JPS585242B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JPS585242B2
JPS585242B2 JP2133679A JP2133679A JPS585242B2 JP S585242 B2 JPS585242 B2 JP S585242B2 JP 2133679 A JP2133679 A JP 2133679A JP 2133679 A JP2133679 A JP 2133679A JP S585242 B2 JPS585242 B2 JP S585242B2
Authority
JP
Japan
Prior art keywords
cohesive zone
blast furnace
furnace
gas
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2133679A
Other languages
Japanese (ja)
Other versions
JPS55115904A (en
Inventor
一田守政
泉水康幸
八木三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2133679A priority Critical patent/JPS585242B2/en
Publication of JPS55115904A publication Critical patent/JPS55115904A/en
Publication of JPS585242B2 publication Critical patent/JPS585242B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は高炉操業法に関するものである。[Detailed description of the invention] The present invention relates to a blast furnace operating method.

而して本発明の目的とするところは高炉内融着帯の円周
バランス崩れを抜本的に改善し長期間に亘って高炉の燃
料比の低下、銑中(Si:]のバラツキ減少などを図れ
る高炉操業法を提供せんとするものである。
Therefore, the purpose of the present invention is to drastically improve the circumferential imbalance of the cohesive zone in the blast furnace, and to reduce the decrease in the fuel ratio of the blast furnace and the variation in the iron medium (Si:) over a long period of time. The purpose of this project is to provide a method for operating a blast furnace that allows for efficient operation of blast furnaces.

融着帯は、それぞれ融着層とコークス層からなり融着層
は高炉解体結果では岩盤状となっており、ガスは通り難
い層となっている。
The cohesive zone consists of a cohesive layer and a coke layer, and the cohesive layer is rock-like as a result of blast furnace disassembly, making it difficult for gas to pass through.

一方コークス層は一定の空隙率を確保していることによ
りガスは非常に通り易い層となっている。
On the other hand, the coke layer has a certain porosity, so gas can pass through it very easily.

従って融着帯の中の融着層はガスの整流器の役割を果し
ていると云える。
Therefore, it can be said that the cohesive layer in the cohesive zone plays the role of a gas rectifier.

極論するならば融着帯形状によって高炉のガス景元能力
は決定され、高炉操業成積の代表的な指数である高炉燃
料比を支配していると云ってもよい。
In extreme terms, it can be said that the shape of the cohesive zone determines the gas production capacity of the blast furnace and controls the blast furnace fuel ratio, which is a representative index of blast furnace operation performance.

高炉操業当事者は、均一な円周バランスのとれた理想的
な融着帯形状を追求して種々アクションをとっていると
云っても過言ではない。
It is no exaggeration to say that those involved in blast furnace operations are taking various actions in pursuit of an ideal cohesive zone shape with uniform circumference and balance.

しかし後述するように高炉操業−ト融着帯円周バランス
を乱す種々の要因があり、長期間に亘って均一な円周バ
ランスのとれた融着帯を維持することは困難とするとこ
ろであった。
However, as will be explained later, there are various factors that disturb the circumferential balance of the cohesive zone during blast furnace operation, making it difficult to maintain a uniform circumferentially balanced cohesive zone over a long period of time. .

このような融着帯の円周バランスの崩れは、直接、ガス
還元効率の低下、燃料比の上昇を意味するばかりでなく
高炉炉況変動を誘発し銑中〔Si〕は大きくバラツキ、
良好な溶銑を供給することは困難となる。
Such a disruption of the circumferential balance of the cohesive zone not only directly means a decrease in gas reduction efficiency and an increase in the fuel ratio, but also induces fluctuations in the blast furnace furnace conditions, resulting in large variations in the Si content in the pig iron.
It becomes difficult to supply good hot metal.

又従来までは抜本的な融着帯形状の調整方法はなく、上
述のような炉況が長期化することが通例であった。
Furthermore, until now there has been no method for fundamentally adjusting the shape of the cohesive zone, and it has been common for the above-mentioned furnace conditions to be prolonged.

