JPS58210191A - Production of steel plate plated with zn-fe alloy - Google Patents

Production of steel plate plated with zn-fe alloy

Info

Publication number
JPS58210191A
JPS58210191A JP9160782A JP9160782A JPS58210191A JP S58210191 A JPS58210191 A JP S58210191A JP 9160782 A JP9160782 A JP 9160782A JP 9160782 A JP9160782 A JP 9160782A JP S58210191 A JPS58210191 A JP S58210191A
Authority
JP
Japan
Prior art keywords
iron
plating
bath
content
molar concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9160782A
Other languages
Japanese (ja)
Other versions
JPS6121318B2 (en
Inventor
Takehiko Ito
武彦 伊藤
Yasusuke Irie
入江 泰佑
Masayoshi Tadano
政義 多々納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP9160782A priority Critical patent/JPS58210191A/en
Publication of JPS58210191A publication Critical patent/JPS58210191A/en
Publication of JPS6121318B2 publication Critical patent/JPS6121318B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To enable the plating with high workability and at a stable and high content of iron, by adding Na2SO4 in place of (NH4)2SO4 and further K2TiF6 or Na2TiF6 and Al2(SO4)3 or MgSO4 to a plating bath contg. respective ions of zinc and iron. CONSTITUTION:A steel plate is plated in an electric Zn-Fe alloy plating bath of 0-15pH which contains 5-32g/l Zn<2+>, 27-60g/l Fe<2+>, 40-152g/l Na2SO4 in terms of anhydrous salt, 2X10<-3>-0.13mol/l K2 (or Na2) SiF6 and 8X10<-4>-9X 10<-2>mol/l Al2 (SO4)3 or MgSO4 and is controlled to 0.6-1.4 Na2SO4 molar concn./Fe<2+> molar concn., 0.5-0.8 Fe<2+> molar concn./(Fe<2+>+Zn) molar concn. Even if the bath temp. is <=20 deg.C here, the formation of crystals is prevented and the content of iron in the plating layer is increased by Na2SO4, and the fluctuation in the compsn. of the plating layer according to plating conditions is suppressed by K2SiF6, Al2 (SO4)3, etc.

Description

【発明の詳細な説明】 本発明は作業性に優れ、しり・もめつぎ層中のFe含有
量を安定かつ高(することかでさる電気めっき法による
Zn −Fe @金めつき鋼板の製造法に関する。
[Detailed Description of the Invention] The present invention provides a method for manufacturing Zn-Fe@gold-plated steel sheets by electroplating, which has excellent workability and allows stable and high Fe content in the edge and groin layers. Regarding.

亜鉛合金めつき鋼板としては、めっき層全体かZn −
Fe合金となったZn −Fe合金めつき鋼板か、めっ
き層全体が純亜鉛である亜鉛めっき鋼板より塗装前処理
(化成処理性)や塗膜密着性に俊才1.ていることから
、従来より建材等の分野に多(使用されている。
For zinc alloy plated steel sheets, the entire coating layer or Zn −
1. Excellent in pre-painting treatment (chemical conversion treatment) and paint film adhesion than Zn-Fe alloy coated steel sheets made of Fe alloy or galvanized steel sheets whose entire coating layer is made of pure zinc. Because of this, it has been widely used in fields such as building materials.

近年このZn −Fe合金めつき鋼板の特徴は自動車や
家電製品業界にお(・ても広(認識され、塗装用原板と
して重要視されるようになっているが、従来のZn −
Fe合金めつぎ鋼板は大部分が鋼板に亜鉛を溶融めっき
しTこ後加熱処理することによりめっき層全体52n 
−Fe合金化させたものであるため、従来使用して(・
た電気亜鉛めっき鋼板の代りに使用するにあたっては次
のような問題があった。
In recent years, the characteristics of this Zn-Fe alloy plated steel sheet have become widely recognized in the automobile and home appliance industries, and it has become important as a base plate for painting.
Most of Fe alloy plated steel sheets are made by hot-dipping zinc onto the steel sheet and then heat-treating the steel sheet to reduce the entire plating layer to 52nm.
-Since it is alloyed with Fe, conventionally used (・
There were the following problems when using it in place of electrogalvanized steel sheets.

(1)めっき層のZn −Fe合釡は加工性が純亜鉛に
比べると劣るうえ、′溶融めっきでは薄めつきが困難な
ため軽度の加工に対してもめつぎ層は割れや丁く、加工
性に欠ける。
(1) The workability of the Zn-Fe alloy pot for the plating layer is inferior to that of pure zinc, and it is difficult to thin the plate with hot-dip plating, so even with light processing, the matte layer will not crack or crack, and the workability will be poor. It lacks.

(2)  Zn −Fe合金化めっき層表面圧添加元素
であるAIが富化し、それが不活性なAl 203にな
って、その部位の化成処理は必ずしも十分でな(・。
(2) Zn-Fe alloyed plating layer surface pressure addition element Al is enriched and becomes inactive Al 203, and chemical conversion treatment of that part is not necessarily sufficient (.

