JPS5852070A - Method of changing helicoidal silo inot mass-flow - Google Patents

Method of changing helicoidal silo inot mass-flow

Info

Publication number
JPS5852070A
JPS5852070A JP56147134A JP14713481A JPS5852070A JP S5852070 A JPS5852070 A JP S5852070A JP 56147134 A JP56147134 A JP 56147134A JP 14713481 A JP14713481 A JP 14713481A JP S5852070 A JPS5852070 A JP S5852070A
Authority
JP
Japan
Prior art keywords
flow
silo
helicoidal
hopper
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56147134A
Other languages
Japanese (ja)
Other versions
JPS6152069B2 (en
Inventor
橘 登志夫
鈴木 基光
安宅 友次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP56147134A priority Critical patent/JPS5852070A/en
Publication of JPS5852070A publication Critical patent/JPS5852070A/en
Publication of JPS6152069B2 publication Critical patent/JPS6152069B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はへりコイダルサイロのマスφフロー化方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting a helicoidal silo into a mass φ flow.

へりコイダル形サイロとはs tm 1図〜Ig6図に
示すように同心円状に配列した金w4#!の2嵐円関の
外1i!!!(υと円筒!1il(2)とから成り、該
外筒壁(υと内筒m轡との間を通?i6〜1敞の螺旋状
仕切鯖(萄で区画し貯蔵室とした特殊形状サイロである
。―えば、サイロ外向壁<1)と螺旋状体vJ!m (
1との接合部の傾斜角はgo@であり1円同一(2)と
螺旋状仕切−(3)との撤合部の傾斜角度は79.1”
である、これによりその1つの貯蔵室(4)は、外向−
(1)およびP−3筒艦e)の晶型ば蟹と、プラスの鎖
側を持つ螺旋状仕切−(8人)すなわち底壁と、マイナ
スの傾斜を持つ螺旋状仕切壁(8B)すなわち天井礒と
の4面で構成されている。なおマイナスの傾斜を持つ螺
旋状体VJ−は隣室にあってはプラスの傾斜を持つ!1
llllT71状仕切壁となる。係る構成の貯蔵室(4
)下端にはホッパ一部υ)が設けられ、該ホッパ一部(
5)は、前記外m 壁(1)の下端から内筒1e (2
)に向ってしぼられた状態で形成されるホッパー外壁(
6)と、排出口(7)に向ってしぼむホッパー−壁(8
)および(9)と、前記内詞壁(2)とから成り、ホッ
パー両側壁(8) (9)の下部には、ホッパーmts
)t−さらに排出口(7)に向ってしぼるデフレクタ−
に)(ハ)が設けられている。しかし、へりコイダル形
サイロは以上のような貯蔵室形状を有しているため、貯
蔵粉粒体Oの排出は%隅8図〜第6図の矢印に示すよう
に、貯蔵室(4)の垂直円固壁(幻とマイナスの傾斜を
持つ螺旋状仕切−(8B)とでできるコーナ一部(至)
のみが流下排出するファネル・フロー(ロート状)排出
どなる欠点があった。
What is a helicoidal silo? Gold w4# arranged in concentric circles as shown in s tm 1 to Ig 6! 2 Arashi Enseki outside 1i! ! ! (consisting of an outer cylinder wall (υ) and a cylinder (2), and a spiral partition between the outer cylinder wall (υ and the inner cylinder m) with a diameter of 6 to 1 minutes (a special shape partitioned by stems and used as a storage room). It is a silo - for example, the silo outward facing wall <1) and the spiral body vJ!m (
The inclination angle of the joint with 1 is go@, and the inclination angle of the retraction part between 1 circle identical (2) and the spiral partition - (3) is 79.1"
, thereby making that one storage chamber (4) outward-facing.
(1) and P-3 tube ship e) crystal type crab, spiral partition with positive chain side - (8 people) i.e. bottom wall, and spiral partition wall with negative slope (8B) i.e. It is composed of four sides with ceiling tiles. Furthermore, the spiral body VJ-, which has a negative slope, has a positive slope in the next room! 1
It becomes a T71-shaped partition wall. A storage room with such a configuration (4
) A hopper part υ) is provided at the lower end, and the hopper part (
5) from the lower end of the outer wall (1) to the inner cylinder 1e (2
Hopper outer wall (
6) and the hopper-wall (8) that deflates toward the outlet (7).
) and (9), and the inner wall (2), and the hopper mts
) t - Deflector further narrowing towards the discharge port (7) -
)(c) is provided. However, since the helicoidal silo has the storage chamber shape as described above, the discharge of the stored powder O is in the storage chamber (4) as shown by the arrows in Figures 8 to 6. Part of the corner formed by the vertical circular solid wall (phantom and spiral partition with negative slope (8B))
There was a drawback that the funnel flow (funnel-shaped) discharge only discharged downward.

