JPS5851675A - Agc circuit - Google Patents

Agc circuit

Info

Publication number
JPS5851675A
JPS5851675A JP14958481A JP14958481A JPS5851675A JP S5851675 A JPS5851675 A JP S5851675A JP 14958481 A JP14958481 A JP 14958481A JP 14958481 A JP14958481 A JP 14958481A JP S5851675 A JPS5851675 A JP S5851675A
Authority
JP
Japan
Prior art keywords
signal
agc
synchronizing
capacitor
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14958481A
Other languages
Japanese (ja)
Other versions
JPS647544B2 (en
Inventor
Kouun Kouno
河野 光雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14958481A priority Critical patent/JPS5851675A/en
Publication of JPS5851675A publication Critical patent/JPS5851675A/en
Publication of JPS647544B2 publication Critical patent/JPS647544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/52Automatic gain control

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Television Receiver Circuits (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

PURPOSE:To attain AGC operation, independently of the waveform and the interval of a synchronizing signal, by controlling charges of a capacitor storing an AGC detection output in response to a signal obtained at a synchronizing separation means. CONSTITUTION:A synchronizing separation output bypass circuit 12 is formed with a resistor R1, one end 12a of the resistor R1 is connected to the emitter of a buffer use emitter follower transistor (TR)Q6 of a synchronizing separator 6 and another end 12b is connected to the base of a TRQ5 of a current mirror circuit 10. When a synchronizing signal part with small amplitude or a video signal having a synchronizing signal part which is not discriminated with distortion is inputted to this separator 6, the separator 6 discriminates the input as the synchronizing signal and outputs a high level signal during the presence of the input. Since a charge of a capacitor C1 constituting an AGC filter 9 is picked up, even if lockout is generated, the state can be restored to the normal state.

Description

【発明の詳細な説明】 本発明紘ムGσ回路に係シ、特にテレビジョン受像機、
映像信号磁気記碌再生装置等に適用されるAGC回路に
関する。
[Detailed Description of the Invention] The present invention relates to the Hiromu Gσ circuit, particularly for television receivers,
The present invention relates to an AGC circuit applied to a video signal magnetic recording/reproducing device, etc.

テレビジョン受像機、映像信号磁気記鎌再生装置等のビ
デオ信号を扱う装置に適用されるAGC回路の一つとし
て、画像の明暗で変化−しない同期信号の振幅を検出し
、これが一定に保たれるように映像信号の振幅を制御す
るAGC回路がある。
As one of the AGC circuits applied to devices that handle video signals, such as television receivers and video signal magnetic recording and reproducing devices, it detects the amplitude of the synchronization signal, which does not change depending on the brightness of the image, and ensures that this remains constant. There is an AGC circuit that controls the amplitude of the video signal so that the