斯様な融着帯の円周バランスの崩れの原因は高炉原料を
炉頂から装入する際に大ベルの偏摩耗等の炉頂装入装置
の欠陥により方向別の装入量が違う場合、鉱石骨は金物
直下のレンガ損傷や付着物生成等により高炉内の内面プ
ロフィールが不均一となり該損傷部又は該付着物直下に
混合層(コークスと鉱石が混合した層)が生成した場合
、あるいは炉況変動により一時片減り現象(方向別に荷
下りが違った現象を云う)が発生した場合、あるいは又
羽口からの風量バランスが崩れた場合等が考えられ、そ
の結果、ガスは偏流し炉内ガス還元効率ηCO) 炉頂ガス中のC02(ト) (ηCO=□ 炉頂ガス中のCO$)十炉頂ガス中のC02xlOO) の低下を引き起し、銑中(St)のバラツキを大きくす
る。
The cause of such a disturbance in the circumferential balance of the cohesive zone is when the charging amount in each direction is different due to a defect in the top charging device such as uneven wear of the large bell when charging the blast furnace raw material from the top of the furnace. , ore bones are formed when the inner surface profile inside the blast furnace becomes uneven due to damage to the bricks or the formation of deposits directly under the hardware, and a mixed layer (layer of mixed coke and ore) is formed directly under the damaged area or deposits, or This may occur due to changes in furnace conditions, such as a temporary one-sided depletion phenomenon (a phenomenon in which unloading is different depending on the direction), or an imbalance in the air volume from the tuyeres. This causes a decrease in the CO2 in the top gas (ηCO=□ CO$ in the top gas) (CO$ in the top gas) and the variation in the pig iron (St). Enlarge.

また円周バランスの崩れからガスの偏流が定常的に起る
ことにより、ガス偏流側に付着物が生成したり炉体熱負
荷が異常に高くなったり、装入物の一時的降下不順(以
降荷下り不順と称す特を引き起し、高炉燃料比上昇の大
きな要因となっている。
In addition, due to the steady flow of gas due to an imbalance in the circumference, deposits are formed on the side of the gas drift, the heat load on the furnace body becomes abnormally high, and the charge material temporarily descends irregularly (hereinafter referred to as This causes a problem called irregular unloading, and is a major factor in the increase in the blast furnace fuel ratio.

このため融着帯の円周バランスの均一化を図るため ■ 設備、炉体の本来機能の回復(炉頂装入装置等の修
理調整、付着物除去等による炉内プロフィールの円滑化
) ■ 装入物分布の調整(ムーバブルアーマ−の)4ツチ
調整、装入パターン変更、原料装入物レベル高さの変更
等) ■ 炉下部ガス流れの調整 1本毎の羽口径の調整、1本毎の重油吹込み量の調整 等を実施していた。
Therefore, in order to equalize the circumferential balance of the cohesive zone, ■ restore the original functions of equipment and the furnace body (repair and adjust the furnace top charging device, etc., smooth the furnace profile by removing deposits, etc.) ■ Adjustment of charge distribution (4-way adjustment of movable armor, change of charging pattern, change of material charge level height, etc.) ■ Adjustment of gas flow in the lower part of the furnace Adjustment of tuyere diameter for each tube, for each tube Adjustments were made to the amount of heavy oil injected.

しかし若干の融着帯の円周バランスの崩れは修正できて
も、いづれにしろ既存融着帯は存在しており抜本的な修
正にはなりえなかった。
However, even if a slight imbalance in the circumference of the cohesive zone could be corrected, the existing cohesive zone still existed and it was not possible to make a drastic correction.

本発明者等は斯様な実情に鑑み検討したところこれまで
の融着帯の調整は全て既存融着帯の存在を前提にした考
えであることに着目し、抜本的な円周バランスの均一な
融着帯を再構築する方法を見出した。
The inventors of the present invention have considered this situation and have noticed that all previous cohesive zone adjustments are based on the existence of an existing cohesive zone. We found a method to reconstruct the cohesive zone.

すなわち本発明は従来抜本的な融着帯の調整できない問
題点を解決するために開発したものでその特徴とすると
ころは、高炉内の特定高さ位置における同一半径の円周
方向各点の炉頂ガス濃度の違いおよび/またはシャフト
圧力の違いが発生するタイミングをとらえ、装入物レベ
ルを既存融着帯頂部レベル以下に下げる減尺風操業を行
ない、次いで通常操業へ移行させて融着帯の円周バラン
スを改善することを特徴とする高炉操業法である。
In other words, the present invention was developed to solve the conventional problem that the cohesive zone cannot be fundamentally adjusted. By capturing the timing when differences in top gas concentration and/or differences in shaft pressure occur, a reduced wind operation is performed to lower the charge level below the level of the top of the existing cohesive zone, and then normal operation is resumed and the cohesive zone is removed. This is a blast furnace operating method characterized by improving the circumferential balance of the blast furnace.

