JPS5851883B2 - Method for producing cyclic phosphonitrile chloride oligomer - Google Patents

Method for producing cyclic phosphonitrile chloride oligomer

Info

Publication number
JPS5851883B2
JPS5851883B2 JP15407380A JP15407380A JPS5851883B2 JP S5851883 B2 JPS5851883 B2 JP S5851883B2 JP 15407380 A JP15407380 A JP 15407380A JP 15407380 A JP15407380 A JP 15407380A JP S5851883 B2 JPS5851883 B2 JP S5851883B2
Authority
JP
Japan
Prior art keywords
pnc
properties
oligomer
reaction
cyclic phosphonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15407380A
Other languages
Japanese (ja)
Other versions
JPS5777012A (en
Inventor
幸夫 三賀森
嘉明 森田
清 堀江
進 矢野
正治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SHOE
Original Assignee
NIPPON SHOE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SHOE filed Critical NIPPON SHOE
Priority to JP15407380A priority Critical patent/JPS5851883B2/en
Priority to US06/244,231 priority patent/US4382914A/en
Priority to DE3112192A priority patent/DE3112192A1/en
Priority to GB8110794A priority patent/GB2080269B/en
Priority to CA376,744A priority patent/CA1126479A/en
Publication of JPS5777012A publication Critical patent/JPS5777012A/en
Publication of JPS5851883B2 publication Critical patent/JPS5851883B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は環状ホスホニトリルクロライドオリゴマーの製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cyclic phosphonitrile chloride oligomers.

環状ホスホニトリルクロライドオリコマ−は一般式(P
NC12)nで示される(n=3〜7程度の整数)オリ
ゴマーであり、このオリゴマーは無機系高分子化合物で
あるホスファゼンポリマーの原料として注目されている
The cyclic phosphonitrile chloride oligomer has the general formula (P
NC12) It is an oligomer represented by n (n=an integer of about 3 to 7), and this oligomer is attracting attention as a raw material for phosphazene polymer, which is an inorganic polymer compound.

ホスファゼンポリマーは上記環状ホスホニトリルクロラ
イドオリゴマー、特に好ましくはその三量体(ヘキサク
ロロシクロトリホスファゼン)を開環重合させて鎖状の
ポリジクロロホスファゼンとし、その塩素を各種の置換
基により置換することにより製造され、その置換基の種
類により、多種類のポリマー、広範な特性を有するポリ
マーの製造が期待されている。
The phosphazene polymer is produced by ring-opening polymerization of the above-mentioned cyclic phosphonitrile chloride oligomer, particularly preferably its trimer (hexachlorocyclotriphosphazene) to form a chain polydichlorophosphazene, and substituting the chlorine with various substituents. It is expected that various types of polymers and polymers with a wide range of properties can be produced depending on the types of substituents.

このようなホスファゼンポリマーの特性としては例えば
難燃性、撥水性、低温時の柔軟性、耐薬品性、電気絶縁
性、生体親和性等が挙げられる。
Properties of such phosphazene polymers include, for example, flame retardancy, water repellency, flexibility at low temperatures, chemical resistance, electrical insulation, and biocompatibility.

そして上記特性を有したエラストマー、塗料、発泡体な
どへの応用研究が最近活発に行われている。
Recently, research has been actively conducted on the application of elastomers, paints, foams, etc. having the above-mentioned properties.

このような優れた特性を有するホスファゼンポリマーの
原料である環状ホスホニトリルクロライドオリゴマー(
以下単にPNCと略す)の製造は従来より活発に行われ
ているが、これまでいずれの方法も得られるポリマーの
着色、ゲルの生皮、低い重合度成るいは広い分子量分布
などの欠点を有しており、重合特性の優れたPNCを与
える方法は皆無であった。
Cyclic phosphonitrile chloride oligomer (a raw material for phosphazene polymer with such excellent properties)
The production of PNC (hereinafter simply abbreviated as PNC) has been actively carried out, but all the methods so far have had drawbacks such as coloring of the resulting polymer, gel raw skin, low degree of polymerization, and wide molecular weight distribution. However, there has been no method to provide PNC with excellent polymerization properties.

またPNCを重合してホスファゼンポリマーを得る方法
において従来の特徴的な現象として、得られるポリマー
の性状が一定せず、性状において再現性の良いポリマー
を得ることが極めて困難であるという事実がある。
Furthermore, a characteristic phenomenon of conventional methods for obtaining phosphazene polymers by polymerizing PNC is the fact that the properties of the obtained polymers are not constant, and it is extremely difficult to obtain polymers with good reproducibility in terms of properties.

そこで粗製PNCを精製して重合特性を高める方法も研
究されているが、従来の方法ではその精製工程における
PNCの損失が極めて大きく、且つ精製されたPNCを
用いて重合しても尚得られるポリマーの性状が不十分で
あったり、またポリマーの性状が一定せず優れた再現性
を有するポリマーが得られないという欠点を有している
Therefore, research is being conducted on methods to improve polymerization properties by purifying crude PNC, but conventional methods result in an extremely large loss of PNC in the purification process, and even if purified PNC is used for polymerization, the polymer still obtained However, the properties of the polymer are insufficient, and the properties of the polymer are not constant, making it impossible to obtain a polymer with excellent reproducibility.

