JPS6242843B2 - - Google Patents

Info

Publication number
JPS6242843B2
JPS6242843B2 JP13407578A JP13407578A JPS6242843B2 JP S6242843 B2 JPS6242843 B2 JP S6242843B2 JP 13407578 A JP13407578 A JP 13407578A JP 13407578 A JP13407578 A JP 13407578A JP S6242843 B2 JPS6242843 B2 JP S6242843B2
Authority
JP
Japan
Prior art keywords
phosphazene
polymer
reaction
oligomer
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13407578A
Other languages
Japanese (ja)
Other versions
JPS5560528A (en
Inventor
Tsukuru Kinoshita
Yuzuru Ogata
Masayoshi Suzue
Tetsuo Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP13407578A priority Critical patent/JPS5560528A/en
Publication of JPS5560528A publication Critical patent/JPS5560528A/en
Publication of JPS6242843B2 publication Critical patent/JPS6242843B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、密閉系で尿玠系化合物を觊媒ずしお
ホスフアれンオリゎマヌを150〜350℃に加熱しお
高分子量のホスフアれン重合䜓に倉換するこずを
特城ずするホスフアれン重合䜓の補造方法に関す
る。さらに詳しくは、密閉系で尿玠系化合物を觊
媒ずしお線状ホスフアれンオリゎマヌず環状ホス
フアれンオリゎマヌずの混合物を150〜350℃に加
熱しお高分子量化した実質的に単䞀のホスフアれ
ン重合䜓の補造方法に関する。 ホスフアれン重合䜓ポリゞクロロホスホニト
リルは、19䞖玀初頭すでにヘキサクロロサむク
ロトリホスホニトリル以䞋、トリマヌずいう
を匷熱するこずによりはじめお合成された。しか
しながらこれは有機溶剀に䞍溶性のゲル化物ずし
おしかえられず、たたきわめお加氎分解し易いた
めそのたたみすごされおいた。1960幎代䞭葉にい
た぀お゚むチ・アヌル・オヌルコツクH.R.
Allcockらによりトリマヌを真空封管䞭で泚意
深く加熱するこずにより、有機溶剀に可溶性のホ
スフアれン重合䜓がえられるこずが芋出され、さ
らに該重合䜓の分子骚栌を圢成するリン原子ず結
合しおいる塩玠原子を適圓な眮換基、たずえばフ
ルオロアルコキシ基、パヌフルオロアルコキシ
基、アリルオキシ基、アリヌルオキシ基、その他
のアルコキシ基などの求栞基で眮換するこずによ
り氎、酞たたは塩基などに察しおきわめお安定な
重合䜓がえられるようにな぀た。 これらのホスフアれン重合䜓は、その無機物ず
しおの性質のために耐熱性、耐炎性、耐油性など
にすぐれ、耐火性発泡ゎム噚具、プラスチツク甚
難燃剀ずしお奜適に䜿甚せられ、たた−80〜−90
℃においおもその可撓性を保持するずずもに耐油
性や耐䜜動流䜓性などのすぐれた性質を有するた
めに、−リング、ガスケツト、炭化氎玠系燃料
ホヌスなどずしお工業分野ぞの利甚研究が広く行
なわれおいる。たた前蚘重合䜓は生䜓組織ずの盞
互䜜甚がきわめお小さいこずが明らかにされ、血
管代甚物、人工臓噚などずしお生䜓医孊分野ぞの
利甚研究もさかんに行なわれおいる。 ホスフアれン重合䜓の利甚分野が広がるに䌎な
぀お、該ホスフアれン重合䜓の補造方法も皮々開
発されおはいるが、その倚くは前蚘のごずくトリ
マヌの熱開環重合によるものであり、ほずんどは
゚むチ・アヌル・オヌルコツクらの補造方法を改
良あるいは倉曎したものである。たずえばトリマ
ヌをオクタクロロサむクロテトラホスホニトリル
以䞋、テトラマヌずいう䞭で封管を甚いお200
〜300℃で熱開環重合する方法、トリマヌに五塩
化リンを加えお封管䞭で熱開環重合する方法、觊
媒ずしお酞や金属、第玚アンモニりム塩などを
甚いおトリマヌを有機溶媒䞭で熱開環重合する方
法、觊媒ずしお氎を甚いおトリマヌを熱開環重合
する方法、觊媒ずしおルむス酞を甚いおトリマヌ
を熱開環重合する方法、郚分的に塩玠原子がアル
コキシ基で眮換されたクロロアルコキシサむクロ
トリホスホニトリルを200〜250℃で熱開環重合す
る方法などが䞀般に行なわれおいる。 しかしながら、これらの埓来技術ではトリマヌ
のホスフアれン重合䜓ぞの転換率を数10重量
、以䞋同様以䞊にあげようずすれば、必ずゲ
ル化がおこるのでその転換率が数10に達した時
点で反応を停止し、未反応のトリマヌを昇華法た
たは再沈法などにより回収しなければならず、し
かもホスフアれン重合䜓ぞの熱開環重合が行なわ
れるのはトリマヌのみであり、テトラマヌ以䞊の
倧環状ホスフアれンオリゎマヌはそれ自䜓が熱開
環重合をしないのみならず、トリマヌの開環重合
を抑制する傟向が぀よく、そのため前蚘開環重合
に甚いるトリマヌは高玔床のものであるこずが必
然的に芁求される。 䞀方、ホスフアれン重合䜓の補造原料であるト
リマヌの合成は、通垞五塩化リンず塩化アンモニ
りムずを適圓な溶媒系で反応させお行なわれる
が、反応生成物ずしお目的ずするトリマヌのほか
に、線状ホスフアれンオリゎマヌ、およびテトラ
マヌ、デカクロロサむクロペンタホスホニトリル
以䞋、ペンタマヌずいうなどの倧環状ホスフ
アれンオリゎマヌが副生成物ずしお生成され、珟
行技術においおは到底原料から50皋床の収率で
しかトリマヌがえられないのが実状であり、した
が぀お補造コストが高くなるのはいなめない。 なお、ホスフアれンオリゎマヌの合成方法前
蚘トリマヌの合成方法はこの範ちゆうにあるず
しおは、リンず塩化アンモニりムずの反応による
もの、䞉塩化リンず塩玠ガスおよび塩化アンモニ
りムずの反応によるもの、五塩化リンずアンモニ
アずの反応によるもの、五塩化リンず塩化アンモ
ニりムずの反応によるものたたはこれらの反応を
金属などを觊媒に甚いお行なうものなど皮々の合
成法が提案されおいるが、その基本ずなる反応は
あくたでも五塩化リンず塩化アンモニりムずの反
応である。この反応メカニズムは線状ホスフアれ
ンオリゎマヌを経由しお環状ホスフアれンオリゎ
マヌが生成するものずいわれおおり、生成物ずし
おは線状ホスフアれンオリゎマヌず環状ホスフア
れンオリゎマヌずの混合物であり、それぞれの生
成比率はその反応条件により倉化せられる。 この反応の抂略を(1)匏に瀺す。
The present invention relates to a method for producing a phosphazene polymer, which is characterized by converting a phosphazene oligomer into a high molecular weight phosphazene polymer by heating the phosphazene oligomer to 150 to 350° C. in a closed system using a urea-based compound as a catalyst. More specifically, a substantially single phosphazene polymer is produced by heating a mixture of a linear phosphazene oligomer and a cyclic phosphazene oligomer to 150 to 350°C in a closed system using a urea-based compound as a catalyst to increase the molecular weight. Regarding the method. Phosphazene polymer (polydichlorophosphonitrile) was already developed into hexachlorocyclotriphosphonitrile (hereinafter referred to as trimer) in the early 19th century.
It was first synthesized by igniting. However, it can only be obtained as a gelled product that is insoluble in organic solvents and is extremely easily hydrolyzed, so it has been discarded as it is. In the mid-1960s, H.R.
found that by carefully heating the trimer in a vacuum-sealed tube, a phosphazene polymer soluble in organic solvents was obtained, which was further bonded to the phosphorus atoms forming the molecular backbone of the polymer. By substituting the chlorine atom with a suitable substituent, for example, a nucleophilic group such as a fluoroalkoxy group, perfluoroalkoxy group, allyloxy group, aryloxy group, or other alkoxy group, it becomes highly resistant to water, acids, or bases. It became possible to obtain stable polymers. These phosphazene polymers have excellent heat resistance, flame resistance, oil resistance, etc. due to their inorganic properties, and are suitable for use as flame retardants for fire-resistant foam rubber equipment and plastics.