(3)合金化処理時にめっき原板が熱歪ン受け、加工性
が冷延鋼板より劣る。
(3) The plated original sheet undergoes thermal distortion during alloying treatment, and its workability is inferior to that of cold-rolled steel sheet.

このため上記のような問題のないZn −Fe @金め
つぎ鋼板として、電気めっきにより鋼板上(C直接Zn
 −Fe合金めつキケ行った電気Zn −Fe @金め
つぎ鋼板か注目されて(・る。
Therefore, as Zn-Fe@gold-plated steel sheet without the above-mentioned problems, it is possible to coat Zn-Fe on the steel sheet (C directly) by electroplating.
The electric Zn -Fe @Kinmetsugi steel plate that has been used in -Fe alloys is attracting attention (・ru).

従来この電気Zn −Fe合金めつぎ鋼板はめつぎ浴と
してZn”忘よびFe2+ ン含有する浴に電導剤とし
てNa25Oa、K2SO4または(NH4)2 SO
4のうちの1種を少量添加したもの(以下単純塩浴と称
する)を用いて鋼板を電気めつさするごとによr+a造
してい7j E3、この単純塩浴の場合めっき条件(浴
PH,ill流密度、めっき液の噴流速度など)が変動
すると、それに伴ってめつさ層組成も著しく変動千ると
いう欠点があるためFe含有量が常に安定したZn −
Fe合金めつぎ鋼板ケ得ることは困難であった。
Conventionally, this electric Zn-Fe alloy mating steel plate was used as a mating bath by adding Na25Oa, K2SO4 or (NH4)2SO as a conductive agent to a bath containing Zn and Fe2+.
Each time a steel plate is electroplated, a small amount of one of the following salts is added (hereinafter referred to as a simple salt bath). , ill flow density, jet velocity of plating solution, etc.), the composition of the metal layer changes significantly.
It was difficult to obtain Fe alloy mating steel plates.

この定めめっき層中のFe含有量が常に安定したZn 
−Fe @金めつぎ鋼板の製造法として、前記単純塩浴
における硫酸アンモニウム添加fi7モル濃度にてFe
”:IK等しクシタめつぎ浴(以下改良浴と称する)を
用(・、こnKより鋼板ン電気めっきする方法が提案さ
4て(・る。
The Fe content in this predetermined plating layer is always stable.
-Fe @ As a method for producing gold-plated steel sheets, Fe
``: A method of electroplating steel sheets using a Kushita mating bath (hereinafter referred to as improved bath) similar to IK was proposed.

しかしながらこの改良浴を用(・る方法の場合浴管理上
次のような種々の問題かあり、作業性が悪(、製造品種
にも限界があった。
However, in the case of using this improved bath, there were various problems in bath management, such as poor workability, and there were limits to the types of products manufactured.

(1)浴温か20C以下になると硫酸アンモニウム第1
鉄複塩結晶が多量に生成するので、めっき液は循環工程
を含めて少(とも20tll’以上に保つことを必要と
して(・たか、めっき設備の配管などにおいては冬期2
Or以下になる場合があり、配管などの目詰りが起る。
(1) When the bath temperature is below 20C, ammonium sulfate
Since a large amount of iron double salt crystals are formed, it is necessary to keep the plating solution at a low level (at least 20 tll') including the circulation process.
The temperature may drop below Or, causing clogging of pipes, etc.

(2)不溶性陽極によるめっきの場合、浴中にクエン酸
などの酸化防止剤を添加してもFe2+のFe3+への
酸化はさげらnず、しかも浴PHが15Y越えるとその
Fe3+化合物が多量に沈澱し、めっきの継続が困難と
なる。この定め浴PHは常に少(ともL5以下に調整す
ることを必要として(・だが、浴PHンL5以下にする
とめつぎ層中のFe含有量は最大でも30%以下で、3
0%を越えるようすZn −Fe合金めつざがでさない
(2) In the case of plating with an insoluble anode, even if an antioxidant such as citric acid is added to the bath, the oxidation of Fe2+ to Fe3+ will not be reduced, and if the bath pH exceeds 15Y, a large amount of the Fe3+ compound will be produced. Precipitation occurs, making it difficult to continue plating. It is necessary to always adjust this fixed bath pH to a low value (lower than L5), but if the bath pH is lower than L5, the Fe content in the agate layer is at most 30% or lower,
If the Zn-Fe alloy exceeds 0%, no effect will be observed.