例えば米国特許第3669633号には反応に不活性な
有機溶媒中で塩化アンモニウムとPCl5とを反応させ
、得られた反応混合物の有機溶媒溶液を75〜100℃
の温度で水洗して後、水層を分離し、有機溶媒層からP
NCを得る方法が記載されているが、この場合水層と有
機層の分離が悪<PNCの回収率は86%と低く且つこ
のPNCより得られるポリマーの性状は不十分であり且
つ性状の再現性がない。
For example, US Patent No. 3,669,633 discloses that ammonium chloride and PCl5 are reacted in an organic solvent inert to the reaction, and a solution of the resulting reaction mixture in the organic solvent is heated at 75 to 100°C.
After washing with water at a temperature of
A method for obtaining NC is described, but in this case, separation of the aqueous layer and organic layer is poor, the recovery rate of PNC is as low as 86%, and the properties of the polymer obtained from this PNC are insufficient, and it is difficult to reproduce the properties. There is no sex.

また米国特許第3694171号に記載の精製方法も上
記米国特許に記載の方法と同様、PNCの回収率も低く
且つこのPNCより得られるポリマーの性状も不十分で
あり且つ再現性のないものである。
Furthermore, the purification method described in U.S. Pat. No. 3,694,171, like the method described in the above-mentioned U.S. patent, has a low recovery rate of PNC, and the properties of the polymer obtained from this PNC are also insufficient and non-reproducible. .

即ちこの方法では反応後に得られる塩素化に不活性な有
機溶媒とPNCとの混合溶液をそのまま、苛性ソーダ水
溶液等と接触させて3量体及び4量体からなるPNCを
得ているが、その際のPNCの回収率は60%程度であ
り、極めて多量のPNCが損失されている。
That is, in this method, a mixed solution of PNC and an organic solvent inert to chlorination obtained after the reaction is brought into contact with an aqueous solution of caustic soda, etc. to obtain PNC consisting of trimers and tetramers. The recovery rate of PNC is about 60%, and an extremely large amount of PNC is lost.

更に特開昭54−142195号には粗製PNCを室温
で少なくとも2回水洗して和製する方法が記載されてい
るが、この方法によってもPNCの回収率は63.5%
と低く且つこのPNCから得られるポリマーの性状も不
十分であり且つ性状も一定せず得られるポリマーに再現
性がないという欠点を有している。
Furthermore, JP-A-54-142195 describes a method of washing crude PNC with water at least twice at room temperature for Japanese preparation, but even with this method, the recovery rate of PNC was 63.5%.
The properties of the polymer obtained from this PNC are also low, and the properties of the polymer obtained from this PNC are also inconsistent, resulting in a lack of reproducibility.

本発明の目的は着色がなく、ゲルの生成が実質上なく、
高い重合度、狭い分子量分布等の優れた性状のホスファ
ゼンポリマーを与え得る重合特性の極めて優れたPNC
の製造法を提供することにある。
The purpose of the present invention is to have no coloring, substantially no gel formation,
PNC with extremely excellent polymerization properties that can provide phosphazene polymers with excellent properties such as high degree of polymerization and narrow molecular weight distribution.
The objective is to provide a manufacturing method.

本発明の他の目的は上記優れた性状のホスファゼンポリ
マーを極めて再現性よく与える重合特性の優れたPNC
の製造法を提供することにある。
Another object of the present invention is to obtain a PNC with excellent polymerization properties that provides the above-mentioned phosphazene polymer with excellent properties with extremely high reproducibility.
The objective is to provide a manufacturing method.

本発明の他の目的は重合特性を向上させる目的で行う精
製工程においてPNCの損失が殆どなく、はぼ100%
の回収率でPNCを回収し得る、PNCの製造法を提供
することにある。
Another object of the present invention is that there is almost no loss of PNC in the purification process performed for the purpose of improving polymerization properties, and almost 100% of PNC is lost.
An object of the present invention is to provide a method for producing PNC that can recover PNC at a recovery rate of .

