AND ITS PRODUCTION
JPH0142359B2 (en)
JPH0754193A (en) Production of high corrosion resistant electrogalvanized steel sheet excellent in chemical convertibility
JPS5923894A (en) Plate steel sheet with superior corrosion resistance and its manufacture
JPS58210191A (en) Production of steel plate plated with zn-fe alloy
JPH0718464A (en) Production of highly corrosion-resistant electrogalvanized steel sheet excellent in chemical convertibility
JPS59159987A (en) Surface-treated steel sheet with superior suitability to chemical conversion treatment
JPH0148356B2 (en)
JPS60131977A (en) Surface treated steel sheet having superior suitability to chemical conversion treatment
JPS61266599A (en) Zn-fe composite plated steel sheet
JPS58133394A (en) Double-layered electroplated steel sheet