(3)浴PHLo〜L5の範囲4Cj6いては、めっき
層中のFe含有量は第1図に示す如< PHの影響を受
は易(・。この1こめめっき層中のFe含有量を常に安
定させるには実用上比較むりPH変動の小さく・領域で
あるPHL Oの近傍でめ−)さする必要があった。し
ん1=LPHLO近傍でめつさした場合、めっき層中の
Fe含有量はIO%禾満に低下し、十りrな塗膜密着性
および塗装後耐食性が得ろrLな−・。
(3) In the range 4Cj6 of the bath PHLo~L5, the Fe content in the plating layer is as shown in Fig. 1. It is easily influenced by pH (...) The Fe content in the plating layer is In order to stabilize it, it was necessary to test it in the vicinity of PHLO, which is an area where PH fluctuations are relatively small in practical terms. When plating in the vicinity of 1=LPHLO, the Fe content in the plating layer decreases to 10%, resulting in satisfactory paint film adhesion and post-painting corrosion resistance.

本発明者らは従来の単純塩浴、改良浴かと運のような種
々の欠点を有して(・定点に鑑み、七2″Lらを解次丁
べく研究ン重ねた結果、作業性に優れ、しかもめつぎ層
中のFe含有ftヲ安定かつ尚くすることかでさる電気
めつさ法によるZn −Fe合金めつぎ鋼板の製造法開
発に成功した。
The inventors of the present invention found that conventional simple salt baths, improved baths, etc. have various drawbacks, such as luck. We have succeeded in developing a method for manufacturing a Zn--Fe alloy mating steel sheet by an electric mating method that is excellent and also stabilizes the Fe content in the mating layer.

本発明は硫酸アンモニウムの代りに亜鉛3よび鉄の各イ
オンを含有するのつぎ浴に硫酸ナトリウムを添加するこ
とにより浴温か20C以下に下った場合の結晶生収の防
止とめつぎ層中Fe含含有量嵩高すること馨図るととも
に、めっき条件の変動によるめつぎ層組成の変動抑制ン
目的としてチタンフッ化カリウムまたはチタンフフ化ナ
トリウムと、硫酸アルミニウムまたは硫酸マグオ・シr
7ムの各(ずねか一方を添加し、従来浴の欠点乞解決(
定もので、その神像とするどころは亜鉛イオノン5へ3
2νJ、鉄イオン)k27〜60yβ、硫酸ナトリウム
を無水塩にして40〜152ジノ、チタンフッ化カリウ
ムまたはチタンフライ〔ナトリウムを2 X 10−3
〜o、13モ破、?よび硫酸アルミニウムまたは硫酸マ
グネシウムY8xl□−4〜−9X 10−2モV)含
有し、かつ鉄イオン量に対して硫酸ナトリウム量をモル
a度比(硫酸ナトリウムモル濃度/鉄イオンモル#度)
にて0.6〜14にまた鉄イオンと亜鉛イオンの会計量
に対して鉄イオン量をモル濃度比(鉄イオンモル濃度/
鉄イオンと亜鉛イオンの会計モル濃度)にて0.5〜0
.8にそれぞれ調整したPHQ〜L5の酸性電気亜鉛−
鉄会金めっぎ浴で鋼板ビ電気めっさすることにある。
The present invention prevents crystal growth when the bath temperature drops to 20C or less by adding sodium sulfate to the bath containing zinc 3 and iron ions instead of ammonium sulfate, and reduces the Fe content in the abutment layer. Potassium titanium fluoride or sodium titanium fluoride and aluminum sulfate or magnosilicon sulfate were used to increase the bulk and suppress fluctuations in the composition of the plating layer due to changes in plating conditions.
By adding each of the 7 ml (Zuneka), it solves the drawbacks of conventional baths (
Zinc ionone 5 to 3
2νJ, iron ion) k27~60yβ, sodium sulfate as anhydrous salt 40~152 dino, titanium potassium fluoride or titanium fly [sodium 2 x 10-3
~o, 13 mo broken,? and aluminum sulfate or magnesium sulfate Y8xl □ -4 to -9
In addition, the molar concentration ratio (iron ion molar concentration / iron ion molar concentration /
Accounting molar concentration of iron ions and zinc ions) 0.5 to 0
.. Acid electrolytic zinc of PHQ~L5 adjusted to 8-
The process involves electroplating steel plates in a steel metal plating bath.

以下本発明を詳細に述べる。The present invention will be described in detail below.

前述の如(、従来の改良浴においてはZn2+ 、、は
、びFe2+乞含有する浴に硫酸アンモニウムを添加す
るとFe2+は硫酸アンモニウム第1鉄複塩となり、そ
の結晶の沈澱が多量に生じたが、本発明は硫酸ナトリウ
ムを添加することによつFe 2+> Fe S O4
からなるスルフアント第1鉄酸塩(複塩)にする。
As mentioned above (in the conventional improved bath, when ammonium sulfate was added to a bath containing Zn2+ and Fe2+, Fe2+ turned into ammonium sulfate ferrous double salt, and a large amount of crystals thereof precipitated. By adding sodium sulfate, Fe 2+ > Fe SO4
ferrous sulfanate (double salt) consisting of