本発明は (4)塩素化に不活性な有機溶媒中、2価の金属の有機
酸塩の1種若しくは2種以上の触媒の存在下、五塩化リ
ンと塩化アンモニウムを反応させ、反応終了後に反応溶
媒を留去して実質的に環状ホスホニトリルクロライドオ
リゴマーからなる反応生成物を得る第1工程及び (B) 上記反応生成物を脂肪族炭化水素及びエーテ
ル類から選ばれた溶媒の1種以上に溶解した溶液を約4
0〜100℃の温度で水と接触させ、その後、水層と有
機層に分離し、有機層より3及び4量体を主成分とする
重合特性に優れた環状ホスホニトリルフロラ・fドオリ
ゴマーを回収する第2工程 を結合したことを特徴とする環状ホスホニトリルクロラ
イドオリゴマーの製造法に係る。
The present invention consists of (4) reacting phosphorus pentachloride and ammonium chloride in an organic solvent inert to chlorination in the presence of one or more catalysts of organic acid salts of divalent metals; A first step of distilling off the reaction solvent to obtain a reaction product consisting essentially of a cyclic phosphonitrile chloride oligomer; and (B) converting the reaction product to one or more solvents selected from aliphatic hydrocarbons and ethers. The solution dissolved in about 4
It is brought into contact with water at a temperature of 0 to 100°C, and then separated into an aqueous layer and an organic layer, and from the organic layer, a cyclic phosphonitrile flora/f-oligomer with excellent polymerization properties mainly composed of trimers and tetramers is obtained. The present invention relates to a method for producing a cyclic phosphonitrile chloride oligomer, which is characterized in that a second step of recovery is combined.

本発明の第1工程に用いられる塩素化に不活性な有機溶
媒としてはテトラクロロエタン、テトラクロロエチレン
、モノクロルベンゼン、ジクロルベンゼン等が挙げられ
る。
Examples of the organic solvent inert to chlorination used in the first step of the present invention include tetrachloroethane, tetrachloroethylene, monochlorobenzene, dichlorobenzene, and the like.

触媒としては2価の金属の有機酸塩が用いられる。As the catalyst, an organic acid salt of a divalent metal is used.

2価の金属としては周期律表第■〜■族に属する各種の
金属が用いられるが、なかでもMg、Zn等の第■族、
Mn等の第■族、Co、Ni等の第■族の金属が好まし
い。
As divalent metals, various metals belonging to groups ① to ① of the periodic table are used, among which group ① such as Mg and Zn,
Group Ⅰ metals such as Mn and group Ⅰ metals such as Co and Ni are preferred.

有機酸としては置換基を有し若しくは有しない脂肪族又
は芳香族の1〜3価のカルボン酸が使用できる。
As the organic acid, aliphatic or aromatic mono- to trivalent carboxylic acids with or without substituents can be used.

脂肪族カルボン酸としては炭素数1〜24好ましくは炭
素数2〜18のものが好適で、具体的には酢酸、プロピ
オン酸、ラウリン酸、カプリル酸、ステアリン酸、オレ
イン酸、シュウ酸、コハク酸、クエン酸、乳酸、L−ア
スパラギン酸等を例示することができる。
Suitable aliphatic carboxylic acids include those having 1 to 24 carbon atoms, preferably 2 to 18 carbon atoms, such as acetic acid, propionic acid, lauric acid, caprylic acid, stearic acid, oleic acid, oxalic acid, and succinic acid. , citric acid, lactic acid, L-aspartic acid, and the like.

芳香族カルボン酸としては炭素数7〜15好ましくは炭
素数7〜10のものが好適で、具体的には安息香酸、サ
リチル酸、テレフタル酸等を例示することができる。
The aromatic carboxylic acid preferably has 7 to 15 carbon atoms, preferably 7 to 10 carbon atoms, and specific examples include benzoic acid, salicylic acid, and terephthalic acid.

斯かる2価の金属の有機酸塩を触媒として用いた場合、
対応する2価の金属塩化物よりも3〜5%程度3量体の
含有量が増加する特長を有する。
When such an organic acid salt of a divalent metal is used as a catalyst,
It has the feature that the trimer content is increased by about 3 to 5% compared to the corresponding divalent metal chloride.

本発明の第1工程の反応は上記有機溶媒中で、塩化アン
モニウムと五塩化リンを上記触媒の存在下に反応させる
In the first step of the reaction of the present invention, ammonium chloride and phosphorus pentachloride are reacted in the presence of the catalyst described above in the organic solvent described above.

塩化アンモニウムは五塩化リンに対し過剰用いるのが好
ましく、通常後者1モルに対し前者を1〜1.5モル使
用する。
It is preferable to use ammonium chloride in excess of phosphorus pentachloride, and usually 1 to 1.5 mol of the former is used per 1 mol of the latter.

触媒の使用量も特に限定はないが、通常五塩化リン1モ
ルに対し約1〜10−5モル、好ましくは約10−2〜
10−4モル用いるのが良い。
The amount of the catalyst to be used is also not particularly limited, but it is usually about 1 to 10-5 mol, preferably about 10-2 to 10-5 mol, per 1 mol of phosphorus pentachloride.
It is preferable to use 10-4 mol.

また五塩化リンとしては三塩化リンと塩素を反応させて
得られるものを用いても良い。
Further, as the phosphorus pentachloride, one obtained by reacting phosphorus trichloride and chlorine may be used.

反応は種々の方法により行い得るが、例えば反応溶媒に
塩化アンモニウムと触媒を仕込み、攪拌しながらこれに
五塩化リンの有機溶媒溶液を滴下するのが好ましい。
The reaction can be carried out by various methods, but preferably, for example, ammonium chloride and a catalyst are added to a reaction solvent, and a solution of phosphorus pentachloride in an organic solvent is added dropwise thereto while stirring.

