JPS6152069B2 - - Google Patents

Info

Publication number
JPS6152069B2
JPS6152069B2 JP56147134A JP14713481A JPS6152069B2 JP S6152069 B2 JPS6152069 B2 JP S6152069B2 JP 56147134 A JP56147134 A JP 56147134A JP 14713481 A JP14713481 A JP 14713481A JP S6152069 B2 JPS6152069 B2 JP S6152069B2
Authority
JP
Japan
Prior art keywords
wall
hopper
partition wall
inner cylinder
silo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56147134A
Other languages
Japanese (ja)
Other versions
JPS5852070A (en
Inventor
Toshio Tachibana
Motomitsu Suzuki
Tomoji Ataka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP56147134A priority Critical patent/JPS5852070A/en
Publication of JPS5852070A publication Critical patent/JPS5852070A/en
Publication of JPS6152069B2 publication Critical patent/JPS6152069B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はヘリコイダルサイロに関する。[Detailed description of the invention] The present invention relates to a helicoidal silo.

ヘリコイダル形サイロとは、第1図〜第5図に
示すように同心円状に配列した金属製の2重円筒
の外筒壁1と内筒壁2とから成り、該外筒壁1と
内筒壁2との間を通常6〜12枚の螺旋状仕切壁3
で区画し貯蔵室とした特殊形状サイロである。例
えば、サイロ外筒壁1と螺旋状仕切壁3との接合
部の傾斜角は60゜であり、内筒壁2と螺旋状仕切
壁3との接合部の傾斜角度は79.1゜である。これ
によりその1つの貯蔵室4は、外筒壁1および内
筒壁2の各垂直壁と、プラスの傾斜を持つ螺旋状
仕切壁3Aすなわち底壁と、マイナスの傾斜を持
つ螺旋状仕切壁3Bすなわち天井壁との4面で構
成されている。なおマイナスの傾斜を持つ螺旋状
仕切壁は隣室にあつてはプラスの傾斜を持つ螺旋
状仕切壁となる。係る構成の貯蔵室4下端にはホ
ツパー部5が設けられ、該ホツパー部5は、前記
外筒壁1の下端から内筒壁2に向つてしぼられた
状態で形成されるホツパー外壁6と、排出口7に
向つてしぼむホツパー側壁8および9と、前記内
筒壁2とから成り、ホツパー両側壁8,9の下部
には、ホツパー部5をさらに排出口7に向つてし
ぼるデクレクター10,11が設けられている。
しかし、ヘリコイダル形サイロは以上のような貯
蔵室形状を有しているため、貯蔵粉粒体12の排
出は、第3図〜第5図の矢印に示すように、貯蔵
室4の垂直内筒壁2とマイナスの傾斜を持つ螺旋
状仕切壁3Bとでできるコーナー部13のみが流
下排出するフアネル・フロー(ロート状)排出と
なる欠点があつた。
A helicoidal silo is composed of an outer cylinder wall 1 and an inner cylinder wall 2 of a metal double cylinder arranged concentrically as shown in Figs. 1 to 5. There are usually 6 to 12 spiral partition walls 3 between the wall 2
This is a specially shaped silo that is divided into sections and used as a storage room. For example, the angle of inclination of the joint between the silo outer cylinder wall 1 and the spiral partition wall 3 is 60°, and the angle of inclination of the joint between the inner cylinder wall 2 and the spiral partition wall 3 is 79.1°. As a result, one storage chamber 4 includes vertical walls of the outer cylinder wall 1 and the inner cylinder wall 2, a spiral partition wall 3A with a positive slope, that is, a bottom wall, and a spiral partition wall 3B with a negative slope. In other words, it is composed of four sides including the ceiling and walls. Note that a spiral partition wall with a negative slope becomes a spiral partition wall with a positive slope in the adjacent room. A hopper portion 5 is provided at the lower end of the storage chamber 4 having such a configuration, and the hopper portion 5 includes a hopper outer wall 6 formed in a state that is squeezed from the lower end of the outer cylinder wall 1 toward the inner cylinder wall 2; It consists of hopper side walls 8 and 9 that contract toward the discharge port 7 and the inner cylinder wall 2, and at the bottom of the hopper side walls 8 and 9 there are declectors 10 and 11 that further compress the hopper portion 5 toward the discharge port 7. is provided.
However, since the helicoidal silo has the above-mentioned storage chamber shape, the storage powder 12 is discharged through the vertical inner cylinder of the storage chamber 4, as shown by the arrows in FIGS. 3 to 5. There was a drawback that only the corner portion 13 formed by the wall 2 and the spiral partition wall 3B having a negative slope resulted in funnel flow discharge.