これをシンクAGC回路と称し、その概要を説明すると
、第1図に示すようにビデオ信号s1がAGC増幅器3
に入力端子1を介して印加され、このムGC増幅器3の
出力が色信号除去回路4に供給され、とζで色信号が除
去されて輝度信号Y成分のみとなる。そして同期分離器
6及びシンクチップクランプI)5に入力される。輝度
信号Yは有する水平同期信号部分PIが信号幅T、の間
形成され、その直後ペデスタル期間T、がペデスタルレ
ベルV、に設定され引続き映倫信号部分が形成されてい
る、同期分離器6で同期信号が分離され、シンクチップ
クランプlI5では、その分離された同期信号によって
その信号@T、の間、輝度信号Yが一定レベルにクラン
プされる。すなわち輝度信号Yの同期信号部分先端(シ
ンクチップ)が一定レベルにり2ンプされる。シンクチ
ップクランプ暮5の出力はAGC検波器8に供給される
。AGC検波器8にはさらに検出パルス発生器7によっ
てペデスタルの位置に遅延された同期信号によって形成
される検出パルス8Gが加えられ、ペデスタル期間T、
において、輝度信号YのペデスタルレベルV、と基準電
圧Vrdとが比較され、その差電圧が検出される。この
検波出力はシンクAGOフィルタ9を介してムGO増幅
器3の制御端子に印加され、その利得が制御される。
This is called a sink AGC circuit, and to explain its outline, as shown in FIG.
is applied through the input terminal 1, and the output of the GC amplifier 3 is supplied to the color signal removal circuit 4, where the color signal is removed at ζ, leaving only the Y component of the luminance signal. The signal is then input to the sync separator 6 and the sync tip clamp I) 5. The luminance signal Y is synchronized by the sync separator 6, in which a horizontal synchronizing signal portion PI having a signal width T is formed, and immediately after that, the pedestal period T is set to the pedestal level V, and subsequently the visual synchronization signal portion is formed. The signal is separated, and the separated synchronization signal clamps the luminance signal Y to a constant level during the signal @T. That is, the tip of the sync signal portion (sync tip) of the luminance signal Y is 2-amped to a constant level. The output of the sync chip clamp 5 is supplied to the AGC detector 8. A detection pulse 8G formed by a synchronization signal delayed to the pedestal position by the detection pulse generator 7 is further applied to the AGC detector 8, and the pedestal period T,
, the pedestal level V of the luminance signal Y and the reference voltage Vrd are compared, and the difference voltage is detected. This detection output is applied to the control terminal of the MGO amplifier 3 via the sink AGO filter 9, and its gain is controlled.

AGC検波lI8の具体例を第3図を参照して説明する
と、シンクチップクランプされ九映像信号がトランジス
タQsのベースに入力され、検出パルス発生器7よシ供
給される検出パルスBGの存在する期間において、映像
信号とトランジスタ9章のベースバイ・アス電圧を形成
している基準電圧Vrdとの差を、トランジスタQa及
びQ、のコレクタに出力する。トランジスタQsのコレ
クタ電流Ilは端子1Oaを介してカレントミラー回路
10に流入し、トランジスタQ・のコレクタ電流I麿は
シンクムGCフィルタ9及び端子10bを介してカレン
トミツ−回路1(l流入する。このとき、端子jO&に
流れる電流と略同じ電流が端子10bを流れる。したが
って、トランジスタQ蓼の直流電流増幅率M・が大きb
とすれば、トランジスタQssQ番のコレクタ電流の差
の電流(In−Im)がシンクAGCフィルタ9に流入
しくIn<Itのとき)、あるいはその差の電流(In
   It)がシンクAGCフィルタ9のコンデンサC
1よシ流出しくIs>Isのとき)トランジスタ9審を
介して流れる。トランジスタQstQ番のコレクタ電流
Is、1mが等しい平衡状態においては、端子10bに
流れる電流はトランジスタ9番のコレクタ電流1.と等
しくなる丸めシンクムGCフィルタ9のコンデンサCs
 Kは電流はほとんど流れない。また当然ながら検出パ
ルスBGが供給されない期間においては、トランジスタ
Q*””Q−がすべてオフとなるためシンクAGCフィ
ルタ9のコンデンサCmの充電電荷の変動はない。
A specific example of the AGC detection II8 will be explained with reference to FIG. 3.The period during which the sync chip clamped video signal is input to the base of the transistor Qs and the detection pulse BG supplied from the detection pulse generator 7 exists. , the difference between the video signal and the reference voltage Vrd forming the base bias voltage of transistor 9 is output to the collectors of transistors Qa and Q. The collector current Il of the transistor Qs flows into the current mirror circuit 10 via the terminal 1Oa, and the collector current Il of the transistor Q flows into the current mirror circuit 1 (l) via the sink GC filter 9 and the terminal 10b. At this time, approximately the same current flows through the terminal 10b as the current flowing through the terminal jO&. Therefore, the DC current amplification factor M of the transistor Q is large b
Then, the current (In-Im) that is the difference between the collector currents of transistor QssQ will flow into the sink AGC filter 9 (when In<It), or the current that is the difference (In
It) is the capacitor C of the sink AGC filter 9
When Is>Is, the current flows through the transistor 9. In an equilibrium state in which the collector currents Is and 1m of transistors Qst and Q are equal, the current flowing to the terminal 10b is equal to the collector current 1m of transistor No. 9. The capacitor Cs of the rounding syncum GC filter 9 is equal to
Almost no current flows through K. Naturally, during the period in which the detection pulse BG is not supplied, all the transistors Q*""Q- are turned off, so there is no fluctuation in the charge in the capacitor Cm of the sink AGC filter 9.