また本発明は、高炉内の特定高さ位置における同一半径
の円周方向各点の装入物間のガス温度および/またはガ
ス成分の違いが発生するタイミングをとらえ、装入物レ
ベルを既存融着帯頂部レベル以下に下げる減尺休風操業
を行ない、次いで通常操業へ移行させて融着帯の円周バ
ランスを改善することを特徴とする高炉操業法である。
Furthermore, the present invention captures the timing at which differences in gas temperature and/or gas composition occur between the charges at various points in the circumferential direction of the same radius at a specific height position in the blast furnace, and adjusts the charge level to the existing melting rate. This is a blast furnace operating method characterized by performing a reduced wind rest operation in which the wind is lowered to below the level of the top of the cohesive zone, and then shifting to normal operation to improve the circumferential balance of the cohesive zone.

ここで上記の管理要素を限定した理由を以下に述べる。The reason for limiting the above management elements will be described below.

融着帯が理想的に円周バランスが整い、均一であれば炉
内の各高さ位置における同一半径の円周方向各点のガス
温度、ガス濃度は同じと云える。
If the cohesive zone is ideally balanced and uniform in circumference, it can be said that the gas temperature and gas concentration at each point in the circumferential direction of the same radius at each height position in the furnace are the same.

また同様にシャフト圧力値も同じ高さであればシャフト
圧力計前のガス量は一定になる事より全く同じ値を示す
はずである。
Similarly, if the shaft pressure values are at the same height, the amount of gas in front of the shaft pressure gauge will be constant, so it should show exactly the same value.

また逆に融着帯円周バランスが崩れてガス流れが乱れる
と以上記したことと全く逆に、炉内の各高さ位置におけ
る同一半径の円周方向各点のガス温度及びガス濃度は違
いかつシャフト圧力値も異なる。
Conversely, if the circumferential balance of the cohesive zone is disrupted and the gas flow is disrupted, the gas temperature and gas concentration at each point in the circumferential direction of the same radius at each height position in the furnace will be different. Moreover, the shaft pressure values are also different.

以上横断面における融着帯の円周バランスの均一さを求
める損料として炉頂ガス濃度分布と装入物間ガス濃度、
及び装入物間ガス温度を選定し、かつ縦断面の均一さを
求める計器としてシャフト圧力計を選定し、立体的に融
着帯の円周バランスを管理することを目的とし、以上の
管理要素を限定した。
As described above, the top gas concentration distribution and inter-burden gas concentration are
A shaft pressure gauge was selected as the instrument for selecting the gas temperature between the charges and the uniformity of the longitudinal cross section, and the above management elements were selected for the purpose of three-dimensionally controlling the circumferential balance of the cohesive zone. limited.

なおここで発明者等は炉頂温度分布を管理要素として限
定しなかった理由は最近粉塵対策のために装入物に散水
を強化しているが、そのために炉頂ガス濃度分布は鋭敏
に出るものの装入物の水分が蒸発する時、熱をうばうこ
とから炉頂温度分布はフラットになり易く融着帯のガス
流れを鋭敏に反映していると云えないことを知験したこ
とによるものである。
Note that the reason why the inventors did not limit the top temperature distribution as a control factor is that water spraying on the charge has recently been strengthened to prevent dust, and as a result, the top gas concentration distribution becomes sharp. This is based on my experience that when the moisture in the charge evaporates, heat is transferred, so the temperature distribution at the top of the furnace tends to be flat and cannot be said to accurately reflect the gas flow in the cohesive zone. be.

以上から融着帯の円周バランスを検知する計器として炉
頂ガス濃度、シャフト圧力計、装入物間ガス濃度さガス
温度は極めて重要と云える。
From the above, it can be said that the top gas concentration, shaft pressure gauge, gas concentration between charges, and gas temperature are extremely important instruments for detecting the circumferential balance of the cohesive zone.

斯様な本発明は、次に列挙するとおりの効果がある。The present invention has the following effects.

