JPS5851911A - Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membrane - Google Patents
Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membraneInfo
- Publication number
- JPS5851911A JPS5851911A JP15023481A JP15023481A JPS5851911A JP S5851911 A JPS5851911 A JP S5851911A JP 15023481 A JP15023481 A JP 15023481A JP 15023481 A JP15023481 A JP 15023481A JP S5851911 A JPS5851911 A JP S5851911A
- Authority
- JP
- Japan
- Prior art keywords
- polyether sulfone
- membrane
- solution
- aromatic polyether
- water permeability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、下記一般式(I)で表わされる繰返し単位を
有する芳香族ポリエーテルスルホン(但し、′式中x、
x’は例えばメチル、エチル等のアルキル、クロル、ブ
ロム等のハロゲン等の非解離性の置換基又は−COOH
、−8o、H等の解離性置換基を表わし、l、mはt以
下の整数を表わす。)
からなる高度の透水性、機械的物性を有する中空状半透
膜の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aromatic polyether sulfone having a repeating unit represented by the following general formula (I) (wherein x,
x' is, for example, a non-dissociable substituent such as alkyl such as methyl or ethyl, halogen such as chloro or bromine, or -COOH
, -8o, H, etc., and l and m each represent an integer equal to or less than t. ) A method for producing a hollow semipermeable membrane having high water permeability and mechanical properties.
本発明の製造方法に係る芳香族ポリエーテルスルホン中
空状半透膜は基本的に特開昭!;’I−/173777
号公報開示のものと同様な構造を有する。The aromatic polyether sulfone hollow semipermeable membrane according to the manufacturing method of the present invention is basically manufactured by JP-A-Sho! ;'I-/173777
It has a structure similar to that disclosed in the above publication.
今般、本発明者は、グリコール類の共存する芳香族ポリ
エーテルスルホンの溶液を中空押出し凝固させることに
より、前記先行発明と同等乃至より優れた透水性、機械
的物性を有する芳香族ポリエーテルスルホン中空状膜が
得られることを見い出し本発明をなすに至った。The present inventor has developed a hollow aromatic polyether sulfone which has water permeability and mechanical properties equivalent to or better than those of the prior invention by hollow extruding and coagulating a solution of an aromatic polyether sulfone in which glycols coexist. The present inventors have discovered that a similar film can be obtained, and have thus completed the present invention.
本発明の方法は、高濃度の重合体溶液から高度の透水性
と機械的物性とを兼ね備えたポリスルホン中空状半透膜
を製造することができる点で注目ホンの極性有機溶媒溶
液を環状ノズルから中空状に吐出させた後に、該混合溶
媒と混和するが、芳香族ポリエーテルスルホンを溶解し
ない液体と接触させて脱溶媒を行うことを特徴とする中
空状半透膜の製造方法に関するものである。The method of the present invention is notable for its ability to produce polysulfone hollow semipermeable membranes with both high water permeability and mechanical properties from highly concentrated polymer solutions. This invention relates to a method for producing a hollow semipermeable membrane, which comprises discharging the membrane into a hollow shape and then removing the solvent by contacting a liquid that is miscible with the mixed solvent but does not dissolve the aromatic polyether sulfone. .
重合体を良く溶解する極性有機溶媒に溶解し、グリコー
ル類を添加することにより調製することができる。It can be prepared by dissolving the polymer in a polar organic solvent that dissolves well and adding glycols.
該ポリエーテルスルボンの極性有機溶媒溶液は均一かつ
透明であり、−昼夜程度、23;”Cにて放置しても、
失透、白濁、さらにゲル化などの現象を起こさない安定
なものである。The polar organic solvent solution of the polyether sulfone is uniform and transparent, and even when left at 23"C for about 24 hours,
It is stable and does not cause phenomena such as devitrification, clouding, or gelation.