Because it retains its flexibility even at ℃ and has excellent properties such as oil resistance and resistance to working fluids, it has been extensively researched for use in industrial fields as O-rings, gaskets, hydrocarbon fuel hoses, etc. It is. Furthermore, it has been revealed that the above-mentioned polymers have extremely low interaction with living tissues, and research is being actively conducted on their use in the biomedical field as blood vessel substitutes, artificial organs, and the like. As the field of application of phosphazene polymers expands, various methods for producing phosphazene polymers have been developed, but most of them are based on thermal ring-opening polymerization of trimers as mentioned above, and most of them are based on H. This is an improvement or modification of the manufacturing method of R. Allkottsuk et al. For example, the trimer is heated in a sealed tube in octachlorocyclotetraphosphonitrile (hereinafter referred to as "tetramer") for 200 min.
A method of thermal ring-opening polymerization at ~300℃, a method of adding phosphorus pentachloride to the trimer and thermal ring-opening polymerization in a sealed tube, a method of thermally ring-opening polymerization of the trimer in a sealed tube, and a method of thermally ring-opening polymerization of the trimer in an organic solvent using an acid, metal, quaternary ammonium salt, etc. as a catalyst. A method of thermal ring-opening polymerization of a trimer using water as a catalyst, a method of thermal ring-opening polymerization of a trimer using a Lewis acid as a catalyst, and a method of thermally ring-opening polymerizing a trimer using water as a catalyst. A commonly used method is thermal ring-opening polymerization of chloroalkoxycyclotriphosphonitrile at 200 to 250°C. However, with these conventional techniques, if you try to increase the conversion rate of trimer to phosphazene polymer above several tens of percent (weight %, the same applies hereinafter), gelation will inevitably occur, so the conversion rate will reach several tens of percent. At this point, the reaction must be stopped and the unreacted trimer must be recovered by sublimation or reprecipitation. Moreover, only the trimer undergoes thermal ring-opening polymerization to form a phosphazene polymer; The macrocyclic phosphazene oligomer itself not only does not undergo thermal ring-opening polymerization, but also has a strong tendency to suppress the ring-opening polymerization of the trimer. Therefore, it is necessary that the trimer used for the ring-opening polymerization be of high purity. required. On the other hand, the synthesis of trimer, which is the raw material for producing phosphazene polymers, is usually carried out by reacting phosphorus pentachloride and ammonium chloride in an appropriate solvent system. Phosphazene oligomers and macrocyclic phosphazene oligomers such as tetramer and decachlorocyclopentaphosphonitrile (hereinafter referred to as pentamer) are produced as by-products, and with current technology, it is impossible to produce trimers with a yield of only about 50% from raw materials. The reality is that they cannot be replaced, so it is inevitable that manufacturing costs will increase. In addition, methods for synthesizing phosphazene oligomers (methods for synthesizing the above-mentioned trimers fall within this category) include a reaction between phosphorus and ammonium chloride, a reaction between phosphorus trichloride and chlorine gas and ammonium chloride, Various synthetic methods have been proposed, including those based on the reaction of phosphorus pentachloride and ammonia, those based on the reaction between phosphorus pentachloride and ammonium chloride, and those using metals as catalysts for these reactions, but the basics are as follows. The reaction is simply a reaction between phosphorus pentachloride and ammonium chloride. The reaction mechanism is said to be that a cyclic phosphazene oligomer is produced via a linear phosphazene oligomer, and the product is a mixture of a linear phosphazene oligomer and a cyclic phosphazene oligomer, and the production ratio of each is can be changed depending on the reaction conditions. An outline of this reaction is shown in equation (1).

