JPS5851547A - Cooler for electric device - Google Patents

Cooler for electric device

Info

Publication number
JPS5851547A
JPS5851547A JP14990481A JP14990481A JPS5851547A JP S5851547 A JPS5851547 A JP S5851547A JP 14990481 A JP14990481 A JP 14990481A JP 14990481 A JP14990481 A JP 14990481A JP S5851547 A JPS5851547 A JP S5851547A
Authority
JP
Japan
Prior art keywords
refrigerant
heat sink
cooling
tank
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14990481A
Other languages
Japanese (ja)
Inventor
Osamu Sugimoto
修 杉本
Masao Yano
矢野 昌雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP14990481A priority Critical patent/JPS5851547A/en
Publication of JPS5851547A publication Critical patent/JPS5851547A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a cooler having preferable cooling effect and high insulating withstand voltage by boiling a coolant in a heat sink which is contacted with a heating element for cooling and maintaining insulation between elements with evaporated vapor phase coolant. CONSTITUTION:A heater 1A such as a thyristor or the like and a heat sink 3A are integrally associated, thereby forming a stack. Further, a coolant tank 6A and each heat sink 3A are coupled via a pipe 5A. They are contained in a sealed container 20, and a condenser 21 is mounted on the top of the container 20. The coolant condensed by the condenser 21 is led through a pipe 22 to a coolant reservoir 12A, and is returned from the reservoir by a pump 11A to the tank 6A. The coolant is evaporated by the heat which is generated from the heater 1A in the heat sink 3A. In this manner, since the environment of the heater 1 is filled with vapor phase, the heaters 1A are insulated only with the vapor phase, thereby obtaining high withstand voltage characteristic.

Description

【発明の詳細な説明】 この発明は、高電圧に使用される電気機器の冷却装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for electrical equipment used in high voltage.

8F、ガスやフロンガス等の加圧ガスによる絶縁は、(
の良好な絶縁特性によシ、絶縁距離が大幅に縮少さj、
電気機器がIJs型となるので、各種機器で実用化さt
ている。この方法は油絶縁にくらべて取扱や作業性かよ
く、固体絶縁にくらべて、放熱特性がよい。−7jNr
lft送電等に使用さねる高圧t1リスタパルブに含1
れるt1リスタや、ダイオード等の半導体や、抵抗器等
の発熱量の多い素子社、空気、油、水による冷却が弔い
らねているか、フロン等の液体の蒸発潜熱による沸騰冷
却も行わt1″Cいる。沸騰冷却では、冷媒の相変化に
より、素子の発生熱な奪う大め、冷却効率が良く。
8F, insulation by pressurized gas such as gas or chlorofluorocarbon gas is (
Due to the good insulation properties of the insulation distance, the insulation distance is significantly reduced.
Since electrical equipment will be IJs type, it will be put into practical use in various equipment.
ing. This method is easier to handle and work with than oil insulation, and has better heat dissipation characteristics than solid insulation. -7jNr
Included in high voltage t1 lister valve used for lft power transmission etc.
Elements that generate a large amount of heat such as semiconductors such as diodes, resistors, etc. do not require cooling with air, oil, or water, or boiling cooling using the latent heat of vaporization of liquids such as fluorocarbons is also performed. C. With boiling cooling, the phase change of the refrigerant removes a large amount of the heat generated by the element, resulting in good cooling efficiency.

ヒートシンクか小型に設計でき、電気様器が小型にt″
きる。
The heat sink can be designed to be small, and the electric device can be made small.
Wear.

従来フロン沸騰冷却さt1大サイリスタバルブとして第
1図に示すものがあつ穴。この第1固状。
The conventional fluorocarbon boiling cooled T1 large thyristor valve shown in Figure 1 has a hole. This first solid state.