この混合液を代表的には、中空糸製造用の環状ノズルか
ら押し出し、内外からME固させることにより本発明の
中空状半透膜が得られる。中空状半透膜の形成に際して
は、極性有機溶媒中に溶解した芳香族ポリエーテルスル
ボンが内外両表面からの凝固溶液の浸入により、グリコ
ール類を核として周囲に沈澱を生じグリコール類の互に
接する部分が細孔を形成すると推定される。グリコール
類の存在は細孔の形成の核として意味があり、透水性能
の向上に大いに寄与するものであり、グリコ□ −ル
類を使用しない場合に比べ、透水率は約2〜10倍に増
加すると共に、ポリマー鎖の広がりに影響し、膜構造に
何らかの影響を与えると推定される。グリコールが存在
すると芳香族ポリスルボンの極性有機溶媒と非溶媒の混
合溶液中における状態が不安定となり、わずがな凝固溶
液にも沈澱を生じやすくなり、その為に内外両表面から
の凝固溶液の浸入番こより、容易に表面に空洞のない層
が形成されるのであろう。The hollow semipermeable membrane of the present invention is typically obtained by extruding this liquid mixture through an annular nozzle for producing hollow fibers and solidifying it from the inside and outside by ME. When forming a hollow semipermeable membrane, the aromatic polyether sulfone dissolved in a polar organic solvent is penetrated by the coagulating solution from both the inner and outer surfaces, forming a precipitate around the glycol core, which causes the glycols to interact with each other. It is presumed that the contact areas form pores. The presence of glycols is significant as a nucleus for the formation of pores, and greatly contributes to improving water permeability, with water permeability increasing approximately 2 to 10 times compared to when glycols are not used. At the same time, it is estimated that it affects the spread of the polymer chain and has some influence on the membrane structure. The presence of glycol makes the state of aromatic polysulfone in a mixed solution of polar organic solvent and non-solvent unstable, and precipitates are likely to form even in the slightest coagulation solution. Due to the penetration, a layer without cavities can be easily formed on the surface.
極性有機溶媒としては、N−メチルピロリドン。As a polar organic solvent, N-methylpyrrolidone is used.
ジメチルホルムアミド、ジメチルアセトアミドが用いら
れる。Dimethylformamide and dimethylacetamide are used.
グリコール類の混合割合は、混合溶液が均一な溶液状態
を保てる範囲ならばいかなる割合でもよいが、重量%で
少なくとも0.5′%以上添加し、重合体の濃度、溶媒
の種類と中空成形性及び膜性能を考慮して決めればよい
。The mixing ratio of glycols may be any ratio as long as the mixed solution can maintain a uniform solution state, but it should be added at least 0.5'% by weight, depending on the concentration of the polymer, type of solvent, and blow moldability. It may be determined by taking into consideration the performance and membrane performance.
グリコール類としては、エチレングリコール、ジエチレ
ングリコール、トリエチレングリコール、テトラエチレ
ングリコール、ポリエチレングリコール(分子量200
.乙00,2000.6000等)、プロピレングリコ
ール、ジプロピレングリコール、トリプロピレングリコ
ール、ポリプロピレングリコール(分子量200.60
01.2000S乙000等)、グリセリン、トリメチ
ロールプロパン、ポリテトラエチレングリコール等を挙
げることができる。Glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (molecular weight 200
.. Otsu 00, 2000.6000, etc.), propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol (molecular weight 200.60)
01.2000S Otsu 000, etc.), glycerin, trimethylolpropane, polytetraethylene glycol, and the like.
製膜原液としてのポリマー溶液の濃度は10〜3j重量
%、好ましくは75〜30重量%である。33重U%を
こえると、得られる半透膜の透水性能が実用的な意味を
持たないほど小さくなり、又10重量%より低い濃度で
は、十分な強度をもった中空糸状半透膜は得られない。The concentration of the polymer solution as a membrane forming stock solution is 10 to 3j% by weight, preferably 75 to 30% by weight. If the concentration exceeds 33% by weight, the water permeability of the resulting semipermeable membrane becomes so small that it has no practical meaning, and if the concentration is lower than 10% by weight, a hollow fiber semipermeable membrane with sufficient strength cannot be obtained. I can't do it.
凝固液としては、水が最も一般的に用いられるが、ポリ
マーを溶解しない有機溶媒を用いてもよく、又これら非
溶媒を!種以上混合して用いてもよい。又内外の凝固液
として異なった液体又は異なった液体組成の凝固液を用
いることも可能である。Water is most commonly used as the coagulating liquid, but organic solvents that do not dissolve the polymer may also be used, and these non-solvents may also be used! More than one species may be mixed and used. It is also possible to use different liquids or different liquid compositions as the inner and outer coagulating liquids.
かかる製法によって得られた芳香族ボリエーテj −
ルスルホン中空糸状半透膜は、中空糸の内側及び外側の
両表面部に細孔を有し、空洞の全くない層を持ち、これ
らの中間層も該表面層と連続した重合体相を形成してい
る。細孔の径は中空糸の両表面から膜内部に行くにした
がって徐々に増大し、両表面からほぼ等距離にある膜内
部で最大となる。The aromatic polyether sulfone hollow fiber semipermeable membrane obtained by this manufacturing method has pores on both the inner and outer surfaces of the hollow fibers, and has a layer with no cavities, and these intermediate layers also have the same properties. Forms a continuous polymer phase with the surface layer. The diameter of the pores gradually increases from both surfaces of the hollow fiber toward the inside of the membrane, and reaches its maximum inside the membrane at approximately the same distance from both surfaces.