この塩は硫酸ナトリウム量ム量に添加しても溶解度が大
さく・ので七の結晶の沈澱は住じな(・0例えば5tE
 IIアンモニウムの場@o、 4sモル(6(19々
)以上添加すると0,45モル以上の硫酸アンモニウム
第1鉄が生成し、200以下では結晶が主じ1こが、硫
酸ナトリウムの場合はL1モル(152,F/−6)、
  添加してもスルフアント第1鉄酸塩の結晶は住じな
(・。
This salt has a high solubility even when added to the amount of sodium sulfate, so the precipitation of the crystals will not occur (for example, 5tE
II In the case of ammonium @o, if more than 4 s mol (6 (19)) is added, 0.45 mol or more of ferrous ammonium sulfate will be produced, if it is less than 200, crystals will be mainly 1, but in the case of sodium sulfate, 1 mol of ammonium sulfate will be produced. (152, F/-6),
Even if it is added, the crystals of ferrous sulfanate will not form (・.

従って硫酸ナトリウムの場合浴中のFejly(高濃度
に保つここかでさ、めっき条件が変動してもめつぎ層中
のFe含有量変動は抑制され、また高Fe含有量のZn
 −Fe合金めつざをすることかできる。
Therefore, in the case of sodium sulfate, by keeping the Fejly concentration in the bath high, even if the plating conditions change, fluctuations in the Fe content in the plating layer are suppressed;
-Fe alloys can be used.

第2図はZn”sよびpe2+v含有するめっき浴に硫
酸ナトリウムケ添加し、その浴で鋼板を電気めっきし1
こ場合のめつぎ層中のFe含有倉ン示すもので、第1図
の硫酸アルミニウム添加の場合に比べ同−PH忘よび電
流密度でも高(することかでざる。
Figure 2 shows a process in which sodium sulfate is added to a plating bath containing Zn''s and PE2+V, and a steel plate is electroplated in the bath.
This shows the Fe content in the metal layer in this case, which is higher even at the same pH and current density than in the case of aluminum sulfate addition shown in FIG.

レス、−シこの硫酸ナトリウムケ際加し1こたけではめ
つぎ層中のFe含有量はP)ILOで30%以内又、P
Hの変動によるFe含有量の変動も大さく・。こσ、・
ためこiらθン点ン改11Tべく種々研究を行った結果
、チタンフッ化カリウムまたはチタンフン化ナトリウム
と、硫酸アルミニ9ムまkは硫酸マグネシウムの谷々Q
ハ・イrしか一万をさら九添加了ることか極めて有効で
あることケ見出したのであ゛る。
With the addition of one layer of sodium sulfate, the Fe content in the inlay layer is P) within 30% in ILO, or P
There is also a large variation in Fe content due to variation in H. This σ,・
As a result of various researches for Tameko I et al.
I have found that adding only 10,000 to 90% is extremely effective.

こγLらのチタンフン化物および硫酸塩は本発明にお(
ハ)るめっき浴PHおよび添加量範四ではめっぎ浴に共
存してし・ても化学的に極めて安定して(・る。
The titanium fluoride and sulfate of γL et al.
c) In plating bath pH and addition amount range 4, it is chemically extremely stable even if it coexists in the plating bath.

かつζこjらの化合物は電気めっきの際めっき層中のF
e含有量を高め、pHLo〜L5におけるP)I変動に
伴うめっき層中Fe含有に’、)変動を小さくし、安定
化させる。これは一般に電気めっき時の陰極界面ではP
Hが上昇することからめっき層表面に前記チタンフン化
物と硫酸アルミニウム、又は、マグネシウム塩からなる
加水分解による皮膜が形成さtシ、この皮膜がZn2+
に対してバリヤ一層となってFe2+のみ優先的に通過
させるためと考えられる。
and ζ These compounds reduce F in the plating layer during electroplating.
The e content is increased to reduce and stabilize fluctuations in Fe content in the plating layer due to P)I fluctuations in pHLo~L5. This is generally P at the cathode interface during electroplating.
As H increases, a film is formed on the surface of the plating layer by hydrolysis consisting of the titanium fluoride and aluminum sulfate or magnesium salt, and this film is Zn2+.
It is thought that this is because the barrier layer acts as a barrier layer to allow only Fe2+ to pass through preferentially.

このことは本発明によるZn −Fe合金めっぎ層中に
TiとA1またMgの共析か認められる点からも裏付け
される。
This is also supported by the fact that eutectoids of Ti, Al, and Mg are observed in the Zn--Fe alloy plating layer according to the present invention.

次に本発明におけるめっき浴成分濃度の限定理由ケ述べ
る。
Next, the reason for limiting the plating bath component concentration in the present invention will be described.

Zn2+:F6.にびFe2+は各々5〜32 辺およ
び27〜60 /!/Jにし、カッFe2ン(Zn2+
 十pe2.+ ン。
Zn2+:F6. Nibi Fe2+ has 5 to 32 sides and 27 to 60 sides, respectively! /J and KaFe2n (Zn2+
10 pe2. + N.