【衚】 〔〕は䞀般的にが≊≊20の範囲にある
ホスフアれンオリゎマヌであるが、反応条件によ
぀おはそれが10000以䞊である高分子量の線状ホ
スフアれンであるこずもある。〔〕はトリマヌ
が䞻成分であり、䞀般的にはテトラマヌたでが結
晶ずしおえられ、それ以䞊の環状ホスフアれンオ
リゎマヌは油状䜓ずしおえられる。ただし泚意
しお結晶化させるこずによりヘキサデシルクロロ
サむクロオクタホスホニトリルオクタマヌた
でが結晶化するこずが知られおいる。反応条件
により〔〕ず〔〕ずの生成比率は倉化する
が、䞀般的に五塩化リンの過剰の系で反応を行な
うずきは、〔〕の生成する割合が倚くなりしか
もその分子量が小さくなるのが普通である。しか
しながら、いかなる条件䞋においおも〔〕単独
の生成物たたは〔〕単独の生成物をうるこずは
困難である。むろんトリマヌのみをうるこずはき
わめお困難である。 なお、前蚘のごずく五塩化リンず塩化アンモニ
りムずを反応させたばあい、線状ホスフアれンオ
リゎマヌず環状ホスフアれンオリゎマヌが生成す
るのであるが、前者は反応生成物䞭から石油゚ヌ
テル䞍溶物ずしお、たた埌者は石油゚ヌテル可溶
物ずしおそれぞれ分別される。線状ホスフアれン
オリゎマヌは、Cl−PCl2N−oPCl4たたはCl−
PCl2N−oの構造匏を有する極性の匷い鎖状構
造を有するものであり、そのホスホニトリル単䜍
は〜50000個であ぀お、末端の五塩化リンたた
は塩化氎玠はきわめお䞍安定な状態で結合しおい
るものず考えられる。 かくのごずくホスフアれン重合䜓の補造原料で
あるトリマヌが高玔床で入手しえないこず、たた
そのホスフアれン重合䜓ぞの開環重合反応による
収率が小さいこずなどから、ホスフアれン重合䜓
は目䞋のずころ䜎コストでは補造されえないのが
実状である。 しかるに本発明者らは叙䞊の欠点を排陀し、ホ
スフアれン重合䜓を工業的有利に補造するため
に、補造原料に぀いお怜蚎した結果、開攟系にお
いおたず五塩化リンず塩化アンモニりムずを130
〜150℃に加熱しおホスフアれンオリゎマヌを合
成したのちさらに180〜200℃に昇枩するずきは反
応系がゲル化しおしたうが、䞀方密閉系においお
前蚘同様の反応を行なうずきは反応系のゲル化は
おこらず、しかも開攟系のばあいは生成した環状
ホスフアれンオリゎマヌの量が130〜150℃から
180〜200℃に昇枩する前埌においおほずんど倉化
しないが、密閉系のばあいは前蚘昇枩前より昇枩
埌においお環状ホスフアれンオリゎマヌの量が枛
少するこずを芋出した。この知芋に基づいおさら
に研究を重ねた結果、線状ホスフアれンオリゎマ
ヌの共存䞋においお環状ホスフアれンオリゎマヌ
は開環共重合し易くしかもこの効果は密閉系にお
いおいちぢるしいこずが明らかにな぀た。しかし
ながら、かかる反応方法においおは前蚘のごずく
環状ホスフアれンオリゎマヌの開環共重合はおこ
りうるが、䞀方線状ホスフアれンオリゎマヌはそ
のたた残存するのでえられるホスフアれン重合䜓
は物性䞊に問題があるこずがわかり、さらに研究
を重ねた結果、前蚘反応系に尿玠系化合物を少量
添加するこずにより線状ホスフアれンオリゎマヌ
をもホスフアれン重合䜓にきわめお効率よく倉換
しうるこずを芋出し、本発明を完成するにいた぀
た。 すなわち本発明は、密閉系で線状ホスフアれン
オリゎマヌが〜95重量の範囲で含有された線
状ホスフアれンオリゎマヌず環状ホスフアれンオ
リゎマヌずの混合物を、尿玠系化合物を觊媒ずし
お150〜350℃に加熱しお高分子量のホスフアれン
重合䜓に倉換するこずを特城ずするホスフアれン
重合䜓の補造方法に関する。 本発明に甚いる線状ホスフアれンオリゎマヌず
環状ホスフアれンオリゎマヌずの混合物ずしお
は、たずえば五塩化リンず塩化アンモニりムずか
ら副生される線状ホスフアれンオリゎマヌずトリ
マヌ、テトラマヌさらにそれ以䞊の倧環状ホスフ
アれンオリゎマヌずの混合物クロル䜓があげ
られる。なお本発明においおは前蚘クロル䜓のみ
ならず、その他のハロゲン䜓、たずえばブロム
䜓、たずえばブロム䜓五臭化リンたたは臭化氎
玠で安定化されたものであ぀おもよく、それら
の線状ホスフアれンオリゎマヌず環状ホスフアれ
ンオリゎマヌずの混合物が必芁に応じ適宜甚いら
れる。 本発明においおは觊媒ずしおはりレア、チオり
レア、ポリりレア、ポリチオりレアなどの尿玠系
化合物があげられ、それらの皮たたは皮以䞊
が適宜甚いられる。 ぀ぎに本発明の方法をホスフアれンオリゎマヌ
ずしおクロル䜓を甚いたばあいを䟋にあげお説明
する。 前蚘尿玠系化合物觊媒は、線状ホスフアれンオ
リゎマヌおよびホスフアれン重合䜓のホスホニト
リル単䜍のリン原子ず結合しおいる塩玠原子ずは
ほずんど反応するこずなく末端の五塩化リンたた
は塩化氎玠ず反応し、しかもゆるやかに反応する
ので、架橋反応などの副反応を䌎なうこずなく線
状ホスフアれンオリゎマヌの重合䜓ぞの倉換がス
ムヌズに行なわれる。 なおかかる反応においおは、前蚘尿玠系化合物
以倖のルむス塩基的に䜜甚する物質、たずえば
氎、亜硫酞ガス、アルコヌル、倚䟡アルコヌル、
アルコラヌト、゚ポキシド、ケトン類、苛性アル
カリ、金属氎酞化物、脂肪酞塩、ヒドラゞン類、
第玚アンモニりム塩、ヒドロキシド、アミン、
アンモニアなどを䜵甚しおもよい。たた゚ヌテ
ル、ベンれン、トル゚ン、キシレンたたはオレフ
むンなどは溶媒ずしお甚いうるずずもに、觊媒ず
しおも甚いるこずができる。 たた前蚘觊媒の䜿甚量ずしおは、党ホスフアれ
ンオリゎマヌの0.01〜10、奜たしくは0.1〜
皋床が適宜甚いられる。前蚘觊媒をホスフアれ
ンオリゎマヌの0.01より少ない量で甚いるずき
は反応速床がきわめお遅いので実甚的でなく、た
た10より倚い量で甚いるずきは本反応に察しお
䜕らの支障もきたすものではないが、えられるホ
スフアれン重合䜓のあず凊理操䜜䞊に支障をきた
すので奜たしくない。 本発明におけるホスフアれンオリゎマヌの重合
䜓ぞの高分子量化のメカニズムは必ずしも明確で
はないが、線状ホスフアれンオリゎマヌたたは環
状ホスフアれンオリゎマヌは、それぞれ環状ホス
フアれンオリゎマヌず線状ホスフアれンオリゎマ
ヌずの混合割合を倉化させたばあいに生成したホ
スフアれン重合䜓のゲルバヌミ゚ヌシペンクロマ
トグラフむヌ分析におけるチダヌトパタヌンは䞀
぀の山を瀺すのみであるこずから、線状ホスフア
れンオリゎマヌず環状ホスフアれンオリゎマヌず
の間に䜕らかの盞互䜜甚が存圚し、それにより重
合反応が共重合的に進行する結果実質的に生成し
た重合䜓は単䞀の共重合䜓状の重合䜓ずな぀おい
るものず考えられる。これに぀いお(2)匏に暡匏的
に瀺した。
[Table] [A] is generally a phosphazene oligomer in which n is in the range of 2≩n≩20, but depending on the reaction conditions, it may be a high molecular weight linear phosphazene with n being 10,000 or more. be. The main component of [B] is a trimer, and generally up to a tetramer is obtained as a crystal, and larger cyclic phosphazene oligomers are obtained as an oil. (However, it is known that even hexadecylchlorocyclooctaphosphonitrile (octamer) can be crystallized by careful crystallization.) The production ratio of [A] and [B] changes depending on the reaction conditions, but generally when the reaction is carried out in a system with an excess of phosphorus pentachloride, the production ratio of [A] increases and its molecular weight increases. It is normal for it to be small. However, it is difficult to obtain the product [A] alone or the product [B] alone under any conditions. Of course, it is extremely difficult to obtain only the trimmer. As mentioned above, when phosphorus pentachloride and ammonium chloride are reacted, linear phosphazene oligomers and cyclic phosphazene oligomers are produced, but the former is extracted from the reaction product as petroleum ether insoluble matter, and The latter are separated as petroleum ether solubles. Linear phosphazene oligomers are Cl−( PCl2N ) −o PCl4 or Cl−(
It has a highly polar chain structure with the structural formula PCl2N ) -oH , and its phosphonitrile units are 2 to 50,000, and the terminal phosphorus pentachloride or hydrogen chloride is extremely unstable. It is thought that they are connected in a state. As described above, the production of phosphazene polymers is currently in low demand due to the fact that the trimer, which is the raw material for producing phosphazene polymers, is not available in high purity and the yield of the ring-opening polymerization reaction to form phosphazene polymers is low. The reality is that it cannot be manufactured at low cost. However, in order to eliminate the above-mentioned drawbacks and industrially advantageously produce a phosphazene polymer, the present inventors investigated the production raw materials and found that phosphorus pentachloride and ammonium chloride were first mixed at 130% in an open system.