AGC制御電圧が大でAGC増幅回路3の利得が小さく
制御されている状態のとき、振幅の小さな映像信号が到
来すると、その瞬間においてはAGC増幅器3の出力の
振幅が非常に小さくなる。
When the AGC control voltage is large and the gain of the AGC amplifier circuit 3 is controlled to be small, when a video signal with a small amplitude arrives, the amplitude of the output of the AGC amplifier 3 becomes extremely small at that moment.

この状態では同期分離器6が正常に働かず、同期信号が
分離されないことがあシ、シたがって検出パルスBGも
発生されず、AGC検波器8が正常に働かなくなる0例
えば同期分離器6として、第2図に示す同期信号部分P
′警の先端をクランプレベルV、でクランプして、その
同期信号先端レベルVCを(VC=V、)とし、その後
一定のクリップレベルv1でクリップして同期信号p/
/ヨを得る方式のものを適用した場合には、前述のよう
なAGC増幅器3の出力振幅が極めて小さくなって映像
信号の振幅が1水平走査期間すべてkわたってクランプ
レベルV、とり・リップレベルV、の間に存在するよう
な状態になるとすべて同期信号とみなされ分離されなく
なる。この状態では、AGC検波器8も動作しない九め
、シンクAGCフィルタ9のコンデンサCIの充電電荷
は変化せず、ムGC制御電圧が依然としてAGC増幅器
3を最小利得に制御する値に保持され、いわゆるロック
アウト状態となる。
In this state, the synchronous separator 6 may not work properly, and the synchronous signal may not be separated, so the detection pulse BG is not generated, and the AGC detector 8 may not work properly. , the synchronization signal part P shown in FIG.
'Clamp the tip of the signal at the clamp level V, set the sync signal tip level VC to (VC=V,), and then clip it at a constant clip level v1 to set the sync signal p/
When the method of obtaining /y is applied, the output amplitude of the AGC amplifier 3 as described above becomes extremely small, and the amplitude of the video signal remains at the clamp level V, the peak level, and the lip level throughout one horizontal scanning period k. When a state exists between V and V, all signals are regarded as synchronous signals and cannot be separated. In this state, the AGC detector 8 also does not operate, the charge in the capacitor CI of the sink AGC filter 9 does not change, and the mu GC control voltage is still maintained at a value that controls the AGC amplifier 3 to the minimum gain, so-called Locked out.

この欠点を除去するため、コンデンサC1に並列に抵抗
を接続して、ロックアウトを解除することが提案されて
いるが、AGC検波器8の検波感度が低下する等、AG
C機能が不充分となる欠点を有する。
In order to eliminate this drawback, it has been proposed to connect a resistor in parallel to the capacitor C1 to release the lockout, but this may reduce the detection sensitivity of the AGC detector 8, etc.
It has the disadvantage that the C function is insufficient.

本発明の目的は同期分離が出来な埴状態のときでもシ/
りAGCの可能なAGC回路を提供するKある。
The purpose of the present invention is to provide synchronization/separation even in a state where synchronization cannot be performed.
There is a K which provides an AGC circuit capable of AGC.

本発明は同期分離回路の出力で、ムGC検波器の検波出
力信号によシ充電されるコンデンサの電荷を放電するよ
うなされたものである。
The present invention is designed to discharge the electric charge of a capacitor charged by the detection output signal of the MuGC detector using the output of the synchronous separation circuit.