反応温度は特に限定されないが、通常100〜200℃
、好ましくは約120〜145℃の範囲から選択するの
が良い。
The reaction temperature is not particularly limited, but is usually 100 to 200°C.
, preferably from a range of about 120 to 145°C.

反応は五塩化リンと塩化アンモニウムの反応より生成す
る塩化水素ガスが発生しなくなったときに終了し、その
後過剰の塩化アンモニウムを濾過により除き、溶媒を留
去して実質的にPNCからなる反応生成物を得る。
The reaction ends when hydrogen chloride gas produced by the reaction between phosphorus pentachloride and ammonium chloride is no longer generated, and then excess ammonium chloride is removed by filtration and the solvent is distilled off to form a reaction product consisting essentially of PNC. get something

本発明の第1工程における目的物であるPNCとは一般
式(PNC12) n、n=3〜7の整数で表わされる
環状ホスホニトリルクロライドオリゴマーを意味し、上
記第1工程における実質的にPNCからなる反応生成物
とは、はぼ上記(PNC12)n、n=3〜7の整数で
表わされる化合物から成るものであり、上記以外の例え
ば線状ホスファゼンオリゴマー等の化合物を含んでいて
も1重量%未満、好ましくは0.5重量%未満の量でし
か含まないものを意味する。
PNC, which is the target product in the first step of the present invention, means a cyclic phosphonitrile chloride oligomer represented by the general formula (PNC12) n, where n = an integer of 3 to 7, and substantially consists of PNC in the first step. The reaction product is one consisting of a compound represented by (PNC12) n, an integer of n = 3 to 7, and even if it contains compounds other than the above, such as linear phosphazene oligomers, 1 weight %, preferably less than 0.5% by weight.

本発明の第1工程で得られる反応生成物が上記の意味で
の実質的にPNCからなるものでないときには、引続く
第2工程において目的とする重合適性に優れたPNCを
回収率よく得ることはできず、従って第1工程で実質的
にPNCから成る反応生成物を得ることは必須の要件で
ある。
When the reaction product obtained in the first step of the present invention does not substantially consist of PNC in the above sense, it is difficult to obtain the desired PNC with excellent polymerization suitability in the subsequent second step with a high recovery rate. It is therefore essential to obtain a reaction product consisting essentially of PNC in the first step.

そして斯かる反応生成物を得るためには触媒として2価
の金属の有機酸塩を使用することが必須である。
In order to obtain such a reaction product, it is essential to use an organic acid salt of a divalent metal as a catalyst.

次に上記反応生成物を脂肪族炭化水素及びエーテル類か
ら選ばれた溶媒の1種以上に溶解する。
Next, the reaction product is dissolved in one or more solvents selected from aliphatic hydrocarbons and ethers.

脂肪族炭化水素としては石油エーテル、石油ベンジン、
n−ヘキサン、n−へブタン、n−オクタン、イソオク
タン等の炭素数5〜12の炭化水素が特に有効である。
Aliphatic hydrocarbons include petroleum ether, petroleum benzene,
Hydrocarbons having 5 to 12 carbon atoms, such as n-hexane, n-hebutane, n-octane, and isooctane, are particularly effective.

エーテル類としてはジブチルエーテル、ブチルエチルエ
ーテル等が挙げられる。
Examples of the ethers include dibutyl ether and butyl ethyl ether.

溶媒の量は適宜に決定すれば良いが、通常は反応生成物
に重量で等量ないし2倍量程度使用するのが望ましい。
The amount of solvent may be determined as appropriate, but it is usually desirable to use an amount equal to or twice the weight of the reaction product.

次に上記溶液を約40〜100℃、好ましくは約50〜
95℃特に好ましくは約70〜90℃の温度で水と接触
させる。
Next, the above solution is heated to about 40-100°C, preferably about 50-100°C.
Contact with water is carried out at a temperature of 95°C, particularly preferably about 70-90°C.

一般にPNCは水に対し不安定とされており、先行技術
の粗製PNCの精製方法においても水の使用を避ける傾
向のものが多く、また水を用いた場合にはPNCの回収
率が悪いが、本願発明は斯かる従来技術に反し、比較的
高温の水と接触させるにも拘らずその際のPNCの回収
率は極めて高いものである。
In general, PNC is considered to be unstable in water, and many prior art purification methods for crude PNC tend to avoid the use of water, and when water is used, the recovery rate of PNC is poor. Contrary to such prior art, the present invention has an extremely high recovery rate of PNC even though it is brought into contact with water at a relatively high temperature.

本発明では次に上記水洗終了後、水層を分離除去し、有
機層から溶媒を留去した後、目的とする3及び重量体を
主成分とするPNCを蒸留、昇華、再結晶等の方法によ
り回収する。
In the present invention, after the water washing is completed, the aqueous layer is separated and removed, the solvent is distilled off from the organic layer, and the target PNC containing 3 and the heavy body as main components is purified by distillation, sublimation, recrystallization, etc. Collected by

ここで3及び重量体を主成分とするPNCとは通常90
wt%以上、好ましくは95wt%以上の3及び重量体
を含み、その他として5〜7量体を含むものであるが、
斯かる5〜7量体の量は少ない方が好ましい。
Here, PNC whose main component is 3 and heavy body is usually 90
Contains at least 3 wt%, preferably at least 95 wt%, of 3 and heavy bodies, and additionally contains pentamers and heptamers,
It is preferable that the amount of such pentamer to heptamer be small.