When heating to ~150°C to synthesize phosphazene oligomers and then further raising the temperature to 180~200°C, the reaction system gels; however, when performing the same reaction as above in a closed system, the reaction system gels. However, in the case of an open system, the amount of cyclic phosphazene oligomers produced is small from 130 to 150℃.
It has been found that although there is almost no change before and after raising the temperature to 180 to 200°C, in the case of a closed system, the amount of cyclic phosphazene oligomers decreases after raising the temperature than before raising the temperature. Further research based on this knowledge revealed that ring-opening copolymerization of cyclic phosphazene oligomers is likely to occur in the coexistence of linear phosphazene oligomers, and that this effect is more pronounced in closed systems. However, in such a reaction method, although ring-opening copolymerization of cyclic phosphazene oligomers can occur as described above, on the other hand, linear phosphazene oligomers remain as they are, so the resulting phosphazene polymer has been found to have problems in terms of physical properties. As a result of further research, they discovered that by adding a small amount of a urea-based compound to the reaction system, linear phosphazene oligomers can be converted into phosphazene polymers extremely efficiently, leading to the completion of the present invention. . That is, the present invention involves heating a mixture of a linear phosphazene oligomer and a cyclic phosphazene oligomer containing a linear phosphazene oligomer in a range of 5 to 95% by weight in a closed system at 150 to 350°C using a urea-based compound as a catalyst. The present invention relates to a method for producing a phosphazene polymer, which is characterized by converting the phosphazene polymer into a high molecular weight phosphazene polymer by heating. The mixture of linear phosphazene oligomers and cyclic phosphazene oligomers used in the present invention includes, for example, linear phosphazene oligomers, trimers, tetramers, and larger macrocyclic phosphazenes produced from phosphorus pentachloride and ammonium chloride. Examples include mixtures with oligomers (chlor compounds). In addition, in the present invention, not only the above-mentioned chloride but also other halogens, such as bromine (stabilized with phosphorus pentabromide or hydrogen bromide), may be used, and their linear A mixture of a phosphazene oligomer and a cyclic phosphazene oligomer may be used as appropriate. In the present invention, examples of the catalyst include urea-based compounds such as urea, thiourea, polyurea, and polythiourea, and one or more of these may be used as appropriate. Next, the method of the present invention will be explained using an example in which a chloride is used as a phosphazene oligomer. The urea-based compound catalyst reacts with the terminal phosphorus pentachloride or hydrogen chloride without almost reacting with the chlorine atom bonded to the phosphorus atom of the phosphonitrile unit of the linear phosphazene oligomer and phosphazene polymer, and Since the reaction is gradual, linear phosphazene oligomers can be smoothly converted into polymers without side reactions such as crosslinking reactions. In addition, in such a reaction, a substance that acts like a Lewis base other than the above-mentioned urea-based compound, such as water, sulfur dioxide gas, alcohol, polyhydric alcohol,
Alcoholates, epoxides, ketones, caustic alkalis, metal hydroxides, fatty acid salts, hydrazines,
Quaternary ammonium salt, hydroxide, amine,
Ammonia etc. may be used in combination. Further, ether, benzene, toluene, xylene, olefin, etc. can be used as a solvent and can also be used as a catalyst. The amount of the catalyst used is 0.01 to 10%, preferably 0.1 to 5% of the total phosphazene oligomer.
% is used as appropriate. When the catalyst is used in an amount less than 0.01% of the phosphazene oligomer, the reaction rate is so slow that it is not practical, and when it is used in an amount more than 10%, it does not pose any hindrance to the reaction. However, this is not preferable since it causes trouble in the post-processing operations of the obtained phosphazene polymer. Although the mechanism of increasing the molecular weight of the phosphazene oligomer into a polymer in the present invention is not necessarily clear, the linear phosphazene oligomer or the cyclic phosphazene oligomer has a mixing ratio of the cyclic phosphazene oligomer and the linear phosphazene oligomer, respectively. The chart pattern in the gel vermi-ation chromatography analysis of the phosphazene polymer produced when the It is considered that some kind of interaction exists, and as a result, the polymerization reaction progresses in a copolymerization manner, and the resulting polymer is essentially a single copolymer-like polymer. This is schematically shown in equation (2).