そして、孔径の大きさの変化は膜表面から内部にわたっ
て連続的であるテーパー状構造をとる。内表面及び外表
面の細孔の径は70〜10θAの範囲にある。その径は
種々の異なる平均分子量のデキストラン水溶液、及び各
種蛋白質水溶液を流した際の透過阻止率の測定と、透過
型電子顕微鏡による表面付近の観察により推定される。The pore size changes continuously from the membrane surface to the inside, forming a tapered structure. The diameters of the pores on the inner and outer surfaces are in the range of 70 to 10 θA. Its diameter can be estimated by measuring the permeation rejection rate when aqueous dextran solutions with different average molecular weights and aqueous protein solutions are passed through it, and by observing the vicinity of the surface using a transmission electron microscope.
中空糸の両表面付近には、紡糸条件による違いはあるが
、表面から内部に向かって約/−jミクロン程度の厚さ
にわたり空洞は全く存在しない。空洞の全くない表面付
近の層と連続した重合体相を形成する膜内部の層には、
空洞が存在する場合がある。空洞は膜を形成する重合体
の欠落した部分であり、その直径は10μを超える値で
ある。したがって、杢糸 t −
明では、径70μ以下のものを細孔という。There are no cavities near both surfaces of the hollow fiber over a thickness of about /-j microns from the surface toward the inside, although there are differences depending on the spinning conditions. The inner layer of the membrane, which forms a continuous polymer phase with the layer near the surface without any cavities, contains
Cavities may be present. Cavities are missing parts of the membrane-forming polymer, and their diameter is greater than 10 microns. Therefore, in the heathered yarn t-light, pores with a diameter of 70μ or less are called pores.
一般に空洞は膜厚を薄くすると少なくなり、膜厚をio
oμ以下にすると空洞の少ない中空糸が容易にできる。In general, the number of cavities decreases when the film thickness is reduced;
When it is less than oμ, hollow fibers with few cavities can be easily produced.
空洞が少ない中空糸番J1耐圧密化、機械的強度に優れ
、かつ透水性能も良好である。Hollow fiber number J1 has few cavities, has excellent consolidation resistance, mechanical strength, and good water permeability.
空洞が存在しない場合は勿論、空洞の存在する場合も膜
の内部の層には多数の細孔が存在し、その径は膜表面か
ら内部に向かって遠ざかるにしたがい連続的に徐々に増
大し両表面よりほぼ等距離にある部分で最大となり、そ
の平均径は電子顕微鏡による観察によればOO5〜70
μである。膜表面から膜の内部に向かって遠ざかるにし
たがい細孔の径が増大するのは、凝固が表面から内部に
向がって起こる為に、表面では早く、内部に行くにした
がってゆっくり凝固する為と考えられる。したがって、
膜表面から内部に向かって距離lだり離れた位置にある
細孔の半径rはlの関数となり、−例として750重量
%及び、20重量%濃度のポリエーテルスルボンをジメ
チルアセトアミド、テトラエチレングリコールの系で紡
糸した膜厚300 ミクロン本中空糸においては、/
0〜30 m’/m’−D−atm−2!”Cの高透水
性を示し、特に高濃度ポリマーで紡糸した膜厚の薄い中
空糸では高い透水性を示す。一般に同一条件下で紡糸さ
れた芳香族ポリエーテルスルホン中空糸では透水率は第
2図に示すように、膜厚に反比例し、膜厚が薄くなると
増大をする事実が見い出された。ポリアクリロニトリル
、スルホン化ポリスルホン、ポリカーボネート、セルロ
ースアセテート等の異方性半透膜では、透水性は表面層
(スキン層とも呼ぶ)(こよって規定されると言われて
いるが、本発明の半透膜は空洞のある無しにかかわらず
、表面から中空状膜内部に至る全ての層に、透水性に対
する抵抗を有し、膜厚全体が透水性を規定すると考えら
れる。さらに、同一条件下で紡糸された膜厚の異なる芳
香族ポリエーテルスルホン中空糸では表面の細孔の径は
ほとんど同じであり、又、空洞の存在しない表面付近の
層の厚さも膜厚によらず一定であることが、それぞれデ
キストラン及び各種蛋白質に対する阻止率及び電子顕w
I鏡写真により確認されるが、にもかかわらず、透水率
が膜厚に反比例するという事実は、膜を介しての水圧流
に対する抵抗は膜厚全体によって生ずるものであること
を示し、異方性半透膜におりるように、表面層のみによ
り決まるものではない。さらに、両表面に空洞のない層
を持つにもかかわらず、高い透水性能を持つことはこの
ことを支持する。Not only when there are no cavities, but also when there are cavities, there are many pores in the inner layer of the membrane, and their diameters gradually increase continuously as they move away from the membrane surface toward the inside. It reaches its maximum at a portion approximately equidistant from the surface, and its average diameter is OO5-70 according to observation using an electron microscope.