■ 融着帯円周バランスの抜本的な調整 既存融着帯レベルのシャフト下部、朝顔まで減尺するこ
とにより、既存の円周バランスの崩れた融着帯とは全く
異なる均一な融着帯が再構築される。
■ Drastic adjustment of the circumferential balance of the cohesive zone By reducing the length of the existing cohesive zone to the lower part of the shaft and the morning glory, a uniform cohesive zone that is completely different from the existing cohesive zone with an unbalanced circumference can be created. Rebuilt.

従って従来あったガスの偏流はなくなりηcoは大幅に
向上する。
Therefore, the conventional gas drift is eliminated and ηco is significantly improved.

2 銑中(Si、lのバラツキ低下 融着帯円周バランスが均一となることから方向別の融着
層の溶は落ちレベルが均一となり、溶銑成分は安定し良
好な溶銑を供給できる。
2. Reduced variation in Si and L in the pig iron. Since the circumferential balance of the cohesive zone becomes uniform, the melting level of the cohesive layer in each direction becomes uniform, and the hot metal components are stable and good hot metal can be supplied.

また銑中[Si)のバラツキが減少できることから銑中
〔Si〕の低下が可能となる。
Furthermore, since the dispersion in the pig iron [Si] can be reduced, it is possible to lower the pig iron [Si].

3 炉体熱負荷の低下 融着帯円周バランス崩れによるガス偏流が防止できるこ
とにより炉体熱負荷が低下し、炉体放散熱も低下する。
3. Reducing the heat load on the furnace body By preventing gas drift due to an imbalance in the circumference of the cohesive zone, the heat load on the furnace body is reduced, and the heat dissipated from the furnace body is also reduced.

この結果、本来の炉体機能維持が長期に亘り可能となり
、かつ炉体放散熱誠により高炉の出熱は減少する。
As a result, it becomes possible to maintain the original furnace function for a long period of time, and the heat output of the blast furnace is reduced due to the heat dissipation of the furnace body.

4 付着物の除去 装入物原料を減尺する過程で、あるいは通常レベルの復
帰過程で、付着物に装入物原料を衝突させる効果と、減
尺休風によるサーマルショックにより小さな付着物も含
めて、はぼ完全に脱落させることができる。
4. Removal of deposits During the process of reducing the size of the charge material or in the process of returning to the normal level, even small deposits are removed due to the effect of colliding the charge material with the deposits and the thermal shock caused by the downtime of the size reduction. It can be completely removed.

従って減尺休風後は荷下りは円滑になり炉況は安定する
Therefore, after the wind down is reduced, unloading will be smooth and the furnace condition will be stable.

5 燃料比の低下 以上1,2,3,4.の効果が相俟って燃料比は大巾に
低減できる。
5 More than a decrease in fuel ratio 1, 2, 3, 4. Together, these effects can significantly reduce the fuel ratio.

次に本発明を図に示す実施例により詳細に説明する。Next, the present invention will be explained in detail with reference to embodiments shown in the drawings.

第1図〜第4図に示した例はいずれも融着帯の円周バラ
ンスが大きく崩れたと判断する例である。
The examples shown in FIGS. 1 to 4 are all examples in which it is determined that the circumferential balance of the cohesive zone has been significantly disrupted.

即ち第1図は同一半径の円周方向(南北方向)において
炉頂ガス濃度ηcoが大きく違っていることを示し、第
2図は炉内高さ位置における各同一半径の円周方向でシ
ャフト圧力値に差があることを示し、第3図は炉内の特
定高さ位置における同一半径の円周方向でシャフト装入
物間における高炉ガス濃度ηcoに、差がでていること
を示し、第4図は同じく装入物間のガス温度に差が出て
いることを示している。
In other words, Fig. 1 shows that the furnace top gas concentration ηco differs greatly in the circumferential direction (north-south direction) of the same radius, and Fig. 2 shows that the shaft pressure in the circumferential direction of the same radius at the height position in the furnace differs greatly. Figure 3 shows that there is a difference in the blast furnace gas concentration ηco between shaft charges in the circumferential direction of the same radius at a specific height position in the furnace. Figure 4 also shows that there is a difference in gas temperature between the charges.

本発明は以上のような管理要素が1つまたは1つ以上発
生したときに原料装入物レベルを既存融着帯レベルのシ
ャフト下部、炉腹あるいは朝顔部まで減尺させて融着帯
の再構築を図るものである。
When one or more of the above-mentioned management factors occur, the present invention reduces the raw material charge level to the existing cohesive zone level at the lower part of the shaft, the furnace belly, or the morning glory, and regenerates the cohesive zone. It aims to build on this.