【衚】 ↓
ホスフアれン重合䜓
2≩n≩50000 (2)
l〓mn〓m
すなわち、重合の開始は尿玠系化合物による線
状ホスフアれンオリゎマヌのベタむン化(2)匏に
おける〔〕によるものず考えられ、このベタ
むン〔〕が頭䞀尟型の重合によりたたは出発物
質の線状ホスフアれンオリゎマヌずの反応により
高分子量化される䞀方、環状ホスフアれンオリゎ
マヌを開環的に共重合しおゆくものず考えられ
る。 反応枩床ずしおは前蚘のごずく密閉系で150〜
350℃、奜たしくは200〜300℃が採甚される。150
℃より䜎い枩床で反応するずきは反応がおこり難
く、たた350℃より高い枩床で反応するずきは生
成した重合䜓の解重合およびゲル化反応がおこる
ので、いずれも奜たしくない。たた反応時間は通
åžž0.5〜300時間皋床が採甚され、均䞀なホスフア
れン重合䜓がえられる。 本発明に甚いる線状ホスフアれンオリゎマヌず
環状ホスフアれンオリゎマヌずの混合物ずしお
は、線状ホスフアれンオリゎマヌが〜95、奜
たしくは10〜90の範囲で含有された線状ホスフ
アれンオリゎマヌず環状ホスフアれンオリゎマヌ
ずの混合物が有効に甚いられる。 線状ホスフアれンオリゎマヌの量が党ホスフア
れンオリゎマヌのより少ないばあいは重合速
床が小さくなり実甚的でなく、たた95より倚い
ばあいは環状ホスフアれンオリゎマヌを効率よく
開環重合させるずいう本発明の目的からみお奜た
しくない。 本発明を実斜するにあた぀おは、前蚘のごずく
反応系を密閉系ずし、か぀よく也燥された系であ
れば、真空䞭、空気䞭たたは䞍掻性ガス䞭たたは
溶媒系たをは非溶媒系をずわず実斜するこずがで
きる。これも本発明の特城の䞀぀である。本発明
においお密閉系が有効であるのは重合反応䞭に生
成した塩化氎玠により重合䜓のゲル化が抑制され
るためず考えられる。 本発明の方法は、溶媒系たたは非溶媒系の䜕れ
によ぀おも実斜可胜であるが、溶媒系で反応を行
なうばあいには反応溶媒ずしおベンれン、トル゚
ン、キシレン、クロルベンれン、ゞクロルベンれ
ンなどが甚いられる。 ぀ぎに実斜䟋をあげお本発明を具䜓的に説明す
るが、本発明はこれらの実斜䟋のみに限定される
ものではない。 実斜䟋  五塩化リン208.3gモル、塩化アンモニり
ム48.2g0.9モルおよび−ゞクロルベンれン
163gを500cc四ツ口フラスコに仕蟌み、撹拌しな
がら145℃で12時間反応を行な぀た。この間塩化
氎玠は系倖ぞ留出した。反応終了埌未反応の塩化
アンモニりムを去埮量し、液をロヌタリ
ヌ゚バポレヌタヌを甚いお濃瞮した。぀いでこれ
を石油゚ヌテルで抜出を行ない、石油゚ヌテル䞍
溶分線状ホスフアれンオリゎマヌず石油゚ヌ
テル可溶分環状ホスフアれンオリゎマヌに分
別した。前者は67.2gであり、たた埌者は47.4gで
あ぀た。環状ホスフアれンオリゎマヌの組成は
GLC分析の結果、トリマヌ3PNC64.9、テ
トラマヌ4PNC17.9およびペンタマヌ
5PNC以䞊の環状ホスフアれンオリゎマヌ17.2
であ぀た。たた線状ホスフアれンオリゎマヌの
分子量はVPO法により枬定したずころ、1100で
あ぀た。これはCl−PNCl2−8PCL4の構造を有す
るものず考えられる。 前蚘線状ホスフアれンオリゎマヌ6.7gず環状ホ
スフアれンオリゎマヌ4.7gずを玄30ccのパむレツ
クスガラス補重合管に仕蟌み、粉末状りレア
200mgを加え、系内をチツ玠ガス眮換したのち真
空凊理10-2トヌルしお封管した。぀いでこの
重合管をオヌブン䞭255℃で時間攟眮した。こ
の間反応系は均䞀で粘皠な固䜓状を呈するように
な぀た。これをオヌブンよりずり出し宀枩で冷华
したのち開封し、−ゞクロルベンれンにより内
容物をずり出した。−ゞクロルベンれン䞍溶物
を去したのち液を倚量の石油゚ヌテル䞭に泚
ぎ蟌んで生成した重合䜓を析出させ、癜色ゎム状
重合䜓9.3g出発物質の重合䜓ぞの転換率は81.6
であるをえた。たた石油゚ヌテル局を濃瞮し
お油状物0.5gをえた。この油状物はGLC分析の結
果、3PNC0.1g、4PNC0.25g、5PNC以䞊0.15gで
あ぀た。この油状物がすべお出発物質の環状ホス
フアれンオリゎマヌに由来するものずすれば、そ
れぞれの残存率は3PNC3.3、4PNC29.8、
5PNC以䞊18.5ずなる。なお、−ゞクロルベ
ンれン䞍溶物のうちホスフアれン重合䜓に由来す
るゲル化物は0.2gであ぀た。 えられた重合䜓は湿気に察しお敏感なため、埓
来公知の方法により−トリフルオロ゚
トキシ化合物に倉換させた泚のちGPC
ゲル過クロマトグラフむヌ泚法により
分子量を枬定したが、平均分子量は5335000で
あ぀た。
[Table] ↓
phosphazene polymer
2≩n≩50000 (2)
l〓mn〓m
That is, the initiation of polymerization is thought to be due to the betaine conversion ([C] in formula (2)) of the linear phosphazene oligomer with a urea-based compound, and this betaine [C] is caused by the head-to-tail polymerization or the starting material. It is thought that the molecular weight is increased by the reaction with the linear phosphazene oligomer, while the cyclic phosphazene oligomer is copolymerized in a ring-opening manner. The reaction temperature is 150~ in a closed system as mentioned above.
A temperature of 350°C, preferably 200-300°C is employed. 150
When the reaction is carried out at a temperature lower than 350°C, the reaction is difficult to occur, and when the reaction is carried out at a temperature higher than 350°C, depolymerization and gelation reactions of the produced polymer occur, so both are not preferred. Further, the reaction time is usually about 0.5 to 300 hours, and a uniform phosphazene polymer can be obtained. The mixture of a linear phosphazene oligomer and a cyclic phosphazene oligomer used in the present invention includes a linear phosphazene oligomer containing a linear phosphazene oligomer in an amount of 5 to 95%, preferably 10 to 90%, and a cyclic phosphazene oligomer. Mixtures with phosphazene oligomers are effectively used. If the amount of linear phosphazene oligomers is less than 5% of the total phosphazene oligomers, the polymerization rate will be low and it is not practical, and if it is more than 95%, the cyclic phosphazene oligomers will be efficiently ring-opening polymerized. This is not preferable from the viewpoint of the purpose of the present invention. When carrying out the present invention, as long as the reaction system is a closed system as described above and is well dried, the reaction system can be carried out in vacuum, air, inert gas, or in a solvent or non-solvent system. It can be carried out regardless of the situation. This is also one of the features of the present invention. The reason why a closed system is effective in the present invention is considered to be that gelation of the polymer is suppressed by hydrogen chloride generated during the polymerization reaction. The method of the present invention can be carried out in either a solvent system or a non-solvent system, but when the reaction is carried out in a solvent system, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, etc. can be used as the reaction solvent. is used. EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Example 1 Phosphorus pentachloride 208.3g (1 mol), ammonium chloride 48.2g (0.9 mol) and o-dichlorobenzene
163 g was charged into a 500 cc four-necked flask, and the reaction was carried out at 145° C. for 12 hours with stirring. During this time, hydrogen chloride was distilled out of the system. After the reaction was completed, unreacted ammonium chloride was removed (trace amount), and the liquid was concentrated using a rotary evaporator. This was then extracted with petroleum ether and separated into a petroleum ether insoluble fraction (linear phosphazene oligomer) and a petroleum ether soluble fraction (cyclic phosphazene oligomer). The former was 67.2g, and the latter was 47.4g. The composition of the cyclic phosphazene oligomer is
As a result of GLC analysis, cyclic phosphazene oligomers with 64.9% trimer (3PNC), 17.9% tetramer (4PNC), and 17.2% pentamer (5PNC) were found.
It was %. Furthermore, the molecular weight of the linear phosphazene oligomer was determined to be 1100 by the VPO method. This is thought to have the structure of Cl-( PNCl2 ) -8PCL4 . 6.7 g of the linear phosphazene oligomer and 4.7 g of the cyclic phosphazene oligomer were charged into an approximately 30 cc Pyrex glass polymerization tube, and powdered urea was added.
After adding 200 mg of nitrogen and purging the system with nitrogen gas, the tube was vacuum-treated (10 -2 torr) and sealed. This polymerization tube was then left in an oven at 255°C for 5 hours. During this time, the reaction system became homogeneous and viscous solid. This was taken out from the oven, cooled to room temperature, opened, and the contents were taken out using o-dichlorobenzene. After removing the o-dichlorobenzene insoluble matter, the liquid was poured into a large amount of petroleum ether to precipitate the resulting polymer, yielding 9.3 g of a white rubbery polymer (the conversion rate of the starting material to the polymer was 81.6).
%) was obtained. In addition, the petroleum ether layer was concentrated to obtain 0.5 g of an oily substance. As a result of GLC analysis, this oily substance contained 0.1 g of 3PNC, 0.25 g of 4PNC, and 0.15 g of 5PNC or more. If this oily substance is all derived from the cyclic phosphazene oligomer as the starting material, the respective residual rates are 3.3% for 3PNC, 29.8% for 4PNC,
18.5% for 5PNC or more. Incidentally, among the o-dichlorobenzene insoluble matter, 0.2 g of gelled material derived from the phosphazene polymer was found. Since the obtained polymer is sensitive to moisture, it was converted into a 2,2,2-trifluoroethoxy compound (Note 1) using a conventionally known method, and then subjected to GPC.
The molecular weight was measured by the gel permeation chromatography (Note 2) method, and the average molecular weight was 5,335,000.