μ. The reason why the diameter of the pores increases as you move away from the membrane surface is because solidification occurs from the surface toward the inside, which is faster at the surface and slower toward the inside. Conceivable. therefore,
The radius r of the pores located at a distance l inward from the membrane surface is a function of l - for example, polyether sulfone with a concentration of 750% and 20% by weight is dimethylacetamide, tetraethylene glycol In a hollow fiber with a film thickness of 300 microns spun using the system, /
0-30 m'/m'-D-atm-2! "C" exhibits high water permeability, especially in thin hollow fibers spun with highly concentrated polymers.In general, aromatic polyether sulfone hollow fibers spun under the same conditions have a water permeability of 2. As shown in the figure, it was found that the water permeability is inversely proportional to the membrane thickness and increases as the membrane thickness becomes thinner. The semipermeable membrane of the present invention has water permeability in all layers from the surface to the inside of the hollow membrane, regardless of whether there are cavities or not. It is thought that the entire membrane thickness determines water permeability.Furthermore, the surface pore diameters of aromatic polyethersulfone hollow fibers with different membrane thicknesses spun under the same conditions are almost the same. In addition, the thickness of the layer near the surface where no cavities are present is constant regardless of the film thickness, which improves the rejection rate and electron microscopy for dextran and various proteins, respectively.
The fact that water permeability is inversely proportional to membrane thickness, as confirmed by mirror photography, indicates that the resistance to hydraulic flow through the membrane is due to the entire membrane thickness, and is therefore anisotropic. As with semipermeable membranes, it is not determined only by the surface layer. Furthermore, this is supported by the fact that it has high water permeability despite having layers without cavities on both surfaces.
このようにして得られた中空糸は薄1模化により透水率
を極めて大きくすることが可能であり、かつ両表面に空
洞のない層を有する構造をもっ為逆洗が可能であり、か
つ圧密化が少なくなり、種々操作時における変化が少な
く、使用に便利となり機械的強度も優れたものとなる。The hollow fibers obtained in this way can have an extremely high water permeability due to their thinness, and have a structure with a layer without cavities on both surfaces, so they can be backwashed and can be consolidated. This results in fewer changes during various operations, convenience in use, and excellent mechanical strength.
さらに、薄膜細内径の中空糸はプライミングボリューム
が小さく、かつ表面積を大きくすることが可能の為、例
えば、濾過型人工腎臓用の膜或いは腹水の蛋白濃縮膜を
はじめとする各柚医療用p過膜としても利用できる。Furthermore, since the hollow fiber with a thin membrane and small inner diameter has a small priming volume and can increase the surface area, it can be used for various medical purposes such as membranes for filtration-type artificial kidneys or protein concentration membranes for ascites. It can also be used as a membrane.
以下、実施例により詳細に説明する。%は特に 9− ことわらない限り重量表示とする。Hereinafter, it will be explained in detail using examples. % is especially 9- Unless otherwise specified, weight will be displayed.
実施例/
溶媒としてジメチルアセトアミド(DMAc ) 、添
加剤としてテトラエチレングリコール(TEG) 全選
定し、ポリマーとして+o −()−so2−ぐ)テ
で表わされる繰返し単位を有するポリエーテルスルホン
(以下ポリエーテルスルホンと記す)をそれぞれ6s
: /s :、!0(支))の割合で混合し均一な溶液
とした。Example: Dimethylacetamide (DMAc) was selected as the solvent, tetraethylene glycol (TEG) was selected as the additive, and +o-()-so2-g)te was selected as the polymer.
6s each of polyethersulfone (hereinafter referred to as polyethersulfone) having a repeating unit represented by
: /s :,! They were mixed at a ratio of 0 (main)) to form a uniform solution.
このポリマー溶液を中空糸製造用の環状ノズルから押し
出し、内部及び外部凝固液として精製水を用い、該ポリ
マー溶液を内外面から凝固させ、中空状多孔膜を紡糸し
た。この時、中空糸紡糸条件は以下のとおりとした。This polymer solution was extruded from an annular nozzle for producing hollow fibers, and purified water was used as an internal and external coagulating liquid to coagulate the polymer solution from the inner and outer surfaces, thereby spinning a hollow porous membrane. At this time, the hollow fiber spinning conditions were as follows.
ノズルから外部凝固液までの距離(以下空中走行距離と
記す)/Sα。Distance from the nozzle to the external coagulating liquid (hereinafter referred to as aerial travel distance)/Sα.
得られた中空糸の性質は以下のとおりであった。The properties of the obtained hollow fibers were as follows.