以下、本発明になるAGCD路の一実1例を図面と共に
詳述する第3図において12は同期分離出力バイパス回
路である。同期分離出力バイパス回路は抵抗R1で形成
され、この抵抗R1の一端12aは同期分離器6バツフ
ア用エミツタフオロワトランジスタQ6のエミッタに接
続され、他端12atxt、カレントミツ−回路10の
トランジスタQ1のベースに接続しである。なお、図中
X′とX1Y′とYは本実施例において夫々結線された
ことを示す。
Hereinafter, an example of the AGCD path according to the present invention will be described in detail with reference to the drawings in FIG. 3, in which reference numeral 12 denotes a synchronous separation output bypass circuit. The synchronous separation output bypass circuit is formed of a resistor R1, one end 12a of this resistor R1 is connected to the emitter of the emitter follower transistor Q6 for the synchronous separator 6 buffer, and the other end 12atxt is connected to the emitter of the transistor Q1 of the current transmission circuit 10. It is connected to the base. In addition, in the figure, X', X1Y', and Y indicate that they are respectively connected in this embodiment.

ここで、第2図の水平同期信号部分PRの信号部T、の
期間において、コンデンサC1から放出される電流11
は 但し、vlI;トランジスタQ−のエミッタに発生する
同期信号のピーク電圧値。
Here, a current 11 discharged from the capacitor C1 during the signal portion T of the horizontal synchronization signal portion PR in FIG.
However, vlI is the peak voltage value of the synchronization signal generated at the emitter of transistor Q-.

■、1;は抵抗R,を流れる電流1.によるダイオード
D■の電圧降下、トラン ジスタQ、のhf・中1 (1)式に示すとおシでコンデンサCIの電荷は放出さ
れる。
■, 1; is the current 1. flowing through the resistor R. The voltage drop across diode D, due to the voltage drop across transistor Q, and hf of transistor Q. As shown in equation (1), the charge on capacitor CI is discharged.

第2図の水平同期信号部分PMのペデスタル期間τ、に
発生する検出パルスBGの期間丁、にコンデンサCm 
K流入する電流!、は R2I、+v、、= (It、+R4> < x、−x
−>−−−・−(2)但し% 1/、  :は抵抗R,
を流れる電流、端子10m及び10bを流れる電流は 夫々等しい。
In the period d of the detection pulse BG generated during the pedestal period τ of the horizontal synchronization signal part PM in FIG. 2, the capacitor Cm
K current flowing in! , is R2I, +v, , = (It, +R4>< x, -x
−>−−−・−(2) However, % 1/, : is resistance R,
The current flowing through the terminals 10m and 10b are respectively equal.

v12;は抵抗R■を流れる電流I/、 Kよるダイオ
ードDIの電圧降下 (2)式となる。又、x、寡x−−■、であるから!、
は(3)式となる。このため、コンデンサC鳳の電荷は
同期信号部T、の期間で放出、検出パルスBGC)/f
ルスの期間丁、では蓄積され、相互に電荷を打ち消す方
向である。又、通常時には同期信号部T、の期間のコン
デンサC1の電流I、 、 I、がI、?、 + I、
?、 ” 0    ・・・・・・(4)(4)式を満
足すればi 、セi 2が維持さる。又、!、。
v12; is the voltage drop across the diode DI due to the current I/K flowing through the resistor R. Also, x, small x--■, so! ,
is the formula (3). Therefore, the charge of the capacitor C is released during the period of the synchronization signal part T, and the detection pulse BGC)/f
During the Rus period, the charges accumulate and cancel each other out. Also, under normal conditions, the current I, , I, of the capacitor C1 during the period of the synchronization signal section T, is I,? , + I,
? , ” 0 ...... (4) If formula (4) is satisfied, i and sei 2 are maintained.Also,!,.