即ち第5図のように装入物原料を既存融着帯レベルのシ
ャフト下部あるいは朝顔まで下げることにより減尺後の
融着帯体積は既存融着帯体積の5割以下になる。
That is, as shown in FIG. 5, by lowering the charge material to the lower part of the shaft or morning glory at the level of the existing cohesive zone, the volume of the cohesive zone after reduction becomes less than 50% of the volume of the existing cohesive zone.

従って減尺休風時の融着帯はバランスの崩れた融着帯と
は全く違った融着帯が形成されたと云って良い。
Therefore, it can be said that the cohesive zone formed during the reduced wind rest period was completely different from the cohesive zone that was out of balance.

送風立上り時は風量はスリップを誘発せしめない限界ま
で上昇させ(内容積当り1.2 N m3/minが目
安)、かつ立上り時の風圧安定を図るために重油吹込み
開始を風量が内容積当り1.0 N m/minに入っ
た時点で開始する。
When the air starts to blow, the air volume should be increased to the limit that does not cause slippage (1.2 N m3/min per internal volume is a guideline), and in order to stabilize the wind pressure at the start of the air, the air volume should be increased to a level that does not cause slippage (1.2 N m3/min per internal volume). Start when the speed reaches 1.0 N m/min.

従来の減尺休風から送風の立上りは、大きな付着物脱落
等によりスリップ羽口閉塞等を誘発し、低風量の操業を
余儀なくされ、重油吹込み開始も送風後8〜10時間に
なることが常であった。
When the air blows up after the conventional reduced-scale air suspension, it causes slip tuyere blockage due to large deposits falling off, etc., forcing operation at a low air volume, and heavy oil injection may not start until 8 to 10 hours after air blowing. It was always.

しかし本発明の減尺休風操業は大きな付着物が生成する
以前に前述の管理要素から判断して定常操業として減尺
休風を実施していることから、従来の減尺休風で発生し
ているトラブルはほとんどなく安定した操業下で送風立
上りが可能さなっている。
However, in the reduced wind downtime operation of the present invention, reduced wind downtime is carried out as a regular operation based on the management factors described above, before large deposits are generated, so there is no possibility that they will occur in the conventional downsized wind downtime. There are almost no problems, and the air can be started up under stable operation.

したがってスリップをさせずに高風量を入れることを可
能とし送風立上り初期に重油を入れることから羽口前の
レースウェイは拡大され炉中心まで風量が入り重油早目
吹込みにより更に安定下で操業が可能となる(レースウ
ェイにおける重油の役割は燃焼に関与しているコークス
の消費速度を減少させることによりレースウェイ直近の
コークスの微粉化を防止しレースウェイを拡大し通気は
良くなると云われている) 以上から減尺休風後の操業の立上は極めて安定に立上る
ことができる。
Therefore, it is possible to inject a high air volume without causing slippage, and by injecting heavy oil at the beginning of the start-up of the air, the raceway in front of the tuyere is enlarged and the air volume reaches the center of the furnace, allowing for more stable operation by early injection of heavy oil. It is said that the role of heavy oil in the raceway is to reduce the consumption rate of coke involved in combustion, thereby preventing the coke in the vicinity of the raceway from becoming pulverized, expanding the raceway, and improving ventilation. ) From the above, it is possible to start up operations extremely stably after wind reduction and wind suspension.

また送風立上り後高風量を安定して供給できることから
既存の円周バランスの崩れた融着帯とは全く異なった円
周バランスの均一な融着帯に再構築することが可能とな
った。
In addition, since a high air volume can be stably supplied after the air blast starts, it is now possible to reconstruct a cohesive zone with a uniform circumferential balance, which is completely different from the existing cohesive zone with an unbalanced circumference.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 1 1730mの炉容を有するA高炉で第1図から第4図に
示したような現象が検知され融着帯の円周バランスが不
均一になったとして直ちに減尺休風操業を実施した。
Example 1 In a blast furnace A with a furnace capacity of 1,730 m, the phenomenon shown in Figures 1 to 4 was detected, and the circumferential balance of the cohesive zone became uneven, so a reduced-scale downsized operation was immediately implemented. did.