【衚】 実斜䟋  実斜䟋でえた線状ホスフアれンオリゎマヌ
3.4g、環状ホスフアれンオリゎマヌ2.4gおよび也
燥か぀粟補した−ゞクロルベンれン8.0gを玄
30ccのパむレツクスガラス補重合管に仕蟌み、粉
末状りレア100mgを加え、系内をチツ玠ガス眮換
したのち真空凊理10-1トヌルしお封管した。
぀いでこの重合管をオヌブン䞭255℃で時間攟
眮したのちずり出し、宀枩で冷华しお開封し、
−ゞクロルベンれンにより内容物をずり出した。
−ゞクロルベンれン䞍溶物を去したのち液
を倚量の石油゚ヌテル䞭に泚ぎ蟌んで生成した重
合䜓を析出させ、淡黄色ゎム状重合䜓4g出発
物質の重合䜓ぞの転換率は69であるをえた。
たた石油゚ヌテル局を濃瞮しお油状物0.1gをえ
た。この油状物はGLC分析の結果、
3PNC0.01g、4PNC0.03g、5PNC以䞊0.05g、その
他0.01gであ぀た。この油状物がすべお出発物質
の環状ホスフアれンオリゎマヌに由来するものず
すれば、それぞれの残存率は3PNC0.6、4PNC7
、5PNC12.1ずなる。なお−ゞクロルベン
れン䞍溶物のうちホスフアれン重合䜓のゲル化物
はほずんど認められなか぀た。 実斜䟋ず同様にしお、えられた重合䜓の分子
量を枬定したが平均分子量838000であ぀た。
このばあいは実斜䟋のばあいに比べお分子量が
倧きく、−ゞクロルベンれンの溶媒効果があら
われおいるものず考えられる。 実斜䟋  実斜䟋でえた線状ホスフアれンオリゎマヌ
6g、トリマヌ4gおよび粉末状りレア100mgを30cc
のパむレツクスガラス補重合管に仕蟌み、系内を
チツ玠ガス眮換したのち真空凊理10-2トヌル
しお封管した。぀いでこの重合管をオヌブン䞭
255℃で時間攟眮した。この間反応系は均䞀な
高粘性流䜓状を呈するようにな぀た。これをオヌ
ブンよりずり出し宀枩で冷华したのち開封し、モ
ノクロルベンれンにより内容物をずり出した。モ
ノクロルベンれン䞍溶物を去したのち液を倚
量の石油゚ヌテル䞭に泚ぎ蟌んで生成した重合䜓
を析出させ、癜色ゎム状重合䜓9.3g出発物質の
重合䜓ぞの転換率は93であるをえた。たた石
油゚ヌテル局を濃瞮したが残枣はえられなか぀
た。これはトリマヌがほずんど定量的に重合䜓に
転換したこずによるものず考えられる。たたモノ
クロルベンれン䞍溶物のうちホスフアれン重合䜓
に由来するゲル化物は0.2gであ぀た。えられた重
合䜓の平均分子量は1230000であ぀た。 実斜䟋  実斜䟋でえた線状ホスフアれンオリゎマヌ
1g、トリマヌ9gおよび粉末状りレア100mgを30cc
のパむレツクスガラス補重合管に仕蟌み、系内を
チツ玠ガス眮換したのち真空凊理10-2トヌル
しお封管した。぀いでこの重合管をオヌブン䞭
255℃で15時間攟眮した。この反応系は均䞀な高
粘性流䜓状を呈するようにな぀た。これをオヌブ
ンよりずり出し宀枩で冷华したのち開封し、モノ
クロルベンれンにより内容物をずり出した。モノ
クロルベンれン䞍溶物を去したのち液を倚量
の石油゚ヌテル䞭に泚ぎ蟌んで生成した重合䜓を
析出させ、淡黄色ゎム状重合䜓8g出発物質の
重合䜓ぞの転換率は80であるをえた。石油゚
ヌテル可溶物は0.5gであり、ほずんどがトリマヌ
であ぀た。たたモノクロルベンれン䞍溶物䞭のホ
スフアれン重合䜓に由来するゲル化物は0.5gであ
぀た。トリマヌの重合䜓ぞの転換率は94.4た
だし、ゲル䜓をも含むであり、出発物質のゲル
化率はであ぀た。えられた重合䜓の平均分子
量は1005000であ぀た。 実斜䟋  実斜䟋でえた線状ホスフアれンオリゎマヌ
8g、5PNC以䞊の環状ホスフアれンオリゎマヌ2g
および粉末状りレア200mgを30ccのパむレツクス
ガラス補重合管に仕蟌み封管した。぀いでこの重
合管をオヌブン䞭225℃で20時間攟眮した。この
間反応系は淡か぀色の高粘性流䜓状を呈した。こ
れをオヌブンよりずり出し宀枩で冷华したのち開
封し、モノクロルベンれンにより内容物をずり出
した。モノクロルベンれン䞍溶物を去したのち
液を倚量の石油゚ヌテル䞭に泚ぎ蟌んで生成し
た重合䜓を析出させ、淡か぀色ゎム状重合䜓7.5g
出発物質の重合䜓ぞの倉換率は75であるを
えた。石油゚ヌテル局を濃瞮しお環状ホスフアれ
ンオリゎマヌ0.2gを回収した。モノクロルベンれ
ン䞍溶物䞭のホスフアれン重合䜓に由来するゲル
化率は0.3gであ぀た。出発物質のゲル化率は
であり、たた環状ホスフアれンオリゎマヌのホス
フアれン重合䜓ぞの転化率は90であ぀た。えら
れた重合䜓の平均分子量は538000であ぀た。
[Table] Example 2 Linear phosphazene oligomer obtained in Example 1
3.4 g, 2.4 g of cyclic phosphazene oligomer and 8.0 g of dried and purified o-dichlorobenzene at approx.
The mixture was placed in a 30 cc polymerization tube made of Pyrex glass, 100 mg of powdered urea was added, and the inside of the system was replaced with nitrogen gas, followed by vacuum treatment (10 -1 torr) and the tube sealed.
Next, this polymerization tube was left in an oven at 255°C for 5 hours, then taken out, cooled to room temperature, opened, and o
- The contents were emptied with dichlorobenzene.
After removing the o-dichlorobenzene insoluble matter, the liquid was poured into a large amount of petroleum ether to precipitate the resulting polymer, yielding 4 g of pale yellow rubbery polymer (conversion rate of starting material to polymer was 69%). I got some).
In addition, the petroleum ether layer was concentrated to obtain 0.1 g of an oily substance. As a result of GLC analysis, this oily substance was found to be
3PNC 0.01g, 4PNC 0.03g, 5PNC or more 0.05g, and others 0.01g. If this oily substance is all derived from the cyclic phosphazene oligomer as the starting material, the residual rate of each is 0.6% for 3PNC and 0.6% for 4PNC7.
%, 5PNC12.1%. Of the o-dichlorobenzene insoluble matter, hardly any gelled product of the phosphazene polymer was observed. The molecular weight of the obtained polymer was measured in the same manner as in Example 1, and the average molecular weight was 838,000.
In this case, the molecular weight is larger than that in Example 1, and it is thought that the solvent effect of o-dichlorobenzene appears. Example 3 Linear phosphazene oligomer obtained in Example 1
30cc of 6g, 4g trimmer and 100mg powdered urea
Pyrex glass polymerization tube, and after replacing the system with nitrogen gas, vacuum treatment (10 -2 torr)
and sealed the tube. Next, put this polymerized tube in an oven.
It was left at 255°C for 2 hours. During this period, the reaction system became homogeneous and highly viscous fluid. This was taken out from the oven, cooled to room temperature, opened, and the contents were taken out using monochlorobenzene. After removing the monochlorobenzene insoluble matter, the liquid was poured into a large amount of petroleum ether to precipitate the resulting polymer, yielding 9.3 g of a white rubbery polymer (the conversion rate of the starting material to the polymer was 93%). I got it. The petroleum ether layer was also concentrated, but no residue was obtained. This is considered to be due to almost quantitative conversion of trimer into polymer. Among the monochlorobenzene insoluble materials, 0.2 g of gelled material derived from the phosphazene polymer was found. The average molecular weight of the obtained polymer was 1,230,000. Example 4 Linear phosphazene oligomer obtained in Example 1
30cc of 1g, 9g trimmer and 100mg powdered urea
Pyrex glass polymerization tube, and after replacing the system with nitrogen gas, vacuum treatment (10 -2 torr)
and sealed the tube. Next, put this polymerized tube in an oven.
It was left at 255°C for 15 hours. This reaction system became homogeneous and highly viscous fluid. This was taken out from the oven, cooled to room temperature, opened, and the contents were taken out using monochlorobenzene. After removing the monochlorobenzene insoluble matter, the liquid was poured into a large amount of petroleum ether to precipitate the produced polymer, and 8 g of a pale yellow rubbery polymer (the conversion rate of the starting material to the polymer was 80%) was obtained. I got it. The amount of petroleum ether soluble material was 0.5 g, and most of it was trimer. Furthermore, the amount of gelled material derived from the phosphazene polymer in the monochlorobenzene insoluble matter was 0.5 g. The conversion rate of trimer to polymer was 94.4% (including gel), and the gelation rate of the starting material was 5%. The average molecular weight of the obtained polymer was 1,005,000. Example 5 Linear phosphazene oligomer obtained in Example 1
8g, 2g cyclic phosphazene oligomer with 5PNC or more
Then, 200 mg of powdered urea was charged into a 30 cc Pyrex glass polymerization tube and the tube was sealed. This polymerization tube was then left in an oven at 225°C for 20 hours. During this time, the reaction system appeared as a pale and highly viscous fluid. This was taken out from the oven, cooled to room temperature, opened, and the contents were taken out using monochlorobenzene. After removing the monochlorobenzene insoluble matter, the liquid was poured into a large amount of petroleum ether to precipitate the resulting polymer, yielding 7.5 g of a light and colored rubbery polymer.
(conversion of starting material to polymer is 75%). The petroleum ether layer was concentrated to recover 0.2 g of cyclic phosphazene oligomer. The gelation rate derived from the phosphazene polymer in the monochlorobenzene insoluble matter was 0.3 g. Gelation rate of starting material is 3%
The conversion rate of the cyclic phosphazene oligomer to the phosphazene polymer was 90%. The average molecular weight of the obtained polymer was 538,000.