■2に比べてコンデンサC4の電流1.及び■1は充分
小さいことがatしく、このためKは同期分離出力J(
イパス回路12の抵抗R1の抵抗値を大となし、更に同
期信号のピーク電圧値V、あるいは抵抗R4の数値を前
記(4)式を満足するように選択する・ 前記のように同期分離器6に同期信号部分を九は歪んで
判別できないような同期信号部分を有する映倫信号が入
力されたときに、同期分離器6はそれらをすべて同期信
号として判別し、その存在する期間高レベルの信号を出
力し、トランジスタQ−のエミッタ電位をV、 K設定
する。これによってカレントミツ−回路10に電流を流
し、コンデンサC1の電荷を引抜くからロックアウトが
発生しても、通常の状態に戻すことが出来る。
■Current of capacitor C4 1. compared to 2. It is desirable that 1 and 1 are sufficiently small, so that K is the synchronization separation output J (
The resistance value of the resistor R1 of the path circuit 12 is made large, and the peak voltage value V of the synchronizing signal or the value of the resistor R4 is selected so as to satisfy the above formula (4). As described above, the synchronizing separator 6 When a synchronization signal having a synchronization signal part that is distorted and unrecognizable is input, the synchronization separator 6 identifies all of them as synchronization signals and removes the high-level signal during the period in which they exist. output and set the emitter potential of transistor Q- to V, K. This allows current to flow through the current circuit 10 and extracts the charge from the capacitor C1, so that even if a lockout occurs, the normal state can be restored.

本発明になるAGC回路は、同期分離手段で得た信号に
応じて、AGC検波出力を蓄積するコンデンサの電荷を
制御する電荷制御手段を具備した構成としであるから同
期信号の波形及び間隔に係わらずAGC動作を行なう特
長を有している。このため、AGC動作が中断されるロ
ックアウト状態の発生を防止出来る。
The AGC circuit according to the present invention has a structure including a charge control means for controlling the charge of a capacitor that accumulates the AGC detection output according to the signal obtained by the synchronization separation means, so that it can be used regardless of the waveform and interval of the synchronization signal. It has the feature of performing AGC operation. Therefore, the occurrence of a lockout state in which the AGC operation is interrupted can be prevented.

又、同期分離手段で得た信号と、検波出力とを加算する
加算手段を具備した構成としであるためペデスタル期間
の検波出力が偏位しない特長を有している。このためA
GC増幅器の制御精度を向上することができる。
Furthermore, since the configuration includes an adding means for adding the signal obtained by the synchronization separation means and the detected output, it has the advantage that the detected output during the pedestal period does not deviate. For this reason A
The control accuracy of the GC amplifier can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のAGC回路のブロック図、第2図は同期
信号の説明図、第3図は本発明のAGC回路の一実施例
の一部ブロック図で示す回路図である。 図中符号3はAGC増幅器、6は同期分離器、9はシン
クAGCフィルタ、10はカレントミツ−回路、12社
同期分離出力バイパス回路、Qs〜Q−はトランジスタ
、Dlはダイオードである。
FIG. 1 is a block diagram of a conventional AGC circuit, FIG. 2 is an explanatory diagram of a synchronization signal, and FIG. 3 is a circuit diagram showing a partial block diagram of an embodiment of the AGC circuit of the present invention. In the figure, reference numeral 3 is an AGC amplifier, 6 is a synchronous separator, 9 is a sink AGC filter, 10 is a current circuit, 12 company synchronous separation output bypass circuit, Qs to Q- are transistors, and Dl is a diode.

Claims (2)

【特許請求の範囲】[Claims] (1)同期信号を分離する同期分離手段と、同期信号部
分先端が一定レベルにり2ンプされた映倫信号のペデス
タルレベルを検波する検波手段と、誼検波手段で得た検
波出力を蓄積するコンデンサとを具備したAGC回路に
おいて、前記同期分離手段で得た信号に応じて前記コン
デンサに蓄積された電荷を制御する電荷制御手段を具備
し、前記同期信号の波形及び間隔に係わらずAGC動作
を行なうよう構成したことを特徴とするAGC回路。
(1) A synchronization separation means for separating the synchronization signal, a detection means for detecting the pedestal level of the Eirin signal, which is double-amplified with the tip of the synchronization signal portion at a certain level, and a capacitor for accumulating the detection output obtained by the interference detection means. The AGC circuit comprises charge control means for controlling the charge accumulated in the capacitor according to the signal obtained by the synchronization separation means, and performs the AGC operation regardless of the waveform and interval of the synchronization signal. An AGC circuit characterized by being configured as follows.
(2)前記電荷制御手段は前記同期分離手段で得た前記
信号と、前記検波出力とを加算する加算手段を具備して
なシ、加算結果に応じて前記電荷を制御するよう構成し
九ことを特徴とする特許請求の範囲第1項記載のAGC
[]路。
(2) The charge control means does not include addition means for adding the signal obtained by the synchronization separation means and the detection output, and is configured to control the charge according to the addition result. AGC according to claim 1, characterized in that
[ ] Road.
JP14958481A 1981-09-24 1981-09-24 Agc circuit Granted JPS5851675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14958481A JPS5851675A (en) 1981-09-24 1981-09-24 Agc circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14958481A JPS5851675A (en) 1981-09-24 1981-09-24 Agc circuit