本発明は、上記の欠点を除去することを目的とし、へり
コイダルサイロの円j1w側よりホッパー壁側に向けて
傾斜のついた凸形の粉粒体の流れ制御板を張り出し、該
bI肥れ制御板とホッパー壁との同にす−まを形成する
ことによって、該すきまから排出される貯蔵粉粒体の流
れをマス・フロー化する方法を提供するものである。
The present invention aims to eliminate the above-mentioned drawbacks, and a convex powder flow control plate with an inclination is extended from the circle j1w side of the helical coidal silo toward the hopper wall side, and the bI fertilization control By forming a gap between the plate and the hopper wall, a method is provided in which the flow of stored powder and granular material discharged from the gap is made into a mass flow.

以下本発明の方法をその一実施例を示す図面に基づいて
詳細に説明する。錫6図および鴫7図において1図中ハ
ツチングで示すように、ヘリコイダルサイロのF’3 
m W (2)よりホッパ一部(5)のホウバー外WI
(・)に向って粉粒体の流れ制御板(ロ)を張り出して
取り付ける。該流れ@御板鱒の取付角度(傾斜角)は一
般にホッパー角度と同じにし、ホッパー外壁(2)の凹
形に対して臓れ制御板(ロ)は凸形(円錐形の一部)と
する。流れfrill板(ロ)と本ツバー外鑓(6)と
の開−こ形成されるすきま鋳は、離8図に示すように、
プラスの傾斜を持つIIA旋伏仕に!(8A)關は広く
、マイナスの傾斜を持つ螺旋状仕切壁(IB肩は狭くす
る。但し、貯蔵粉粒体(2)の物性(内m*鰯角及び壁
面jliJ角など)の違いによって、流れ制n板(ロ)
の取付角度をホッパー角度と違えたり、すきまに)を平
行にしたりする場合もあり得る。流れ制御板(ロ)の取
付位置より下部は本来のホッパ一部(5)の状態のまま
維持しても良いし、下部をなくすることによりサイロ本
体の全高を低く押えるようにしても良いが、この場合、
貯蔵粉粒体(至)の排出を開始した場合にその排出量の
多少にかかわらずすきま(至)全体から貯蔵粉粒体(2
)が流下するようにすることがマス・フロー排出の前提
条件となる。したがって、細長いすきま(6)から・排
出口(7)へのしぼり方は菖要である。
The method of the present invention will be explained in detail below based on the drawings showing one embodiment thereof. F'3 of the helicoidal silo is indicated by hatching in Figure 1 in Figure 6 and Figure 7.
m W From (2), part of the hopper (5) outside the hover WI
Attach the powder flow control plate (b) by extending it toward (・). The installation angle (angle of inclination) of the flow@goita trout is generally the same as the hopper angle, and the gutted control plate (b) is convex (part of a conical shape) with respect to the concave shape of the hopper outer wall (2). do. The gap casting formed by the flow frill plate (b) and the outer flanges (6) is as shown in Figure 8.
For IIA turning with a positive slope! (8A) A spiral partition wall with a wide gap and a negative slope (the IB shoulder should be narrow. However, depending on the physical properties of the storage powder (2) (inner m*sardine angle, wall surface jliJ angle, etc.), Flow control n board (b)
The installation angle of the hopper may be different from the hopper angle, or the gap) may be parallel to the hopper angle. The area below the installation position of the flow control plate (b) may be maintained as part of the original hopper (5), or the overall height of the silo body may be kept low by eliminating the lower part. ,in this case,
When the discharge of stored powder and granular material (2) is started, regardless of the amount of discharge, the stored powder and granular material (2) is removed from the entire gap (2).
) is a prerequisite for mass flow discharge. Therefore, the method of squeezing from the elongated gap (6) to the discharge port (7) is the key.