内径0.7 、t ttan、外径iJj;tur、膜
厚Q、3Mn、透水率/jm’/m’4)、 atr+
r7..2.5’c 、破裂強度33 lc9/cr&
、 引’J 弾性率/ 700 kg/cl、強度7
0 ky/cl 、デキストラン分子量10’、4ZX
/σ4.7×704に対するカット率は、それぞれ20
%、乙j%、♂、2%0
実施例λ〜/j
実施例1と同様な条件で、種々の添加剤を加え中空糸紡
糸を行った。中空糸原液に加えた添加剤及び、得られた
中空糸の性質を第1表(こ示ず。Inner diameter 0.7, t ttan, outer diameter iJj; tur, film thickness Q, 3Mn, water permeability/jm'/m'4), atr+
r7. .. 2.5'c, bursting strength 33 lc9/cr&
, tensile modulus/700 kg/cl, strength 7
0 ky/cl, dextran molecular weight 10', 4ZX
The cut rate for /σ4.7×704 is 20
%, Oj%, ♂, 2%0 Example λ~/j Under the same conditions as in Example 1, various additives were added and hollow fiber spinning was performed. The additives added to the hollow fiber stock solution and the properties of the obtained hollow fibers are shown in Table 1 (not shown).
(以下余白)
−l/ −
一/L2−
比較例1
実施例1のポリマー溶液を用い、原液温度23′Cにて
ドクタープレイド膜厚lθθμmでガラス板上にギヤス
トした後1分間放置し、23′C水中で凝固させた。得
られた多孔膜平膜の諸性質は以下のとおりであった。膜
厚300μm1透水率0.00n秒’ I)atm・、
!J’C。(Margins below) -l/ - 1/L2- Comparative Example 1 Using the polymer solution of Example 1, it was cast on a glass plate with a Doctor Plaid film thickness of lθθμm at a stock solution temperature of 23'C, and then left for 1 minute, 'C coagulated in water. The properties of the obtained porous flat membrane were as follows. Film thickness 300 μm 1 Water permeability 0.00 ns' I) atm・,
! J'C.
比較例コ、3
ポリエーテルスルホン109、N−メチルビロリドンワ
Oりを30°Cにて混合し均一な溶液とした。この流し
透液をガラス板上にドクタープレイドを用い膜厚250
μmで流延した。得られた多孔膜平膜の諸性質は以下の
通りであった。膜厚/ OO/’m %透水率! m’
/m’−D−atm−,2j’c%弾性率J、2/ k
g/era 、強度/ Okg/cwt以下。Comparative Example 3 Polyethersulfone 109 and N-methylpyrrolidone were mixed at 30°C to form a uniform solution. The permeate was poured onto a glass plate with a film thickness of 250 using Dr. Plaid.
Casting was carried out in μm. The properties of the obtained porous flat membrane were as follows. Film thickness/OO/'m % water permeability! m'
/m'-D-atm-,2j'c% elastic modulus J, 2/k
g/era, strength/Okg/cwt or less.
この溶液を用い内部綬固液に水を用いて中空糸紡糸用環
状ノズルから空中に紡糸し、ポリマーを中空糸内側より
凝固させ、中空糸を紡糸した。This solution was used to spin in the air from a hollow fiber spinning annular nozzle using water as an internal solid-liquid, the polymer was coagulated from the inside of the hollow fiber, and the hollow fiber was spun.
得られた中空糸膜は、内径0,73 film 、外径
13!; ran、膜厚OJmm 、透水率、t ’/
m′・D−atm −,23Cs弾性率3231、73
−
破裂強度/ Okg/cJ以下であった。The obtained hollow fiber membrane had an inner diameter of 0.73 film and an outer diameter of 13! ; ran, film thickness OJmm, water permeability, t'/
m'・D-atm −, 23Cs elastic modulus 3231, 73
- Bursting strength was less than /Okg/cJ.
比較例+、j
ポリマーとしてポリエーテルスルホン、20り、溶媒と
してジメチルアセトアミドざOgを混合し均一な溶液と
した。この溶液を用い原液温度、23℃にてドクタープ
レイド膜厚41OOILmでガラス板上にキャストした
後、1分間放置し1.2t’C水中で凝固させた。Comparative Example +, j A homogeneous solution was prepared by mixing polyether sulfone 20g as a polymer and dimethylacetamide oxide as a solvent. This solution was cast onto a glass plate at a stock solution temperature of 23° C. to a Dr. Plaid film thickness of 41 OOILm, and then allowed to stand for 1 minute to solidify in 1.2 t'C water.
得られた多孔膜平膜は、膜厚300μm1透水率000
3 m7m’ D−aLm−23’Cであった。The resulting porous flat membrane had a thickness of 300 μm and a water permeability of 0.000
3m7m'D-aLm-23'C.
この溶液を用いて実施例1と同一の中空糸紡糸条件下で
中空糸を紡糸したところ、得られた中空糸の指性質は、
内径0.73叫、9/3!;叫、膜厚03閣、透水率0
.0/ m7m’I) atm−,2fc 、破裂強度
30 kti/cd!であった。When hollow fibers were spun using this solution under the same hollow fiber spinning conditions as in Example 1, the finger properties of the obtained hollow fibers were as follows:
Inner diameter 0.73, 9/3! ;Scream, film thickness 03, water permeability 0
.. 0/m7m'I) atm-, 2fc, bursting strength 30 kti/cd! Met.