Publications (2)

Publication Number Publication Date
JPS5851675A true JPS5851675A (en) 1983-03-26
JPS647544B2 JPS647544B2 (en) 1989-02-09

Family

ID=15478387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14958481A Granted JPS5851675A (en) 1981-09-24 1981-09-24 Agc circuit

Country Status (1)

Country Link
JP (1) JPS5851675A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152184A (en) * 1984-01-19 1985-08-10 Matsushita Electric Ind Co Ltd Device for automatically controlling gain
JPH03104388A (en) * 1989-09-18 1991-05-01 Kokusai Electric Co Ltd Method and apparatus for digital automatic gain control for video signal
JPH03269078A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive glass electrolyte
JPH03269079A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive solid electrolyte
JPH05300449A (en) * 1992-04-22 1993-11-12 Samsung Electron Co Ltd Automatic gain adjusting circuit
US5279993A (en) * 1990-12-08 1994-01-18 Didier-Werke Ag Gas injection stone and process of manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152184A (en) * 1984-01-19 1985-08-10 Matsushita Electric Ind Co Ltd Device for automatically controlling gain
JPH03104388A (en) * 1989-09-18 1991-05-01 Kokusai Electric Co Ltd Method and apparatus for digital automatic gain control for video signal
JPH03269078A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive glass electrolyte
JPH03269079A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive solid electrolyte
US5279993A (en) * 1990-12-08 1994-01-18 Didier-Werke Ag Gas injection stone and process of manufacture thereof
JPH05300449A (en) * 1992-04-22 1993-11-12 Samsung Electron Co Ltd Automatic gain adjusting circuit
JPH0783459B2 (en) * 1992-04-22 1995-09-06 三星電子株式会社 Automatic gain adjustment circuit

Also Published As

Publication number Publication date
JPS647544B2 (en) 1989-02-09

Similar Documents

Publication Publication Date Title
USRE40412E1 (en) Synchronizing signal separating apparatus and method
US4064541A (en) Constant pulse width sync regenerator
US4128848A (en) Automatic ghost-suppression system
JPS5851675A (en) Agc circuit
JPH0532948B2 (en)
JPS6111022B2 (en)
US5502487A (en) Character signal display for a camcorder using existent synchronization signals for character display
US4424528A (en) Video circuit
US4604646A (en) Video processing circuit
US4912691A (en) Video stabilizer
KR100240326B1 (en) Vertical sync. separator
JPS6036924Y2 (en) Horizontal oscillation frequency control circuit
KR940011875B1 (en) Horizontal synchronizing signal separation circuit
KR800001740Y1 (en) Automatic gain control apparatus
JPS643256Y2 (en)
JP3057697B2 (en) Video signal processing device and sync signal detection circuit
JP2812490B2 (en) Automatic gain adjustment circuit
JPS5930372A (en) Synchronizing separation circuit
JPH04972A (en) Vertical synchronizing signal separating circuit
KR940000159Y1 (en) Keyed pulse generator for high definition of tv
JPH074000B2 (en) Vertical sync signal separation circuit
JP2862590B2 (en) Synchronous separation device
JPH05153432A (en) Clamp circuit
JPH1023379A (en) Method for data slice and circuit therefor
JPS60226283A (en) Agc circuit