以上の方法により前記した優れた性状を有するホスファ
ゼンポリマーを再現性良く与える重合特性の極めて優れ
たPNCを得ることができる。
By the above method, it is possible to obtain a PNC having extremely excellent polymerization properties that yields a phosphazene polymer having the above-mentioned excellent properties with good reproducibility.

本発明で得られたPNCの重合は種々の公知の方法に従
って行うことができ、例えばバルク重合、溶液重合等に
より重合することができる。
The PNC obtained in the present invention can be polymerized according to various known methods, such as bulk polymerization, solution polymerization, etc.

斯かる重合により得られるホスファゼンポリマーは着色
がなく、ゲルの生成が実質上なく、高い重合度、シャー
プな分子量分布等を有しており、且つ斯かる優れた性状
のポリマーを極めて再現性良く得ることができる。
The phosphazene polymer obtained by such polymerization has no coloration, virtually no gel formation, high degree of polymerization, sharp molecular weight distribution, etc., and the polymer with such excellent properties can be obtained with extremely good reproducibility. be able to.

以下本発明の実施例を挙げて説明する。The present invention will be described below with reference to Examples.

尚以下において単に%とあるのは重量%を示すものとす
る。
In the following, the term % simply indicates weight %.

実施例 1 攪拌装置、冷却管、滴下ロートを備えた31の三ツロフ
ラスコに塩化アンモニウム231g(4,3mol)、
2価の金属の有機酸塩として酢酸亜鉛Zn (CHs
COO) 23.679 (2X 10−2rnol
)、モノクロルベンゼン350gを仕込み、125〜1
35℃の温度で五塩化燐7509 (3,6mol )
のモノクロルベンゼン溶液1650gを16時間で滴下
する。
Example 1 231 g (4.3 mol) of ammonium chloride was placed in a 31-meter three-way flask equipped with a stirrer, a cooling tube, and a dropping funnel.
Zinc acetate (CHs
COO) 23.679 (2X 10-2rnol
), prepare 350g of monochlorobenzene, 125~1
Phosphorus pentachloride 7509 (3,6 mol) at a temperature of 35 °C
1650 g of a monochlorobenzene solution was added dropwise over 16 hours.

滴下終了後2時間反応を行い、反応終了後未反応塩化ア
ンモニウムを炉別除去し、反応溶媒を留去する。
After the completion of the dropwise addition, the reaction is carried out for 2 hours, and after the completion of the reaction, unreacted ammonium chloride is removed in a separate furnace, and the reaction solvent is distilled off.

その結果、反応生成物375.9g(五塩化燐に対し9
0.1%の収率)が得られた。
As a result, 375.9 g of reaction product (9
A yield of 0.1%) was obtained.

ガスクロ測定により3量体59.9%、4量体24.1
%、5〜7量体16.0%と環状物100%であった。
Gas chromatography shows that 59.9% of trimers and 24.1% of tetramers are present.
%, 16.0% of pentamers and 100% of cyclics.

その後上記反応生成物にn−へブタン(570g)を入
れ、溶解し、80℃前後で等量の水で水洗を行い、水層
を分離除去しn−へブタン層より粗PNC375,1g
(五塩化燐に対し89.9%の収率、水洗工程時の回収
率99.79%)が得られた。
After that, n-hebutane (570 g) was added to the above reaction product, dissolved, washed with an equal amount of water at around 80°C, the aqueous layer was separated and removed, and crude PNC375, 1 g was extracted from the n-hebutane layer.
(Yield of 89.9% based on phosphorus pentachloride, recovery rate of 99.79% in the water washing step) was obtained.

ガスクロ分析より3量体60.0%、4量体24.1%
、5量7量体15.9%であった。
Gas chromatography analysis shows 60.0% trimer and 24.1% tetramer.
, the pentamer content was 15.9%.

この様にして得られた粗PNCを減圧蒸留し精製PNC
199、Ogが得られた(ガスクロ測定により3量体9
8.6%、4量体1.4%)。
The crude PNC obtained in this way is distilled under reduced pressure to obtain purified PNC.
199, Og was obtained (trimer 9 was determined by gas chromatography).
8.6%, tetramer 1.4%).

この精製PNCを重合管に仕込み、10”mmHgの減
圧下で脱気封管し、250℃で重合を行った。
This purified PNC was charged into a polymerization tube, the tube was degassed and sealed under a reduced pressure of 10'' mmHg, and polymerization was performed at 250°C.