鴎9図〜第1咽に基づいて、マス・フロー化が達成でき
た場合の例を説明する。第9図の矢印に示すように、貯
蔵粉粒体(2)はマス・フロー化が達成されると全体が
降下し、良好jr−排出されるようになる。これを第1
1図および第1ねの貯蔵粉粒体のfil!/位置と、ホ
ッパ一部へ移行するば上における貯Im粉粒体の垂直降
下速変との関係をあられす因に基づいて説明する。図中
における各記号は第10図(a)に示す貯−室(4)の
各コーナ一部における粉粒体の記号に対応しており、す
きま四の巾は鴫10図Φ)に示すようにマイナスの傾斜
を持つ!1旋状仕切壁(JIB肩の輸体)がプラスの傾
斜を持つ螺旋状仕切W!(畠人膚の−C2x沖l/gと
する。爾11図は流れNa1l板鱒の取付角度はホッパ
ー角度と同じ場合であり、躊1″RIJは流れ制御板−
の取付角度がプラスの傾斜を持つ螺−状仕切壁(8A)
の鍼はホッパー角度と同じであるが、マイナスの傾斜を
持つ螺旋状仕切壁(JIB肩に向って次第にゆるやかに
しである。
An example of a case where mass flow can be achieved will be explained based on Figures 9 to 1st. As shown by the arrow in FIG. 9, when mass flow is achieved, the stored powder and granular material (2) as a whole descends and is properly discharged. This is the first
Figure 1 and the fil of the stored powder and granules in the first stage! The relationship between the / position and the change in the vertical descent speed of the stored Im powder and granules at the upper part of the hopper will be explained based on the cause of hail. Each symbol in the figure corresponds to the symbol of the powder at each corner of the storage chamber (4) shown in Fig. 10 (a), and the width of the gap 4 is as shown in Fig. 10 (Φ). has a negative slope! 1 Spiral partition W where the spiral partition wall (JIB shoulder transponder) has a positive slope! (Hatajin's -C2x Offshore l/g. Figure 11 shows the case where the installation angle of the flow Na1l board trout is the same as the hopper angle, and the flow control board -
Spiral partition wall with a positive installation angle (8A)
The acupuncture needle is the same as the hopper angle, but with a spiral partition wall with a negative slope (gradually becoming gentler towards the JIB shoulder).

すなわち爾l戚においては、重置内筒壁(3)とマイナ
スの傾斜を持つ螺旋状仕切−(8B)とでできるコーナ
一部における貯lig粉粒体だけが特に%I4さに関係
なく常に速い降下適度で良好に滅下誹出されるのに対し
、他のコーナ一部の貯蔵粉粒体はナベて前記コーナ一部
の貯蔵粉粒体より垂直−下装置が遅く、シかも残留高さ
の低いときは降下m度も低下していることが分かる。こ
れに対し、 ltg図の場合は、各コーナ一部の貯蔵粉
粒体がそれぞれ繭11図における場合よりまんべんなく
繍直降下速度を有すると共に残留高さの低いときでも垂
直降下速度は411図の場合より速い。したが1って、
この2つの図を比べて分かるように、流れ制御板Q4の
取付けは微妙であり、貯蔵対象粉粒体(ロ)により変化
するものである。
In other words, in this relative, only the part of the corner formed by the stacked inner cylinder wall (3) and the spiral partition (8B) with a negative slope is always stored regardless of the %I4. While the granules in some other corners are well annihilated with a moderate fast descent, the vertical downward movement is slower than the granules in some of the corners, and the residual height may be low. It can be seen that when the temperature is low, the descent m degrees also decreases. On the other hand, in the case of the ltg diagram, the stored granules in a part of each corner have a vertical descent velocity more evenly than in the case of the cocoon 11 diagram, and even when the residual height is low, the vertical descent velocity is lower than that of the 411 diagram. Faster. However, 1 is
As can be seen by comparing these two figures, the attachment of the flow control plate Q4 is delicate and changes depending on the granular material (b) to be stored.

以上本発明の方法によれば、へりコイダルサイロの円i
i壁何よりホッパー壁側に向けて傾斜のっ雰 いた凸形の粉粒体の流れ制御板を張りAシ、該流れ!1
JIl板とホッパー壁との間に形成されるすきまから貯
蔵粉粒体を排出するので、従来のへりコイダルサイロが
ファネル・フロー排出であったのを至って容易にマス・
フロー排出することがでみる。
As described above, according to the method of the present invention, the circle i of the helicoidal silo
Above all, install a convex powder flow control plate that slopes toward the hopper wall to control the flow of the powder. 1
Since the stored powder and granules are discharged from the gap formed between the JIl board and the hopper wall, it is much easier to mass discharge the conventional helicoidal silo, which uses funnel flow discharge.
Try to drain the flow.