モル濃度比で05〜08にする。これは各III!度〃
1下限未満でちると浴中濃度に対して電析により持出さ
nる量の割合が多くなることから浴中a度の変化が大さ
くなり、均一な紐取のめっぎン行うのがむすかしくなる
ためである。一方各濃度が上限を越えるとめつき層表面
に付着して持出、2−nる量が多(なり、段進コストの
上昇にっなかるとともに、めっき浴の粘性増大、ピンポ
ール発生の増加等の問題が起る。と(KFe2+が上限
ン越えた場合、後述の如く本発明に2いてはFe2+量
忙応じて硫酸ナト17クムン添加するので、その添加量
も増加し、めっき浴の粘性は増大し、鋼板付着による持
出し量を増加させるとともに、ピンホールの発生も多く
なる。
Make the molar concentration ratio 05 to 08. This is each III! Every time〃
If the temperature is less than the lower limit of 1, the ratio of the amount removed by electrodeposition to the concentration in the bath increases, resulting in large changes in the a degree in the bath, making it difficult to perform plating with uniform string removal. To become. On the other hand, if each concentration exceeds the upper limit, a large amount will adhere to the surface of the plating layer and be carried out, resulting in an increase in the step-up cost, an increase in the viscosity of the plating bath, an increase in the occurrence of pin-poles, etc. (If KFe2+ exceeds the upper limit, as will be described later, in the present invention, 17 cm of sodium sulfate is added depending on the amount of Fe2+, so the amount added increases, and the viscosity of the plating bath decreases. This increases the amount of removal due to adhesion of the steel plate, and also increases the number of pinholes.

Fe”/(Zn”十Fe” ) 17) モル濃度比は
0.5未満であるとZnの電析が多くなってめっき層中
のFe含有量が少(なり、10%以上にするのがむずか
しくなる。一方0,8を越えると逆にFeの電析量が増
加し、めつさ層中のFe含有量は70%ケ越える。
Fe”/(Zn”10Fe”) 17) If the molar concentration ratio is less than 0.5, the amount of Zn deposited increases and the Fe content in the plating layer becomes small (it is recommended to set it to 10% or more). On the other hand, if it exceeds 0.8, the amount of Fe deposited increases, and the Fe content in the metsa layer exceeds 70%.

しかしめつぎ層の化成処理性や塗装性はFe含有量70
%代でほぼ飽和してしまうので、ざらにFe含有量ケ高
めても意味がない。
However, the chemical conversion treatment and paintability of the mesh layer are limited to Fe content of 70.
%, so there is no point in increasing the Fe content too much.

硫酸ナトリウムは前述の如(めっき浴中のFe ” ’
(+’スルフアット第1鉄酸塩にするためのものである
が、本発明の場合必ずしも丁べてのFe2+ンスルフア
ツト第1鉄酸塩にする必要はなく 、Nas+ S O
4/Fe”ケモル濃度比で0.6〜L4の範囲に丁nば
、十分安定したFe含有量のZn −Fe合金めつキラ
行うことかでざる。しかしモル濃度比が大さく・程若干
ではあるがめつぎ層中のFe含有量が多(なるので、F
e含有量の高(したい場合にはモル濃度比は前記範囲の
上限にするのが好ましい。
Sodium sulfate is used as described above (Fe in the plating bath
(+' This is to make ferrous sulfate, but in the case of the present invention, it is not necessary to make all Fe2+ ferrous sulfates, and Nas+ SO
If the molar concentration ratio of 4/Fe is in the range of 0.6 to L4, it is possible to make a Zn-Fe alloy with a sufficiently stable Fe content.However, if the molar concentration ratio is large and the However, since the Fe content in the mesh layer is high, F
If a high e-content is desired, the molar concentration ratio is preferably set at the upper limit of the above range.

Na2SO4/Fe2+のモル濃度比はL4より大きく
してもめつぎ層中のFe含有量ケ増加させることは困難
で、限界に達して(・々・ので、大さくする意味力・な
い。一方0,6未満にするとめつぎ条件の変動に追従し
てめっき層中のFe含有量も変動し、安定し7、zFe
含有量のZn −Fe合金めつさン行5ことか困難とな
る。
Even if the molar concentration ratio of Na2SO4/Fe2+ is made larger than L4, it is difficult to increase the Fe content in the interlocking layer, and the limit has been reached (...), so there is no point in increasing it.On the other hand, 0, If it is less than 6, the Fe content in the plating layer will follow the changes in the plating conditions, but will remain stable.7, zFe
The content of Zn-Fe alloys is 5 or more difficult.