実施例/6
実施例1と同一のポリマー溶液を用いて、種々の環状ノ
ズルを用いて内外径膜厚の異なる中空糸膜を紡糸した。Example/6 Using the same polymer solution as in Example 1, hollow fiber membranes having different inner and outer diameter membrane thicknesses were spun using various annular nozzles.
この中空糸膜の透水率と膜厚の関係を第2図に示す。FIG. 2 shows the relationship between water permeability and membrane thickness of this hollow fiber membrane.
−/l−
比較例6
30%の硫酸ナトリウム水溶液をジメチルスルホキシド
’190 mlに加え、均一溶液とする。この溶液に式
+Q−so2−Q→Lで表わされる繰返し単位を鳴スル
ポリエーテルスルポン/2!; (jを溶解しポリマー
溶液とした。このポリマー溶液粘度は/900士ンチゲ
ンチ(20℃)である。このポリマー溶液を中空糸製造
用環状ノズルから押し出し、水を凝固液として内外側か
ら凝固させた。-/l- Comparative Example 6 A 30% aqueous sodium sulfate solution is added to 190 ml of dimethyl sulfoxide to form a homogeneous solution. A repeating unit represented by the formula +Q-so2-Q→L is added to this solution. (J was dissolved to make a polymer solution. The viscosity of this polymer solution was /900 mm (20 ° C.). This polymer solution was extruded from an annular nozzle for producing hollow fibers, and coagulated from the inside and outside using water as a coagulating liquid. Ta.
中空糸の内外径は0.7311I+I+、 73!;a
mで、透水率3mンm’I)atm−,2,S’C1破
裂強度/ 3119A+aであった。又、分子1NM
70000のデキストランに対するカット率は70%で
あった。The inner and outer diameters of the hollow fibers are 0.7311I+I+, 73! ;a
m, the water permeability was 3 mm m'I) atm-, 2, S'C1 bursting strength/3119A+a. Also, the molecule is 1NM
The cut rate for 70,000 dextran was 70%.
実施例77〜22
実施例1と同様な方法で、ポリマー浴液としてポリエー
テルスルホン、添加剤テトラエチレングリコールに各柚
溶媒を用いて中空糸紡糸した。Examples 77 to 22 Hollow fiber spinning was carried out in the same manner as in Example 1 using polyether sulfone as the polymer bath liquid, tetraethylene glycol as an additive, and each yuzu solvent.
得られた中空糸の諸性質を第2表に示す。Table 2 shows the properties of the hollow fibers obtained.
実施例23〜27
ポリエーテルスルホン溶媒としてI)MAc 、添加剤
としてTEGを用い、ポリエーテルスルホン及びDMA
cの割合を変化させて、ポリエーテルスルポン濃度の異
なる製膜川原液を作り、実施例/と同様な方法で、中空
糸を紡糸した。得られた中空糸の銘性質を第3表に示す
。Examples 23-27 Using I) MAc as a polyether sulfone solvent and TEG as an additive, polyether sulfone and DMA
By changing the proportion of c, film-forming stock solutions with different concentrations of polyether sulfone were prepared, and hollow fibers were spun in the same manner as in Example. Table 3 shows the characteristics of the hollow fibers obtained.
第3表 ポリエーテルスルポン濃度の影蕾中空糸の内外
径Q、73;w、/、331u+、膜厚0.3mm−実
施例23は比較例
実施例21〜3S
ポリエーテルスルホンDMAc 、 TEGを、それぞ
れ20”、7/”、9(%)の割合で混合し均一な溶液
とした後、ポリマー溶液を環状ノズルから押し出し、内
17一
部及び外部凝固液として精製水を用い、該ポリマーを内
外面から凝固させ中空状多孔膜を紡糸した。Table 3 Effect of polyether sulfone concentration Inside and outside diameter of hollow fiber Q, 73; w, /, 331u+, film thickness 0.3 mm - Example 23 is a comparative example Examples 21 to 3S Polyether sulfone DMAc, TEG , 20", 7/", and 9 (%) respectively to make a uniform solution, extrude the polymer solution from an annular nozzle, and use purified water as the inner 17 part and external coagulation liquid to dissolve the polymer. A hollow porous membrane was spun by solidifying from the inside and outside surfaces.
この時中空糸紡糸用ノズルから外部凝固液までの空中走
行距離を種々変化させ、得られた糸の性質を検討した。At this time, the air travel distance from the hollow fiber spinning nozzle to the external coagulation liquid was varied, and the properties of the obtained fibers were examined.