【図面の簡単な説明】[Brief explanation of the drawing]

m13はへりコイダルサイロの概略一部切欠斜視図%第
2図はヘリコイダルサイロの一部平面図、第畠図〜第6
因はファネル・フローを説明するための図面を示し、鴫
8図は概略平面図、第4図は1つの貯蔵室のfI4視図
1第6図は貯蔵室の縦断側ml図、第6図〜li% 1
2図は本発明方法を説明するための図面を示し、鏑6図
は流れ!fill板を取り付けた伏線の平面図、第7図
は圓縦i1i鋸−図、@8図はすきまをあられす図、第
9図は粉粒体の流れを説明するための貯蔵室縦断側面図
、4110図−)は記号説明するための平面図、ml@
(b)はすきまの大きさの説明図、gil1図および第
12図は粉粒体の残留高さとf[直降下速度との関係を
あられす図である。 (1)−・外*m、(り−・円筒!l!、(荀−螺旋状
仕切壁、(5)−−・ホフ/f−m、α◆−・粉粒体の
流れ制御板、四−すきま 代理人 森本義弘 第1図
m13 is a schematic partially cutaway perspective view of the helicoidal silo. Figure 2 is a partial plan view of the helicoidal silo, and Fig. 6 is a partial plan view of the helicoidal silo.
Figure 8 is a schematic plan view, Figure 4 is a fI4 view of one storage chamber, and Figure 6 is a longitudinal ml view of the storage chamber. ~li% 1
Figure 2 shows a drawing for explaining the method of the present invention, and Figure 6 shows the flow! A plan view of the foreshadowing with the fill plate attached, Figure 7 is a round vertical i1i saw diagram, @ Figure 8 is a diagram showing the gap, and Figure 9 is a vertical sectional side view of the storage chamber to explain the flow of powder and granules. , 4110-) is a plan view for explaining symbols, ml@
(b) is an explanatory diagram of the size of the gap, and Figure 1 and Figure 12 are diagrams showing the relationship between the residual height of the powder and the direct descent speed of f. (1)--outside*m, (ri--cylindrical!l!, (sun-spiral partition wall, (5)--hof/f-m, α◆--powder flow control plate, 4-Gap Agent Yoshihiro Morimoto Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、 へりコイダル形サイロにおいて、内taumより
ホッパー壁側に向けて傾斜のついた凸形の粉粒体の流れ
制御板を張り出し、該流れ制御板とホッパー櫨との間に
形成されるすきまから排出される貯蔵粉粒体の流れをマ
ス・フロー化することを特徴とするへりコイダルサイロ
のマス・フロー化方法。
1. In a helicoidal type silo, a convex convex powder flow control plate with an inclination is extended from the inner taum toward the hopper wall, and from the gap formed between the flow control plate and the hopper wall. A method for converting a helicoidal silo into a mass flow, characterized by converting the flow of discharged storage powder into a mass flow.
JP56147134A 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow Granted JPS5852070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147134A JPS5852070A (en) 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147134A JPS5852070A (en) 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow

Publications (2)

Publication Number Publication Date
JPS5852070A true JPS5852070A (en) 1983-03-28
JPS6152069B2 JPS6152069B2 (en) 1986-11-11

Family

ID=15423329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147134A Granted JPS5852070A (en) 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow

Country Status (1)

Country Link
JP (1) JPS5852070A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020003996A2 (en) 2017-08-30 2020-09-01 Nissan Motor Co., Ltd. method for correcting position error and device for correcting position error in an assisted steering vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112734U (en) * 1978-01-28 1979-08-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112734U (en) * 1978-01-28 1979-08-08

Also Published As

Publication number Publication date
JPS6152069B2 (en) 1986-11-11

Similar Documents

Publication Publication Date Title
FR2651837B1 (en) PRE-ORIENTABLE MANUAL PUMP ON THE CONE OF A CONTAINER.
US3852907A (en) Fishing sinker
EP0695273A4 (en) Combination hopper
JPS5852070A (en) Method of changing helicoidal silo inot mass-flow
US3855119A (en) Gold pan
BE778851A (en) PROCESS FOR TAKING SOLID MATERIALS THAT CAN BE FLUIDIZED FROM A PRESSURE VESSEL AND DEVICE FOR IMPLEMENTING THE SAID PROCESS
RU95113963A (en) MICRODOSING DEVICE
JPS63317490A (en) Powder receiving bunker
PL118097B2 (en) Silo for pourable solid materials
SU1087428A1 (en) Screen feeder for paste-like materials
SU1482861A1 (en) Bag for solid loose materials
EP0155398A3 (en) Volumetric dosing device
SU923913A1 (en) Hopper apparatus
JPS62146103A (en) Powdered and granular material filled into single vessel
JPH0324505Y2 (en)
US3460659A (en) Storage vessel
SU1055695A1 (en) Hopper for bulk materials
DE3170177D1 (en) Storage vessel having a funnel-shaped discharge section, especially silo
SU134698A1 (en) A device for processing bulk materials in a fluidized bed
SU724394A1 (en) Hopper for storing loose materials
SU935559A1 (en) Vortical shaft water discharge structure
RU1794169C (en) Silo for loose materials
SU1063721A1 (en) Flexible metal hopper
SU1370009A1 (en) Container
SU1685818A1 (en) Hopper for loose materials