Claims (1)

【特蚱請求の範囲】  密閉系で、線状ホスフアれンオリゎマヌが
〜95重量の範囲で含有された線状ホスフアれン
オリゎマヌず環状ホスフアれンオリゎマヌずの混
合物を、尿玠系化合物を觊媒ずしお-150〜350℃
に加熱しお高分子量のホスフアれン重合䜓に倉換
するこずを特城ずするホスフアれン重合䜓の補造
方法。  尿玠系化合物がりレア、チオりレア、ポリり
レアたたはポリチオりレアである特蚱請求の範囲
第項蚘茉のホスフアれン重合䜓の補造方法。  觊媒ずしお皮たたは皮以䞊の尿玠系化合
物を甚いる特蚱請求の範囲第項蚘茉のホスフア
れン重合䜓の補造方法。
[Claims] 1. In a closed system, linear phosphazene oligomers are
A mixture of linear phosphazene oligomers and cyclic phosphazene oligomers containing up to 95% by weight was heated at -150 to 350°C using a urea compound as a catalyst.
1. A method for producing a phosphazene polymer, which comprises heating to convert the phosphazene polymer into a high molecular weight phosphazene polymer. 2. The method for producing a phosphazene polymer according to claim 1, wherein the urea-based compound is urea, thiourea, polyurea or polythiourea. 3. The method for producing a phosphazene polymer according to claim 1, which uses one or more urea compounds as a catalyst.
JP13407578A 1978-10-30 1978-10-30 Preparation of phosphazene polymer Granted JPS5560528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13407578A JPS5560528A (en) 1978-10-30 1978-10-30 Preparation of phosphazene polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13407578A JPS5560528A (en) 1978-10-30 1978-10-30 Preparation of phosphazene polymer