なお減尺レベルを炉腹レベルとした。The scale reduction level was defined as the furnace belly level.

炉内観測後南側シャフト中段レベルに局部的な付着物が
生成しており、減尺休風中にサーマルショックによりそ
のほとんどが脱落した。
After observing the inside of the reactor, localized deposits were found to have formed at the middle level of the south shaft, and most of them fell off due to thermal shock during the downtime.

送風立上り後は、第6図に示したように送風立上り1時
間30分後に重油を吹込み極めて順調に推移した。
As shown in Figure 6, heavy oil was injected 1 hour and 30 minutes after the start of air blowing, and things went very smoothly.

その結果、同一半径の円周方向各点のシャフト圧力値は
ほとんど一致し炉頂ガス濃度分布、装入物間ガス温度分
布、装入物間ガス濃度分布共に同一半径の円周方向各点
での差が解消された。
As a result, the shaft pressure values at each point in the circumferential direction with the same radius are almost the same, and the gas concentration distribution at the top of the furnace, the gas temperature distribution between the charges, and the gas concentration distribution between the charges are all at each point in the circumferential direction with the same radius. The difference has been resolved.

その結果、ηcoは0.9%上昇し、燃料比は5.5k
g/ t−p低下した。
As a result, ηco increased by 0.9% and the fuel ratio was 5.5k
g/tp decreased.

実施例 2 1150mの炉容を有するB高炉でシャフト圧力値が第
7図に示したように炉内高さ方向における各同一半径の
円周方向において差が出た。
Example 2 In a B blast furnace having a furnace capacity of 1150 m, the shaft pressure values differed in the circumferential direction of each same radius in the furnace height direction, as shown in FIG.

全体のηcoが若干低下気味で推移していることもあり
、他の管理要素は別に問題はないが、シャフト下部まで
減尺休風操業を実施した。
Although there are no particular problems with other management factors, as the overall ηco has been trending slightly downward, we have implemented reduced wind rest operation down to the lower part of the shaft.

減尺休風立上りは極めて安定し第8図に示したように、
炉内高さ方向における各同一半径の円周方向でのシャフ
ト圧力値はほぼ一致し均一な円周バランスのとれた融着
帯となりηcoは0.7%上昇し、燃料比は4、5 k
g/ t−p低下した。
The rise of the reduced wind rest is extremely stable, as shown in Figure 8.
The shaft pressure values in the circumferential direction of each same radius in the height direction of the furnace are almost the same, resulting in a uniform circumferentially balanced cohesive zone, ηco increases by 0.7%, and the fuel ratio is 4 or 5 k.
g/tp decreased.

以上本発明を実施することにより融着帯の円周バランス
の乱れを抜本的、かつ一挙に改善でき、ガス偏流を防止
することによりηcoが改善されるばかりでなく、高炉
の炉況も改善され燃料比は大巾に低下する。
As described above, by carrying out the present invention, it is possible to fundamentally and all at once improve the disturbance in the circumferential balance of the cohesive zone, and by preventing gas drift, not only ηco is improved, but also the furnace condition of the blast furnace is improved. The fuel ratio drops significantly.

また周辺に流れるガス偏流を防止できることから健全な
長期炉体維持も可能となり極めて有益な高炉操業法であ
る。
Furthermore, since it is possible to prevent the gas from flowing around the surrounding area, it is possible to maintain a healthy furnace body over a long period of time, making it an extremely useful blast furnace operating method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円周方向(西北方向)の炉頂ガス濃度ηco分
布を示す図、第2図は高炉高さ方向の各同一半径円周方
向におけるシャフト圧力分布図、第3図は高炉内の特定
高さ位置における同一半径の円周方向でのシャフト装入
物間における高炉ガス濃度ηco分布図、第4図は同じ
く装入物間のガス温度を示す図、第5図は減尺休風にお
ける原料装入物レベルを示す図、第6図は実施例1にお
ける減尺休風操業状況を示す図、第7図、第8図は実施
例2における高炉内高さ方向における各同一半径円周方
向でのシャフト圧力分布図である。
Figure 1 is a diagram showing the top gas concentration ηco distribution in the circumferential direction (northwest direction), Figure 2 is a shaft pressure distribution diagram in the circumferential direction of each same radius in the blast furnace height direction, and Figure 3 is a diagram showing the shaft pressure distribution in the blast furnace height direction. The blast furnace gas concentration ηco distribution diagram between the shaft charges in the circumferential direction of the same radius at a specific height position, Figure 4 is a diagram showing the gas temperature between the charges, and Figure 5 is a diagram showing the gas temperature between the charges. Figure 6 is a diagram showing the reduced wind resting operation status in Example 1, Figures 7 and 8 are circles with the same radius in the height direction inside the blast furnace in Example 2. FIG. 3 is a shaft pressure distribution diagram in the circumferential direction.