この結果ゲル化する事なく重合し28時間で変換率25
%となり、得られたポリマーは固有粘度1.02c//
/g、 Mn= 3.53X 10’ 、 Mw= 9
.97X 10’ 、Mw/Mn=2.8とよい重合特
性を示した。
As a result, polymerization occurred without gelation, and the conversion rate was 25% in 28 hours.
%, and the obtained polymer has an intrinsic viscosity of 1.02c//
/g, Mn=3.53X10', Mw=9
.. It showed good polymerization properties with 97X 10' and Mw/Mn=2.8.

比較例 1 触媒として、塩化亜鉛2.45& (2X 10 ”m
ol )を用い実施例1と同様の方法でPNCを得た。
Comparative Example 1 Zinc chloride 2.45 & (2X 10”m
PNC was obtained in the same manner as in Example 1 using PNC.

反応生成物は387.19 (五塩化燐に対し92,8
%の収率)が得られ、ガスクロ分析により3量体56.
2%、4量体26.4%、5%7量体17.4%と環状
物100%であった。
The reaction product is 387.19 (92.8 for phosphorus pentachloride)
% yield) was obtained, and gas chromatography showed that the trimer was 56.
2%, tetramer 26.4%, 5% heptamer 17.4%, and cyclics 100%.

水洗終了後粗PNC386,09(五塩化燐に対し92
.6%の収率、水洗時の回収率99.7%)であった。
After washing with water, crude PNC386,09 (92% for phosphorus pentachloride)
.. The yield was 6%, and the recovery rate after washing with water was 99.7%).

この様にして得られた粗PNCを蒸留し精製PNC20
0,2p(ガスクロ測定、3量体9465%、4量体5
.2%、5量体0.3%)を得た。
The crude PNC obtained in this way was distilled to produce purified PNC20.
0.2p (gas chromatography measurement, trimer 9465%, tetramer 5
.. 2%, pentamer 0.3%).

実施例 2 触媒として酢酸マグネシウム2.89 (2X10−2
mol)を用い実施例1と同様の方法でPNCを得た。
Example 2 Magnesium acetate 2.89 (2X10-2
mol) in the same manner as in Example 1 to obtain PNC.

反応生成物は376.49(五塩化燐に対し90.2%
の収率)が得られ、ガスクロ分析により3量体71.2
%、4量体17.0%、5量7量体11.8%と環状物
100%であった。
The reaction product is 376.49 (90.2% based on phosphorus pentachloride)
A yield of 71.2% of the trimer was obtained by gas chromatography.
%, tetramer 17.0%, pentamer heptamer 11.8%, and cyclics 100%.

水洗終了後粗PNC375,39(五塩化燐に対し89
.9%の収率、水洗時の回収率99.7%)であった。
After washing with water, crude PNC375,39 (89 for phosphorus pentachloride)
.. The yield was 9%, and the recovery rate after washing with water was 99.7%).

この様にして得られた粗PNCを蒸留し、精製PNC2
82,5g(ガスクロ測定、3量体87.1%、4量体
11.2%、5量体1.8%)を得た。
The crude PNC obtained in this way was distilled, and the purified PNC2
82.5 g (gas chromatography measurement: 87.1% trimer, 11.2% tetramer, 1.8% pentamer) was obtained.

実施例1の記載の方法で重合特性を調べた。Polymerization properties were investigated using the method described in Example 1.

その結果、ゲル化、着色する事なく重合し、22.5時
間で変換率25%となり、得られたポリマーは固有粘度
1、45cll/fi t Mr1=4. I X 1
05. Mvv =2.2 Xl 0’ 、 Mw/
Mn = 5.4とよい重合特性を示した。
As a result, polymerization occurred without gelation or coloring, and the conversion rate was 25% in 22.5 hours, and the resulting polymer had an intrinsic viscosity of 1, 45 cll/fit Mr1=4. IX1
05. Mvv = 2.2 Xl 0', Mw/
It showed good polymerization properties with Mn = 5.4.

比較例 2 触媒として塩化マグネシウム11.9.!9(2X10
−2mol)を用い実施例1と同様の方法でPNCを得
た。
Comparative Example 2 Magnesium chloride as a catalyst 11.9. ! 9 (2X10
-2 mol) was used in the same manner as in Example 1 to obtain PNC.

反応生成物は381.29(五塩化燐に対し91.4%
の収率)が得られ、ガスクロ分析により3量体69.0
%、4量体19.0%、5量7量体12.0%と環状物
100%であった。
The reaction product is 381.29 (91.4% based on phosphorus pentachloride)
A yield of 69.0% of the trimer was obtained by gas chromatography.
%, tetramer 19.0%, pentamer heptamer 12.0%, and cyclics 100%.

水洗終了後粗PNC380,19C五塩化燐に対し91
.1%の収率、水洗時の回収率99.7%)であった。
After washing with water, crude PNC380, 91 for 19C phosphorus pentachloride
.. The yield was 1%, and the recovery rate after washing with water was 99.7%).

この様にして得られた粗PNCを蒸留し精製PNC28
0,89(ガスクロ測定、3量体85.1%、4量体1
0.2%、5量体4.7%)を得た。
The crude PNC obtained in this way was distilled to produce purified PNC28.
0.89 (gas chromatography measurement, trimer 85.1%, tetramer 1
0.2%, pentamer 4.7%).