結果を第1表に示す。The results are shown in Table 1.
第 グ 表
中空糸外径/35I11+++、内径0.7!;tm、
膜厚0.3rtrm実施例3t、37
実施例2ざ〜3jと同一の紡糸用原液を用い、環状ノズ
ルにて、空中走行距11i1t、sα、内部及び外部凝
固液としてメタノールを用い、ボリマーヲ凝固させた。Table G Hollow fiber outer diameter/35I11+++, inner diameter 0.7! ;tm,
Film thickness: 0.3rtrm Examples 3t, 37 Using the same spinning stock solution as in Examples 2 to 3j, the polymer was coagulated using an annular nozzle with an air travel distance of 11i1t, sα, and methanol as the internal and external coagulation liquid. Ta.
得られた中空糸は、内外径07釦m、73!mm 、破
裂強度、透水率、弾性率、強度共に良好なものが得られ
た。The obtained hollow fiber had an inner and outer diameter of 07 m and a diameter of 73! Good results were obtained in terms of mm, bursting strength, water permeability, elastic modulus, and strength.
同様に内部凝固液にメタノール、外部凝固液に水を用い
ても破裂強度、透水率、弾性率、強度共に良好なものが
得られた。Similarly, even when methanol was used as the internal coagulating liquid and water was used as the external coagulating liquid, good bursting strength, water permeability, elastic modulus, and strength were obtained.
第1図は細孔の半径rと中空糸内表面からの距離lとの
関係を示すグラフである。
第2図は透水率と膜厚の関係を示すグラフである。
特許出願人 旭化成工業株式会社FIG. 1 is a graph showing the relationship between the radius r of the pore and the distance l from the inner surface of the hollow fiber. FIG. 2 is a graph showing the relationship between water permeability and film thickness. Patent applicant: Asahi Kasei Industries, Ltd.
Claims (1)
ン系重合体の極性有機溶媒溶液を環状ノズルから中空糸
状に吐出させた後、該混合溶媒と混和するが、芳香族ポ
リエーテルスルホンを溶解しない液体と接触させて脱溶
媒を行うことを特徴とする芳香族ポリエーテルスルホン
中空状半透膜の製造方法。(1) After a polar organic solvent solution of an aromatic polyethersulfone-based polymer containing glycols is discharged from an annular nozzle in the form of a hollow fiber, a liquid that mixes with the mixed solvent but does not dissolve the aromatic polyethersulfone A method for producing an aromatic polyether sulfone hollow semipermeable membrane, the method comprising removing the solvent by contacting the membrane with the aromatic polyether sulfone.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15023481A JPS5851911A (en) | 1981-09-22 | 1981-09-22 | Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membrane |
EP82902468A EP0086235B1 (en) | 1981-08-22 | 1982-08-23 | Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same |
DE8282902468T DE3270865D1 (en) | 1981-08-22 | 1982-08-23 | Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same |
PCT/JP1982/000329 WO1983000705A1 (en) | 1981-08-22 | 1982-08-23 | Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same |
US06/491,340 US4822489A (en) | 1981-08-22 | 1982-08-23 | Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15023481A JPS5851911A (en) | 1981-09-22 | 1981-09-22 | Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5851911A true JPS5851911A (en) | 1983-03-26 |
Family
ID=15492479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15023481A Pending JPS5851911A (en) | 1981-08-22 | 1981-09-22 | Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5851911A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6178657A (en) * | 1984-09-27 | 1986-04-22 | Toshiba Corp | Guide member for printer |
JPS61197474A (en) * | 1984-12-14 | 1986-09-01 | マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルング・デル・ヴイツセンシヤフテン・エ−・フアウ | Manufacture of short fiber reinforced ceramic formed body |
JP2015166056A (en) * | 2014-03-04 | 2015-09-24 | ダイセン・メンブレン・システムズ株式会社 | Membrane forming solution composition for hollow fiber membrane |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5142765A (en) * | 1974-10-08 | 1976-04-12 | Kanegafuchi Chemical Ind | Bikoshitsumakuno seizoho |
JPS5416381A (en) * | 1977-07-06 | 1979-02-06 | Kanegafuchi Chem Ind Co Ltd | Preparation of ultrafiltrating membrane |
JPS5426283A (en) * | 1977-08-01 | 1979-02-27 | Mitsui Petrochem Ind Ltd | Preparation of semipermeable membrane of polysulfone |
JPS5531474A (en) * | 1978-08-29 | 1980-03-05 | Nitto Electric Ind Co Ltd | Selective permeable membrane |
JPS5782515A (en) * | 1980-11-05 | 1982-05-24 | Kanegafuchi Chem Ind Co Ltd | Hollow fibrous membrane and its preparation |
JPS588516A (en) * | 1981-07-08 | 1983-01-18 | Toyobo Co Ltd | Preparation of polysulfone separation membrane |