Publications (2)

Publication Number Publication Date
JPS5560528A JPS5560528A (en) 1980-05-07
JPS6242843B2 true JPS6242843B2 (en) 1987-09-10

Family

ID=15119798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13407578A Granted JPS5560528A (en) 1978-10-30 1978-10-30 Preparation of phosphazene polymer

Country Status (1)

Country Link
JP (1) JPS5560528A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925220Y2 (en) * 1978-10-09 1984-07-25 ワむケむケむ株匏䌚瀟 Slide fastener

Also Published As

Publication number Publication date
JPS5560528A (en) 1980-05-07

Similar Documents

Publication Publication Date Title
US4946938A (en) A process for the catalytic synthesis of polyphosphazenes
GB2179951A (en) Preparation of poly (arylene ether ketones)
JPS63309526A (en) Novel polysilazane and its production
US3443913A (en) Process for preparing high molecular weight linear phosphonitrilic polymers
US3344161A (en) Polymeric silthian compounds
US4226840A (en) Process for the polymerization of cyclic polyhalophosphazenes using a catalyst composition of boron trihalide and oxygenated phosphorus compounds
US4374815A (en) Phosphonitrilic chloride polymers
EP0241306B1 (en) Preparation of aromatic polyketones
CA1312412C (en) Process for the production of linear polyphosphazenes
JPS6242843B2 (en)
US4129529A (en) Process for the production of phosphazene polymers
US4522797A (en) Halophosphazene polymers
US3025326A (en) Phosphinoborine compounds and their preparation
JPS6242844B2 (en)
JPS5850924B2 (en) Method for producing cyclic phosphonitrile chloride oligomer
US4551317A (en) Phosphonitrilic halide polymers
US4242316A (en) Sulfamic acid as a catalyst for the polymerization of chlorocyclophosphazenes
US3211753A (en) Preparation of diphenylphosphinous azide
US4522796A (en) Phosphonitrilic chloride polymers
US4522795A (en) Phosphonitrilic chloride polymers
KR910004085B1 (en) Poly (1-oxy-3-lactam vinylenes)
US3271460A (en) Method of preparing organophosphorus compounds
JPS6242842B2 (en)
US3297751A (en) Process for the production of cyclic phosphonitriles
US3392214A (en) Cyclotriphosphazatriene compounds and process for making same