本発明の場合Fe2+含有量下限か27辺であるので硫
酸ナトリウム添加量の下限は前記モル濃度比下限0.6
より算、出して無水塩で409Aとなる、一方上限は同
様に算出すると無水塩で213νぷとなるが、152 
El/−eを越えるとめつぎ浴の粘性が大さくなり、め
っき層のピンホール発生か増加するので、152u以下
にする。
In the case of the present invention, since the lower limit of Fe2+ content is 27 sides, the lower limit of the amount of sodium sulfate added is 0.6, which is the lower limit of the molar concentration ratio.
The upper limit is calculated in the same way and becomes 409A for anhydrous salt, but the upper limit is 213ν for anhydrous salt, but 152
If it exceeds El/-e, the viscosity of the potting bath will increase and the occurrence of pinholes in the plating layer will increase, so it should be 152u or less.

チタンフッ化カリウムまたはチク/フッ化ナトリウムの
添加量は2 X 10−3〜0.13モVノが適正で、
2 X 10−3七V!未満であるとさらに硫酸アルミ
ニウムまたは硫酸マグネシウムン添加してもめつぎ層中
のFe含有量ン高める効果がな(・。−万〇、13モl
b/、13 ’Y越えると前記硫酸塩の一方の添加によ
りチタンの電析量が増え過ぎ、めっき層かもろくなる。
The appropriate amount of potassium titanium fluoride or titanium fluoride/sodium fluoride is 2 x 10-3 to 0.13 moV.
2 X 10-37V! If the amount is less than 13 mol, even if aluminum sulfate or magnesium sulfate is added, there is no effect of increasing the Fe content in the mating layer.
If it exceeds b/, 13'Y, the amount of titanium deposited will increase too much due to the addition of one of the sulfates, and the plating layer will also become brittle.

硫酸アルミニウムまたは硫酸マグネシウムの添加量は8
 X 10−’〜9 X 10−2モV2が適正である
The amount of aluminum sulfate or magnesium sulfate added is 8
X 10-' to 9 X 10-2 mo V2 is appropriate.

8 X 10−’モIL−/13未満であると本発明の
チタン7ノ化物の添加範囲でめっき層中のFe含有量を
高くTb効果が小さく、十分でない。一方9×10 モ
Vノケ越えると硫酸アルミニウムの場合建浴時にチタン
フッ化物と硫酸アルミニウムからなる沈澱物か生成し、
浴の安定性が低下する。これに対して硫酸マグネシウム
の場合には9 X 10−2モ〜/−e’l越えると局
部的に不めっきか発生し、その部分にTi、Mgが濃縮
して(・ろ。
If it is less than 8 x 10-'moIL-/13, the Fe content in the plating layer will be high within the range of addition of titanium hepta-noide of the present invention, and the Tb effect will be small, which is not sufficient. On the other hand, if the aluminum sulfate exceeds 9×10 moV, a precipitate consisting of titanium fluoride and aluminum sulfate will be formed during bath preparation.
Bath stability decreases. On the other hand, in the case of magnesium sulfate, if the concentration exceeds 9 x 10-2 mo~/-e'l, unplating occurs locally, and Ti and Mg are concentrated in those areas.

めっき浴のPHはゼロ未満になるとFeの電析が困難と
なってめっき層中のFe含有量も10%以下になり、逆
KL!In越えるとめつぎ浴中のre  が著しく酸化
きれるようになり、やがてFe3+化合物の沈澱が発生
してくる。
When the pH of the plating bath becomes less than zero, it becomes difficult to deposit Fe, and the Fe content in the plating layer decreases to less than 10%, resulting in reverse KL! When In exceeds the oxidation level of re in the aqueous bath, Fe3+ compounds eventually start to precipitate.

次に実施例により本発明乞具体的に説明する。Next, the present invention will be explained in detail with reference to Examples.

実施例 板厚0.6■の冷延鋼板暑常法(でより脱脂、酸洗した
後第1表に示す浴組@およびめっき条件で電気Zn −
Fe合金めつきを施1−た。第1表の右側に得られた製
品のめつき層中Fe含有量を示す。なおめっき層につ(
・て螢光X線分析法によつチタノ、アルミニウム、マグ
ネシウム、カリウム8よびナトリウムの含臀乞確認した
ところ、当該元素の化合物馨めっき浴に添加し1こ浴組
成の場合にはその含有が確認され1こ。
Example: After degreasing and pickling a cold-rolled steel plate with a thickness of 0.6 cm using a hot method, electrolytic Zn −
Fe alloy plating was applied. The right side of Table 1 shows the Fe content in the plating layer of the obtained product. Furthermore, the plating layer (
・When we confirmed the presence of titanium, aluminum, magnesium, potassium 8, and sodium using fluorescent X-ray analysis, we found that when compounds of the elements were added to the plating bath and the bath composition was 1, the content was confirmed. 1 confirmed.