本発明は、上記の欠点を除去することを目的と
し、ヘリコイダルサイロの内筒と外筒の間を螺旋
状仕切壁で複数の貯蔵室に分割されたヘリコイダ
ル形サイロにおいて、外筒壁下端から内筒壁に向
つてしぼられた形状をなすホツパー壁側に向けて
内筒壁側より傾斜のついた凸形の粉粒体の流れ制
御板を張り出し、該流れ制御板とホツパー壁との
間に形成されるすきまを、扇状でかつ、プラスの
傾斜を持つ仕切壁側は広く、マイナスの傾斜を持
つ仕切壁側は狭くなるように構成することによつ
て、該すきまから排出される貯蔵粉粒体の流れを
マス・フロー化されるヘリコイダルサイロを提供
するものである。
The present invention aims to eliminate the above-mentioned drawbacks, and in a helicoidal silo that is divided into a plurality of storage chambers by a spiral partition wall between the inner cylinder and the outer cylinder of the helicoidal silo, from the lower end of the outer cylinder wall. A convex powder flow control plate with an inclination is extended from the inner cylinder wall side toward the hopper wall side which has a constricted shape toward the inner cylinder wall, and between the flow control plate and the hopper wall. By configuring the gap formed in the gap to be fan-shaped and wide on the side of the partition wall with a positive slope and narrow on the side of the partition wall with a negative slope, the stored powder discharged from the gap can be reduced. The present invention provides a helicoidal silo that converts the flow of granules into a mass flow.

以下本発明の方法をその一実施例を示す図面に
基づいて詳細に説明する。第6図および第7図に
おいて、図中ハツチングで示すように、ヘリコイ
ダルサイロの内筒壁2よりホツパー部5のホツパ
ー外壁6に向つて粉粒体の流れ制御板14を張り
出して取り付ける。該流れ制御板14の取付角度
(傾斜角)は一般にホツパー角度と同じにし、ホ
ツパー外壁6の凹形に対して流れ制御板14は凸
形(円錐形の一部)とする。流れ制御板14とホ
ツパー外壁6との間に形成されるすきま15は、
第8図に示すように、プラスの傾斜を持つ螺旋状
仕切壁3A側は広く、マイナスの傾斜を持つ螺旋
状仕切壁3B側は狭くする。但し、貯蔵粉粒体1
2の物性(内部摩擦角及び壁面摩擦角など)の違
いによつて、流れ制御板14の取付角度をホツパ
ー角度と違える場合もあり得る。流れ制御板14
の取付位置より下部は本来のホツパー部5の状態
のまま維持しても良いし、下部をなくすることに
よりサイロ本体の全高を低く押えるようにしても
良いが、この場合、貯蔵粉粒体12の排出を開始
した場合にその排出量の多少にかかわらずすきま
15全体から貯蔵粉粒体12が流下するようにす
ることがマス・フロー排出の前提条件となる。し
たがつて、細長いすきま15から排出口7へのし
ぼり方は重要である。
Hereinafter, the method of the present invention will be explained in detail based on the drawings showing one embodiment thereof. In FIGS. 6 and 7, as indicated by hatching in the figures, a powder flow control plate 14 is attached to extend from the inner cylinder wall 2 of the helicoidal silo toward the hopper outer wall 6 of the hopper section 5. The mounting angle (angle of inclination) of the flow control plate 14 is generally the same as the hopper angle, and the flow control plate 14 has a convex shape (part of a conical shape) with respect to the concave shape of the hopper outer wall 6. The gap 15 formed between the flow control plate 14 and the hopper outer wall 6 is
As shown in FIG. 8, the side of the spiral partition wall 3A with a positive slope is wide, and the side of the spiral partition wall 3B with a negative slope is narrow. However, storage powder 1
The mounting angle of the flow control plate 14 may be different from the hopper angle due to the difference in physical properties (internal friction angle, wall surface friction angle, etc.) between the two. flow control plate 14
The lower part of the silo may be maintained in its original state as the hopper part 5, or the lower part may be removed to keep the overall height of the silo body low; however, in this case, the storage powder 12 A prerequisite for mass flow discharge is to allow the stored powder and granular material 12 to flow down from the entire gap 15 when discharge is started, regardless of the amount of discharge. Therefore, the method of squeezing the elongated gap 15 to the discharge port 7 is important.