Claims (1)

【特許請求の範囲】 1 高炉内の特定高さ位置における同一半径の円周方向
各点の炉頂ガス濃度の違いおよび/またはシャフト圧力
の違いが発生するタイミングをとらえ、装入物レベルを
既存融着帯頂部レベル以下に下げる減尺休風操業を行な
い、次いで通常操業へ移行させて融着帯の円周バランス
を改善することを特徴とする高炉操業法。 2 高炉内の特定高さ位置における同一半径の円周方向
各点の装入物間のガス温度および/またはガス成分の違
いが発生するタイミングをとらえ、装入物レベルを既存
融着帯頂部レベル以下に下げる減尺休風操業を行ない、
次いで通常操業へ移行させて融着帯の円周バランスを改
善することを特徴とする高炉操業法。
[Claims] 1. By capturing the timing at which differences in top gas concentration and/or differences in shaft pressure occur at each point in the circumferential direction of the same radius at a specific height position in the blast furnace, A blast furnace operating method characterized by performing a reduced wind rest operation in which the wind is lowered to below the level of the top of the cohesive zone, and then shifting to normal operation to improve the circumferential balance of the cohesive zone. 2 By capturing the timing at which a difference in gas temperature and/or gas composition occurs between the charges at each point in the circumferential direction of the same radius at a specific height position in the blast furnace, the charge level is adjusted to the level of the top of the existing cohesive zone. We will carry out reduced wind down operations to the following levels:
A blast furnace operating method characterized in that the circumferential balance of the cohesive zone is improved by then shifting to normal operation.
JP2133679A 1979-02-27 1979-02-27 Blast furnace operation method Expired JPS585242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133679A JPS585242B2 (en) 1979-02-27 1979-02-27 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133679A JPS585242B2 (en) 1979-02-27 1979-02-27 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPS55115904A JPS55115904A (en) 1980-09-06
JPS585242B2 true JPS585242B2 (en) 1983-01-29

Family

ID=12052274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133679A Expired JPS585242B2 (en) 1979-02-27 1979-02-27 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPS585242B2 (en)

Also Published As

Publication number Publication date
JPS55115904A (en) 1980-09-06

Similar Documents

Publication Publication Date Title
JPH08134516A (en) Operation of blast furnace
CN107119156A (en) A kind of method for improving blast furnace top gas temperature
JPS585242B2 (en) Blast furnace operation method
CN108396084A (en) Blast kinetic energy calculation method in blast furnace production process
JP3603776B2 (en) Blast furnace operation method
JPH1046215A (en) Method for controlling furnace heat in blast furnace
JP4759985B2 (en) Blast furnace operation method
JP3787240B2 (en) How to charge the blast furnace center
JP2004263258A (en) Method for operating blast furnace
JP3844858B2 (en) Blast furnace operating method with pulverized coal fuel injection.
JP3465471B2 (en) Blast furnace operation method
JPS6043403B2 (en) Blast furnace operation method using pulverized coal injection
JP3632290B2 (en) Blast furnace operation method
JP2008260984A (en) Blast furnace operation method
JP2921392B2 (en) Blast furnace operation method
JPH01156411A (en) Operation of blast furnace
JPH03232915A (en) Method for dividedly charging coke to blast furnace
JP4307696B2 (en) Reactor core heating method in pulverized coal injection operation.
JP2022152721A (en) Operation method of blast furnace
Ostrowski et al. Blast furnace operations with injected coal at Weirton
RU2152435C2 (en) Method of blast-furnace smelting
JPH05295415A (en) Method for operating blast furnace
SU1682402A1 (en) Method for control and regulation of distribution of the materials and gases on section of blast furnace
SU1199799A1 (en) Method of controlling blast furnace operation
JP2003096509A (en) Method for operating blast furnace