JPS588503A (en) * | 1981-07-08 | 1983-01-18 | Toyobo Co Ltd | Preparation of polysulfone hollow fiber membrane for gas separation |
JPS588504A (en) * | 1981-07-08 | 1983-01-18 | Toyobo Co Ltd | Gas separation membrane comprising polysulfone hollow fiber |
-
1981
- 1981-09-22 JP JP15023481A patent/JPS5851911A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5142765A (en) * | 1974-10-08 | 1976-04-12 | Kanegafuchi Chemical Ind | Bikoshitsumakuno seizoho |
JPS5416381A (en) * | 1977-07-06 | 1979-02-06 | Kanegafuchi Chem Ind Co Ltd | Preparation of ultrafiltrating membrane |
JPS5426283A (en) * | 1977-08-01 | 1979-02-27 | Mitsui Petrochem Ind Ltd | Preparation of semipermeable membrane of polysulfone |
JPS5531474A (en) * | 1978-08-29 | 1980-03-05 | Nitto Electric Ind Co Ltd | Selective permeable membrane |
JPS5782515A (en) * | 1980-11-05 | 1982-05-24 | Kanegafuchi Chem Ind Co Ltd | Hollow fibrous membrane and its preparation |
JPS588516A (en) * | 1981-07-08 | 1983-01-18 | Toyobo Co Ltd | Preparation of polysulfone separation membrane |
JPS588503A (en) * | 1981-07-08 | 1983-01-18 | Toyobo Co Ltd | Preparation of polysulfone hollow fiber membrane for gas separation |
JPS588504A (en) * | 1981-07-08 | 1983-01-18 | Toyobo Co Ltd | Gas separation membrane comprising polysulfone hollow fiber |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6178657A (en) * | 1984-09-27 | 1986-04-22 | Toshiba Corp | Guide member for printer |
JPH0257778B2 (en) * | 1984-09-27 | 1990-12-05 | Tokyo Shibaura Electric Co | |
JPS61197474A (en) * | 1984-12-14 | 1986-09-01 | マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルング・デル・ヴイツセンシヤフテン・エ−・フアウ | Manufacture of short fiber reinforced ceramic formed body |
JP2015166056A (en) * | 2014-03-04 | 2015-09-24 | ダイセン・メンブレン・システムズ株式会社 | Membrane forming solution composition for hollow fiber membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100446845C (en) | Polysulfone and polyethy lene base polymer blend membrane, and its preparing and use | |
JPH0350005B2 (en) | ||
CN110079887B (en) | Performance enhancing additives for fiber formation and polysulfone fibers | |
JP2019532119A (en) | Composition comprising aromatic polymer and fluorinated polymer and use thereof | |
JPH11253771A (en) | Manufacture of polysulfone hollow fiber membrane and polysulfone hollow fiber membrane | |
JPS5851911A (en) | Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membrane | |
JPS60246812A (en) | Hollow polysulfone based resin fiber | |
JPS6397202A (en) | Polyether sulfone resin semipermeable membrane and its production | |
KR20180015797A (en) | Inner coagulant for producing polysulfone-based hollow fiber membrange and method of producing polysulfone-based hollow fiber membrane by using the same | |
KR101331066B1 (en) | Polyethersulfone hollow fiber membrane and method of manufacturing the same | |
JPS58156018A (en) | Polysulfone resin hollow fiber | |
JPH05192550A (en) | Method for producing hollow fiber membrane | |
JPS6329562B2 (en) | ||
KR102399330B1 (en) | Acetylated alkyl cellulose separation membrane and method for preparing the same | |
JPH09103664A (en) | Production of polysulfone resin semipermeable membrane | |
KR20010061733A (en) | A polysulfone typed hollow fiber membrane, and a process of preparing for the same | |
JP2904324B2 (en) | Polysulfone-based hollow fiber membrane and production method | |
JP3872173B2 (en) | POLYHYDROXY ETHER RESIN AND METHOD FOR SYNTHESIZING THE SAME, POLYHYDROXY ETHER MEMBRANE AND METHOD FOR PRODUCING THE SAME | |
JP3464000B1 (en) | Manufacturing method of high performance hollow fiber microfiltration membrane | |
KR100200040B1 (en) | Sponge-like polysulphone hollow fibre membrane and manufacturing method thereof | |
JP2000107577A (en) | Production of permselective hollow fiber membranes | |
JPH0712421B2 (en) | Method for producing hollow fiber membrane made of polysulfone | |
JPS6045358A (en) | Serum separating membrane and its preparation | |
JPH03196823A (en) | Production of hollow fiber membrane of polysulfone having high strength and high flux | |
JPS5834009A (en) | Preparation of aromatic polysulfone hollow semi-permeable membrane |