第9図〜第12図に基づいて、マス・フロー化
が達成できた場合の例を説明する。第9図の矢印
に示すように、貯蔵粉粒体12はマス・フロー化
が達成されると全体が降下し、良好に排出される
ようになる。これを第11図および第12図の貯
蔵粉粒体の残留位置と、ホツパー部へ移行する直
上における貯蔵粉粒体の垂直降下速度との関係を
あらわす図にに基づいて説明する。図中における
各記号は第10図aに示す貯蔵室4の各コーナー
部における粉粒体の記号に対応しており、すきま
15の巾は第10図bに示すようにマイナスの傾
斜を持つ螺旋状仕切壁3B側の幅(x)がプラス
の傾斜を持つ螺旋状仕切壁3A側の幅(2x)の
1/2とする。第11図は流れ制御板14の取付角
度はホツパー角度と同じ場合であり、第12図は
流れ制御板14の取付角度がプラスの傾斜を持つ
螺旋状仕切壁3Aの側はホツパー角度と同じであ
るが、マイナスの傾斜を持つ螺旋状仕切壁3B側
に向つて次第にゆるやかにしてある。すなわち第
11図においては、垂直内筒壁2とマイナスの傾
斜を持つ螺旋状仕切壁3Bとでできるコーナー部
における貯蔵粉粒体だけが特に、高さに関係なく
常に速い降下速度で良好に流下排出されるのに対
し、他のコーナー部の貯蔵粉粒体はすべて前記コ
ーナー部の貯蔵粉粒体より垂直降下速度が遅く、
しかも残留高さの低いときは降下速度も低下して
いることが分かる。これに対し、第12図の場合
は、各コーナー部の貯蔵粉粒体がそれぞれ第11
図における場合よりまんべんなく垂直降下速度を
有すると共に残留高さの低いときでも垂直降下速
度は第11図の場合より速い。したがつて、この
2つの図を比べて分かるように、流れ制御板14
の取付け角度は微妙であり、貯蔵対象粉粒体12
により変化するものである。
An example of a case where mass flow can be achieved will be explained based on FIGS. 9 to 12. As shown by the arrows in FIG. 9, when mass flow is achieved, the stored powder and granular material 12 as a whole descends and can be properly discharged. This will be explained based on the diagrams shown in FIGS. 11 and 12 showing the relationship between the remaining position of the stored powder and granular material and the vertical descent speed of the stored powder and granular material immediately above the hopper section. Each symbol in the figure corresponds to the symbol of the powder at each corner of the storage chamber 4 shown in FIG. 10a, and the width of the gap 15 is a spiral with a negative slope as shown in FIG. 10b. The width (x) on the side of the spiral partition wall 3B has a positive slope and the width (2x) on the side of the spiral partition wall 3A.
Set it to 1/2. Fig. 11 shows the case where the mounting angle of the flow control plate 14 is the same as the hopper angle, and Fig. 12 shows the case where the mounting angle of the flow control plate 14 is the same as the hopper angle on the side of the spiral partition wall 3A having a positive slope. However, it gradually becomes gentler toward the spiral partition wall 3B side, which has a negative slope. In other words, in FIG. 11, only the stored powder material at the corner formed by the vertical inner cylinder wall 2 and the spiral partition wall 3B having a negative slope flows down well at a high descending speed regardless of the height. On the other hand, all of the powder and granules stored in other corners have a lower vertical descent speed than the powder and granules in the corner.
Furthermore, it can be seen that when the residual height is low, the descending speed also decreases. On the other hand, in the case of Fig. 12, the stored powder and granules at each corner are in the
The vertical descent speed is more even than in the case shown in FIG. 11, and even when the residual height is low, the vertical descent speed is faster than in the case shown in FIG. Therefore, as can be seen by comparing these two figures, the flow control plate 14
The installation angle of the storage target powder 12 is delicate.
It changes depending on the situation.