第1表より明らかな如く、本発明によればめつぎ層中の
Fe含含有ケン従来り著しく高くすること炉でき、しか
も従来と同様のFe含有量のめつきも可能であるカら、
主に、浴中しFe”’)7〔Zn”+pe2+)、選択
することによりFe含有量か広範囲のZn −Fe合金
めつぎ鋼板を製造できる。
As is clear from Table 1, according to the present invention, the Fe content in the mating layer can be significantly increased compared to the conventional method, and it is also possible to plate with the same Fe content as the conventional method.
Mainly, by selecting Fe'')7[Zn''+pe2+) in the bath, Zn--Fe alloy abutment steel sheets with a wide range of Fe contents can be produced.

第3図は第1表の本発明毎5.6.8.9および15に
8けるめっき浴PHXよび電flL¥B度とめつき層中
Fe含有量との関係ン示したもので、−第1図および第
2図と比較子ればわかるように、PHの変動に伴5 F
e含有量の変動は少(、安定しy、IFe含有量のZn
 −Fe合金めつきが可能である。
Figure 3 shows the relationship between the plating bath PHX and electric flL\B degree and the Fe content in the plating layer in Table 1 for each of the inventions 5.6.8.9 and 15-8. As can be seen by comparing Figures 1 and 2, as the pH changes, 5F
The fluctuation of e content is small (, stable y, IFe content of Zn
-Fe alloy plating is possible.

以上の如(、本発明はめつぎ浴の管理か容易であるので
、作業性に優れ、しかも安定したFe含有量のZn −
Fe合金めつきを行うことができる。また高Fe含有量
のZn −Fe合金めつざも可能であるので、従来まり
化成処理性、塗装後針食性に優れた製品ケ得ることかで
さ、Zn −Fe合金めつぎ鋼板の品質向上に大さく寄
与する0
As described above, the present invention allows easy management of the potting bath, has excellent workability, and has a stable Fe content.
Fe alloy plating can be performed. In addition, since it is possible to use Zn-Fe alloy steel sheets with a high Fe content, it is possible to obtain products with excellent chemical conversion treatment properties and post-painting corrosion resistance, thereby improving the quality of Zn-Fe alloy steel sheets. 0 that contributes significantly to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のZn −Fe合金めつき用改良浴罠8け
るめつさ浴のPH′j6よびめつざ電流密度とめつき層
中Fe含有量の関係を、また第2図は亜鉛イオンおよび
鉄イオンを含有するめつさ浴に(iiIf酸ナトリウム
を添加し1こ場合のめつぎ浴PHgよびめつさ電流密度
とめつき層中のFe含有量との関係を、さらに第3図は
本発明毎に′j6けるめつさ浴PH,まびめつさ電流密
度とめつき層中のFe含有量の関係ンそれぞれ示したも
のである。 特許出願人 日frl!!鋼株式会社 代理人 進  藤    満 纂1図 め、き看fl−1 第2図 ぬうさ看F)( 第3図 め、き命FH
Figure 1 shows the relationship between PH'j6 and current density of a conventional improved bath for Zn-Fe alloy plating, 8-layer metal bath, and Fe content in the plating layer, and Figure 2 shows the relationship between the Fe content in the plating layer. Figure 3 shows the relationship between the metal bath PHg in this case, the metal current density, and the Fe content in the metal layer. For each invention, the relationship between the metal bath PH, the metal metal current density, and the Fe content in the plating layer is shown. Fuji Mitsuru 1st figure, ki kanfl-1 2nd fig.

Claims (3)