実施例 3 触媒としてステアリン酸コバルトCo(C17H35α
D)212.49 (2X 10−2mol )を用い
溶媒としてsym−テトラクロロエタンを用い実施例1
と同様の方法でPNCを得た。
Example 3 Cobalt stearate (C17H35α
D) Example 1 using sym-tetrachloroethane as solvent using 212.49 (2X 10-2 mol)
PNC was obtained in the same manner.

反応生成物は385.09(五塩化燐に対し92.3%
の収率)が得られ、ガスクロ分析により3量体70.2
%、4量体17.2%、5量7量体12.5%と環状物
100%であった。
The reaction product is 385.09 (92.3% based on phosphorus pentachloride)
A yield of 70.2% of the trimer was obtained by gas chromatography.
%, tetramer 17.2%, pentamer 12.5%, and cyclics 100%.

水洗終了後粗PNC383,0,!l’五塩化燐に対し
91.8%の収率、水洗時の回収率99.48%)であ
った。
After washing with water, the crude PNC383,0,! The yield was 91.8% based on l' phosphorus pentachloride, and the recovery rate after washing with water was 99.48%).

この様にして得られた粗PNCを蒸留し精製PNC25
5,7g(ガスクロ測定、3量体97.1%、4量体2
.9%)を得た。
The crude PNC thus obtained was distilled to produce purified PNC25.
5.7g (Gas chromatography measurement, trimer 97.1%, tetramer 2
.. 9%).

実施例1記載の方法で重合特性を調べた。Polymerization properties were investigated using the method described in Example 1.

その結果ゲル化、着色する事なく重合し22時間で変換
率25%となり、得られたポリマーは固有粘度1.70
di/9 。
As a result, polymerization occurred without gelation or coloring, and the conversion rate was 25% in 22 hours, and the obtained polymer had an intrinsic viscosity of 1.70.
di/9.

Mn=5.27X10’、Mw=2.64X10’ 、
Mw/Mn = 5.0とよい重合性を示した。
Mn=5.27X10', Mw=2.64X10',
It showed good polymerizability with Mw/Mn = 5.0.

比較例 3 触媒として塩化コバルト2.69 (2X 10−2m
ol )を用い実施例3に記載の方法でPNCを得た。
Comparative Example 3 Cobalt chloride 2.69 (2X 10-2m
PNC was obtained by the method described in Example 3 using PNC.ol).

反応生成物は3ss、o、9(五塩化燐に対し93.0
%の収率)が得られ、ガスクロ分析により3量体65.
8%、4量体19.3%、5量7量体14.9%と環状
物100%であった。
The reaction product is 3ss,o,9 (93.0 for phosphorus pentachloride
% yield) was obtained, and gas chromatography showed that the trimer was 65.
8%, tetramer 19.3%, pentamer 14.9%, and cyclic substances 100%.

水洗終了後粗PNC387,0,!9(五塩化燐に対し
92.8%の収率、水洗工程時の回収率99.74%)
であった。
After washing with water, the crude PNC387,0,! 9 (92.8% yield based on phosphorus pentachloride, 99.74% recovery rate during water washing process)
Met.

この様にして得られた粗PNCを減圧蒸留し精製PNC
250gが得られた(ガスクロ測定により3量体96.
0%、4量体4.0%)。
The crude PNC obtained in this way is distilled under reduced pressure to obtain purified PNC.
250 g was obtained (96.9 g of trimer was determined by gas chromatography).
0%, tetramer 4.0%).

実施例 4〜10 触媒としてステアリン酸マグネシウム (Mg(C,ヮH,、COO)9)、安息香酸マグネシ
ウム〔Mg(C6H5COO)2〕、L−アスパラギン
酸マグネシウム〔Mg(C4H6NO4)2〕、シュウ
酸ニッケル(N t C204)、コハク酸マグネシウ
ム〔Mg(C2H202)2〕、コハク酸マンガン(M
n (C2H202)2 ’l、クエン酸マグネシウム
をそれぞれ2×10−2m01用い、実施例1と同様の
方法でPNCを得た。
Examples 4 to 10 Magnesium stearate (Mg(C,ヮH,,COO)9), magnesium benzoate [Mg(C6H5COO)2], magnesium L-aspartate [Mg(C4H6NO4)2], oxalic acid as catalysts Nickel (N t C204), magnesium succinate [Mg(C2H202)2], manganese succinate (M
PNC was obtained in the same manner as in Example 1 using 2×10 −2 m01 of n (C2H202)2'l and magnesium citrate, respectively.

その結果を下記第1表に示す。The results are shown in Table 1 below.