以上本発明の方法によれば、ヘリコイダルサイ
ロの内筒壁側よりホツパー壁側に向けて傾斜のつ
いた凸形の粉粒体の流れ制御板を張り出し、該流
れ制御板とホツパー壁との間に、扇状でかつプラ
スの傾斜を持つ仕切壁側は広く、マイナスの傾斜
を持つ仕切壁側は狭くなるように形成されるすき
まから貯蔵粉粒体を排出するので、従来のヘリコ
イダルサイロがフアネル・フロー排出であつたの
を至つて容易にマス・フロー排出することができ
る。
As described above, according to the method of the present invention, a convex, sloped powder flow control plate is extended from the inner cylinder wall side of the helicoidal silo toward the hopper wall side, and the flow control plate and the hopper wall are connected to each other. In between, the stored powder and granules are discharged through the gap formed so that the side of the partition wall that is fan-shaped and has a positive slope is wide and the side of the partition wall that has a negative slope is narrow. What used to be funnel flow discharge can be very easily mass flow discharged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヘリコイダルサイロの概略一部切欠斜
視図、第2図はヘリコイダルサイロの一部平面
図、第3図〜第5図はフアネル・フローを説明す
るための図面を示し、第3図は概略平面図、第4
図は1つの貯蔵室の斜視図、第5図は貯蔵室の縦
断側面図、第6図〜第12図は本発明方法を説明
するための図面を示し、第6図は流れ制御板を取
り付けた状態の平面図、第7図は同縦断側面図、
第8図はすきまをあらわす図、第9図は粉粒体の
流れを説明するための貯蔵室縦断側面図、第10
図aは記号説明するための平面図、第10図bは
すきまの大きさの説明図、第11図および第12
図は粉粒体の残留高さと垂直降下速度との関係を
あらわす図である。 1…外筒壁、2…内筒壁、3…螺旋状仕切壁、
5…ホツパー部、14…粉粒体の流れ制御板、1
5…すきま。
Fig. 1 is a schematic partially cutaway perspective view of the helicoidal silo, Fig. 2 is a partially plan view of the helicoidal silo, Figs. 3 to 5 are drawings for explaining the funnel flow, and Fig. The figure is a schematic plan view,
The figure is a perspective view of one storage chamber, FIG. 5 is a vertical side view of the storage chamber, FIGS. 6 to 12 are drawings for explaining the method of the present invention, and FIG. 6 is a flow control plate installed. Fig. 7 is a longitudinal sectional side view of the same state;
Figure 8 is a diagram showing the gap, Figure 9 is a longitudinal side view of the storage chamber to explain the flow of powder and granules, and Figure 10 is a diagram showing the gap.
Figure a is a plan view for explaining symbols, Figure 10 b is an explanatory diagram of the size of the gap, Figures 11 and 12
The figure shows the relationship between the residual height of powder and the vertical descent speed. 1... Outer cylinder wall, 2... Inner cylinder wall, 3... Spiral partition wall,
5... Hopper part, 14... Powder flow control plate, 1
5...Gap.