電気回路ヒートシンクを一体構造したスタックか、フロ
ン液相に浸けられている。第1図において、1祉密閉容
器、2は凝縮器、3は、冷却扇、4紘液相フロン、5は
気相フロン、6は液相円に混在する気相フロンの泡、7
はサイリスタ、8は銅製のヒートシンク、9はサイリス
タとヒートシンクを組みこんだスタック、10はスタッ
クを支持する絶縁碍子%11及び12紘端子、13tj
:気相フロラが上昇する気相パイプ、14は液相フロン
が下降する液相パイプである。端子11より、スタック
9のヒートシンク8とブイリスタフ1通して。
A monolithic stack of electrical circuit heat sinks or immersed in a fluorocarbon liquid phase. In Fig. 1, 1 is a closed container, 2 is a condenser, 3 is a cooling fan, 4 is a liquid phase fluorocarbon, 5 is a gas phase fluorocarbon, 6 is a bubble of gas phase fluorocarbon mixed in the liquid phase circle, 7
is a thyristor, 8 is a copper heat sink, 9 is a stack incorporating a thyristor and a heat sink, 10 is an insulator that supports the stack, %11 and 12 Hiro terminals, 13tj
14 is a gas phase pipe through which gaseous flora rises, and 14 is a liquid phase pipe through which liquid fluorocarbons descend. From the terminal 11, pass the heat sink 8 of the stack 9 and the builisty tough 1.

端子12Ktl[か流れると、ブイリスタフの順方同降
下によ)、例えtjlKW程度の熱が1素子あ大〕発生
する。この熱はヒートシンク8に移夛、表面に1*相よ
り気相に変化するフロンの潜熱となる。気相化し大フロ
ンは泡となって液相円を上昇し、気相に達する。この気
相フロンは気相パイプ13内を上昇して凝縮器2に達し
、凝縮器2は外部を冷却扇3により風冷されており、気
相フロンは凝縮器2円で液相フロンとなる。液相フロン
は重力によシ液相パイプ14円を下降し、スタック部分
に戻る。このように沸騰冷却ヲ使用すると、冷却効率が
よく、自然循環により冷媒が循環する長庖がある。
At the terminal 12Ktl (if the current flows, heat of about tjlKW will be generated for one element) due to the forward fall of the builistub. This heat is transferred to the heat sink 8 and becomes the latent heat of the fluorocarbon that changes from the 1* phase to the gas phase on the surface. Large fluorocarbons turn into a gas phase and become bubbles that rise through the liquid phase circle and reach the gas phase. This gas phase Freon rises inside the gas phase pipe 13 and reaches the condenser 2, and the outside of the condenser 2 is air-cooled by a cooling fan 3, and the gas phase Freon becomes liquid Freon in the condenser 2. . The liquid phase Freon descends through the liquid phase pipe 14 by gravity and returns to the stack section. When boiling cooling is used in this way, the cooling efficiency is high, and there is a long tube in which the refrigerant circulates through natural circulation.

ところが、従来の沸騰冷却力式ては、気相液相が混在し
、誘電率差による気相部への電界集中により、部分放電
から絶縁破壊に至る大め、超高圧の用途ては採用に問題
があつ六〇第2図社、上記フロンの絶縁破jiIiIi
l圧な示すグラフで、気相フロンの絶縁耐力は液相フロ
ンの絶縁耐力の1/3〜1/!の範囲にある。第3図社
平等電界の電界強度を説明する大めの説明−で、厚みd
の物質に平面電極で電圧Vt印加すると、公知のごとく
電界強度Eは次式″elfXされる。
However, the conventional boiling cooling power method cannot be used for large or ultra-high voltage applications where the gas phase and liquid phase coexist, and the electric field concentrates in the gas phase due to the difference in dielectric constant, leading to partial discharge and dielectric breakdown. Problem: 60 Diagram 2 Company, insulation breakdown of the above Freon jiIiIi
The graph shows that the dielectric strength of gaseous chlorofluorocarbons is 1/3 to 1/3 of the dielectric strength of liquid chlorofluorocarbons! within the range of Figure 3: A larger explanation of the electric field strength of the equal electric field.The thickness is d.
When a voltage Vt is applied to a material using a plane electrode, the electric field strength E is expressed by the following formula "elfX" as is well known.