Claims (1)

【特許請求の範囲】 1(A)塩素化に不活性な有機溶媒中、2価の金属の有
機酸塩の1種若しくは2種以上の触媒の存在下、五塩化
リンと塩化アンモニウムを反応させ、反応終了後に反応
溶媒を留去して実質的に環状ホスホニトリルクロライド
オリゴマーからなる反応生成物を得る第1工程及び CB) 上記反応生成物を脂肪族炭化水素及びエーテ
ル類から選ばれた溶媒の1種以上に溶解した溶液を約4
0〜100℃の温度で水と接触させ、その後水層と有機
層に分離し、有機層より3及び4量体を主成分とする重
合特性に優れた環状ホスホニトリルクロライドオリゴマ
ーを回収する第2工程 を結合したことを特徴とする環状ホスホニトリルフロラ
・イドオリゴマーの製造法。
[Claims] 1(A) Phosphorous pentachloride and ammonium chloride are reacted in an organic solvent inert to chlorination in the presence of one or more catalysts of organic acid salts of divalent metals. , a first step in which the reaction solvent is distilled off after the completion of the reaction to obtain a reaction product consisting essentially of a cyclic phosphonitrile chloride oligomer; Approximately 4 ml of solution containing one or more
The second step involves contacting with water at a temperature of 0 to 100°C, then separating into an aqueous layer and an organic layer, and recovering from the organic layer a cyclic phosphonitrile chloride oligomer having excellent polymerization properties and mainly composed of trimers and tetramers. A method for producing a cyclic phosphonitrile flora ide oligomer, characterized by combining steps.
JP15407380A 1980-06-11 1980-10-31 Method for producing cyclic phosphonitrile chloride oligomer Expired JPS5851883B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15407380A JPS5851883B2 (en) 1980-10-31 1980-10-31 Method for producing cyclic phosphonitrile chloride oligomer
US06/244,231 US4382914A (en) 1980-06-11 1981-03-16 Process for preparing cyclic phosphonitrilic chloride oligomers
DE3112192A DE3112192A1 (en) 1980-06-11 1981-03-27 METHOD FOR PRODUCING CYCLIC PHOSPHORNITRIL CHLORIDE OLIGOMERS
GB8110794A GB2080269B (en) 1980-06-11 1981-04-07 Process for preparing cyclic phosphonitrilic chloride oligomers
CA376,744A CA1126479A (en) 1980-06-11 1981-05-01 Process for preparing cyclic phosphonitrilic chloride oligomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15407380A JPS5851883B2 (en) 1980-10-31 1980-10-31 Method for producing cyclic phosphonitrile chloride oligomer

Publications (2)

Publication Number Publication Date
JPS5777012A JPS5777012A (en) 1982-05-14
JPS5851883B2 true JPS5851883B2 (en) 1983-11-18

Family

ID=15576295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15407380A Expired JPS5851883B2 (en) 1980-06-11 1980-10-31 Method for producing cyclic phosphonitrile chloride oligomer

Country Status (1)

Country Link
JP (1) JPS5851883B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603038A (en) * 1984-10-05 1986-07-29 Ethyl Corporation Phosphazene trimer purification
JPS6239534A (en) * 1985-08-14 1987-02-20 Shin Nisso Kako Co Ltd Production of phosphonitrile chloride oligomer
JP2009190699A (en) * 2008-02-18 2009-08-27 Kanto Auto Works Ltd Belt molding mounting structure

Also Published As

Publication number Publication date
JPS5777012A (en) 1982-05-14

Similar Documents

Publication Publication Date Title
US4382914A (en) Process for preparing cyclic phosphonitrilic chloride oligomers
AU724206B2 (en) New compounds having an element of group 13 linked to a mono- or di-anionic tridentate ligand, their preparation process and their use as polymerization catalysts
US4256715A (en) Process for preparing crystalline phosphonitrilic chloride oligomers
JPS5851883B2 (en) Method for producing cyclic phosphonitrile chloride oligomer
US3860693A (en) Production of cyclic phosphonitrilic chloride polymers
JPS5850924B2 (en) Method for producing cyclic phosphonitrile chloride oligomer
US3272776A (en) Preparation of poly
US4874897A (en) Bisphosphine production
KR20080037019A (en) Method of making aromatic dihydroxy diacid dihalides and precipitates resulting therefrom
US4522797A (en) Halophosphazene polymers
CA1224326A (en) Process for the preparation of phosphonitrile chloride oligomer
JP2898754B2 (en) Method for producing resorcinol
US4248845A (en) Process for preparing crystalline phosphonitrilic chloride oligomers
EP0383141B1 (en) Fluorine-containing alpha,omega-bifunctional compounds and process for their production
JPS5841889A (en) Production of condensed polyalkoxyphosphazene
JPS6220124B2 (en)
US4387208A (en) Phosphorous containing polymers as carriers for transition metals
CA1215211A (en) Borate chloride polymerization catalysts
US4242316A (en) Sulfamic acid as a catalyst for the polymerization of chlorocyclophosphazenes
JPH05155805A (en) Production of halogenated carboxylic acid
US4627967A (en) Phosphazene trimer purification
EP0813516B1 (en) Process for the preparation of stilbenedicarboxylate esters
JPS6242843B2 (en)
JPS6242844B2 (en)
JP2500539B2 (en) Method for producing polysilane