【特許請求の範囲】[Claims] (1)  亜鉛イオン乞5〜32シt、鉄イオンヶ27
〜60 i/A 、硝酸ナトリウムを無水塩にして40
〜1529/−13、チタンフッ化カリウムまたはチタ
ンフッ化ナトリウム’Y2X10 〜0,13モWI3
S−56よび硫酸アルミニウムまたは硫酸マグネシウム
’に8X10−(9X10−2モ破含有し、かつ鉄+オ
ン量に対して硫酸ナトリウム量をモル濃度比(硫酸ナト
リウムモル濃度、/鉄イオンモル濃度)にて0.6〜L
4に、また鉄イオンと亜鉛イオンの合計iに対して鉄イ
オン量をモル濃度比(鉄イオンモル濃度、/鉄イオンと
亜鉛イオンの合計モル濃度)にて0.5〜0.8にそれ
ぞれ調整し1こPH0−15の酸性電気亜鉛−鉄合金め
つぎ浴で鋼板ン電気めつぎすることを特徴とするZn 
−Fe @金めつぎ鋼板の製造法。
(1) Zinc ions: 5 to 32 tons, iron ions: 27 tons
~60 i/A, 40 i/A with sodium nitrate as anhydrous salt
~1529/-13, potassium titanium fluoride or sodium titanium fluoride'Y2X10 ~0,13moWI3
S-56 and aluminum sulfate or magnesium sulfate' contain 8X10-(9X10-2 mole), and the amount of sodium sulfate is the molar concentration ratio (molar concentration of sodium sulfate, / molar concentration of iron ion) to the amount of iron + ion. 0.6~L
4, the amount of iron ions is adjusted to 0.5 to 0.8 by the molar concentration ratio (iron ion molar concentration, /total molar concentration of iron ions and zinc ions) to the total i of iron ions and zinc ions. Zn characterized by electroplating a steel plate in an acidic electrolytic zinc-iron alloy potting bath of pH 0-15.
-Fe@Method for producing gold-metal steel plate.
(2)めっき浴組111’Y選定することによりめつさ
層の全重量当り10〜70%の鉄と、微量のチタン8よ
びアルミニウムからなる化@myx含有TるZn −F
e台金を電気めつさすることを特徴とする特許請求の範
囲第1項に記載のZn−Fe合金めつき鋼板の製造法。
(2) By selecting the plating bath set 111'Y, Zn-F containing 10 to 70% iron and trace amounts of titanium 8 and aluminum based on the total weight of the plating layer
The method for manufacturing a Zn--Fe alloy plated steel sheet according to claim 1, characterized in that an e-base metal is electroplated.
(3)めっき浴組[’&選定することによりめっき層の
全重量当910〜70%の鉄と、微量のチタン8よびマ
グネシウムからなる化曾物ン含有するZn −Fe合金
乞亀気めつ4さすることを特徴とする特許請求の範囲第
1項に記載のZn −Fe @金めつぎ鋼板の製造法。
(3) Plating bath set ['& Depending on the selection, a Zn-Fe alloy containing 910 to 70% iron based on the total weight of the plating layer and trace amounts of titanium 8 and magnesium 4. The method for manufacturing a Zn-Fe@gold-metal steel plate according to claim 1, characterized in that:
JP9160782A 1982-05-29 1982-05-29 Production of steel plate plated with zn-fe alloy Granted JPS58210191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9160782A JPS58210191A (en) 1982-05-29 1982-05-29 Production of steel plate plated with zn-fe alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9160782A JPS58210191A (en) 1982-05-29 1982-05-29 Production of steel plate plated with zn-fe alloy

Publications (2)

Publication Number Publication Date
JPS58210191A true JPS58210191A (en) 1983-12-07
JPS6121318B2 JPS6121318B2 (en) 1986-05-26

Family

ID=14031250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9160782A Granted JPS58210191A (en) 1982-05-29 1982-05-29 Production of steel plate plated with zn-fe alloy

Country Status (1)

Country Link
JP (1) JPS58210191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018115413A1 (en) 2016-12-22 2018-06-28 Carl Freudenberg Kg Aqueous, alkaline electrolyte for depositing zinc-containing layers onto surfaces of metal piece goods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018115413A1 (en) 2016-12-22 2018-06-28 Carl Freudenberg Kg Aqueous, alkaline electrolyte for depositing zinc-containing layers onto surfaces of metal piece goods
US11578419B2 (en) 2016-12-22 2023-02-14 Cari, Freudenberg Kg Aqueous, alkaline electrolyte for depositing zinc-containing layers onto surfaces of metal piece goods

Also Published As

Publication number Publication date
JPS6121318B2 (en) 1986-05-26

Similar Documents

Publication Publication Date Title
EP0047987B2 (en) Cationic electrodeposition lacquer-coated steel material
US8551316B2 (en) Method of electrodepositing a metallic coating layer containing nickel and molybdenum
CA1255247A (en) Process for preparing zn-fe base alloy electroplated steel strips
JPS62500941A (en) Electrodeposition method for iron-zinc alloy coating and electrolyte used in the method
JPS60169588A (en) Acidic zinc plating bath, acidic zinc alloy plating bath and process
US4249999A (en) Electrolytic zinc-nickel alloy plating
JPS60228693A (en) Manufacture of steel plate plated with zn-ni alloy
US4167459A (en) Electroplating with Ni-Cu alloy
US3305389A (en) Process of coating lead with tin
JPS58210191A (en) Production of steel plate plated with zn-fe alloy
JP2000355790A (en) Electrogalvanized steel sheet having excellent white rust resistance and its production
JPH0814038B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPS6367560B2 (en)
JPS58104194A (en) Highly corrosion resistant electrogalvanized steel plate and its production
JPH0390591A (en) Method for electroplating zinc-manganese alloy with high productivity
KR100256328B1 (en) Method for electroplating of the zn-cr-fe alloy with high corrosion resistance after coating and metal sheet used therefor
JP2509939B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPS5852493A (en) Plating method for iron-zinc intermetallic compound alloy
JPH0841681A (en) Production of nickel-zinc alloy-plated steel sheet
JPH0379787A (en) Production of steel sheet electroplated with zinc-manganese alloy
JPS58210193A (en) Iron-zinc alloy electroplated steel plate having excellent phosphatability
JPH052745B2 (en)
JPS6026836B2 (en) Manufacturing method of zinc-nickel alloy plated steel sheet
JPH04333591A (en) Production of al-mn alloy plated steel sheet
JPS6348957B2 (en)