Claims (1)

【特許請求の範囲】[Claims] 1 内筒と外筒の間を螺旋状仕切壁で複数の貯蔵
室に分割されたヘリコンダル形サイロにおいて、
外筒壁下端から内筒壁に向つてしぼられた形状を
なすホツパー壁側に向けて内筒壁側より傾斜のつ
いた凸形の粉粒体の流れ制御板を張り出し、該流
れ制御板とホツパー壁との間に形成されるすきま
を、扇状でかつ、プラスの傾斜を持つ仕切壁側は
広く、マイナスの傾斜を持つ仕切壁側は狭くなる
ように構成したことを特徴とするヘリコイダルサ
イロ。
1 In a helicondal type silo that is divided into multiple storage chambers by a spiral partition wall between the inner cylinder and the outer cylinder,
A convex powder flow control plate is extended from the inner cylinder wall side toward the hopper wall, which has a shape constricted from the lower end of the outer cylinder wall toward the inner cylinder wall. A helicoidal silo characterized in that the gap formed between the hopper and the hopper wall is fan-shaped and is wide on the side of the partition wall with a positive slope and narrow on the side of the partition wall with a negative slope. .
JP56147134A 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow Granted JPS5852070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147134A JPS5852070A (en) 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147134A JPS5852070A (en) 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow

Publications (2)

Publication Number Publication Date
JPS5852070A JPS5852070A (en) 1983-03-28
JPS6152069B2 true JPS6152069B2 (en) 1986-11-11

Family

ID=15423329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147134A Granted JPS5852070A (en) 1981-09-17 1981-09-17 Method of changing helicoidal silo inot mass-flow

Country Status (1)

Country Link
JP (1) JPS5852070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988139B2 (en) 2017-08-30 2021-04-27 Nissan Motor Co., Ltd. Vehicle position control method and device vehicle position control device for correcting position in drive-assisted vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112734U (en) * 1978-01-28 1979-08-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988139B2 (en) 2017-08-30 2021-04-27 Nissan Motor Co., Ltd. Vehicle position control method and device vehicle position control device for correcting position in drive-assisted vehicle

Also Published As

Publication number Publication date
JPS5852070A (en) 1983-03-28

Similar Documents

Publication Publication Date Title
US6055781A (en) Archbreaking hopper for bulk solids
US2913111A (en) Open section louver for material separating apparatus
EP0695273B1 (en) Combination hopper
US3731851A (en) Particulate material dispenser
JPS6152069B2 (en)
US3595266A (en) Vacuum unloading valve for dust collectors
US3341090A (en) Means for discharging pulverulent or granular materials from silos
US3710959A (en) Silo container
US3593892A (en) Construction of silos
JPS63317490A (en) Powder receiving bunker
IL33179A (en) Discharge arrangement for a silo compartment having a tapering botton section
US4216853A (en) Grain retarder
US3126117A (en) Mundt
JPS6117018Y2 (en)
US2527694A (en) Capsule counter
US3351248A (en) Outlet device for bunkers for bulk goods
SU1763323A1 (en) Bulk material bin
JPS59138531A (en) Device for extracting solid substance having fluidity from hopper
JPH043230Y2 (en)
JPH0324505Y2 (en)
SU874542A2 (en) Vibration discharger for low-loose materials
JPS5924719Y2 (en) Sealing operation control mechanism in a powder transport port sealing device
US4869370A (en) Receptacle for thixotropic materials
SU594281A1 (en) Silo for storing loose materials
SU1756224A1 (en) Device for unloading loose materials