第4図は厚みdの間に、厚与χの誘電率t□。Figure 4 shows the dielectric constant t□ of the thickness given χ between the thickness d.

気相と1.厚みd−re)lie電率りの液相が存在す
る電界強度の説明図で、気相部分の電界強度E1及び液
相部分の電界強度E、は次式で計算される。
Gas phase and 1. This is an explanatory diagram of the electric field strength in the presence of a liquid phase having a thickness of d-re)lie, and the electric field strength E1 of the gas phase portion and the electric field strength E of the liquid phase portion are calculated by the following equation.

フロンの場合、気相誘電重電□=1に対して液相誘電率
t、−’l、、41であるが、2が極めて零に近すい大
時、気相の電界強度E□は最大となり、七〇値E1ma
rは 従って従来の沸騰冷却方式で社、気相液相フロン混在時
の気相部の電界強度は、同一相フロンの電界強度の25
倍の値とt11!、耐圧価の低い気相部分での放電の恐
t’lか6つ*O この発明は上記のような従来の耐圧iIO低い気相部分
ての放電の欠点を除去する大めになさt1′ftもので
、発熱素子に密着させ大ヒートシンク円で冷媒管沸騰さ
せ、気化し大気相冷媒で絶縁を保つもので、沸騰冷却に
よる曳好な熱伝達特性と、ガスの高い絶縁耐力を利用し
大小屋の電気機器の冷却m1ll。提供することを目的
としている。
In the case of chlorofluorocarbon, the liquid phase permittivity is t, -'l,, 41 for the gas phase dielectric heavy electric □ = 1, but when 2 is very close to zero, the gas phase electric field strength E□ is at its maximum. So, 70 value E1ma
Therefore, when r is the same as in the conventional boiling cooling method, the electric field strength in the gas phase when gaseous and liquid phase fluorocarbons are mixed is 25 times the electric field strength of the same phase fluorocarbons.
Double value and t11! , there is a possibility of discharge in the gas phase part having a low breakdown voltage t'l or 6*O. ft type, the refrigerant tube is boiled in a large heat sink circle that is closely attached to the heating element, and the insulation is maintained by the atmospheric phase refrigerant after vaporization. Cooling of electrical equipment in the shed m1ll. is intended to provide.

以下この発明の一実施例を第5図力いし第7図について
説明する。
An embodiment of the present invention will be described below with reference to Figures 5 to 7.

115図において、1人はサイリスタなどの半導体中抵
抗器等の電気回路素子、2人は補強装置、3ムはヒート
シンク、5ムは送液管、6人は冷媒槽、7ムは冷媒槽の
冷媒液面を一定に保つ越流部、8ムは越流部よりあふr
大冷媒を流す送液管、9Aは電気1路素子とヒートシン
クを一体に組み上げ大スタックと冷媒槽で構成さjるプ
ルツク、10A紘ブロツクを支持する絶縁碍子、11ム
は冷媒を送るポンプ、12Aは容器下部に設けられ大冷
媒溜、13ムは接続導体、14A、14B社端子、15
ムは冷媒中の異物や生成物な除去するフィルp、20は
密閉容器、21は凝縮!ls%22#l;を液相冷媒戻
p管、23−は送液管、30は液相冷媒、31は気相冷
媒である022Aは#!2の実施例において使われるも
ので、冷媒を凝縮器21よりmI!冷媒槽6Aに導く液
相冷媒戻り管である。
In Figure 115, 1 person is responsible for electric circuit elements such as semiconductor medium resistors such as thyristors, 2 people are for reinforcing devices, 3 are for heat sinks, 5 are for liquid pipes, 6 are for refrigerant tanks, and 7 are for refrigerant tanks. The overflow part keeps the refrigerant liquid level constant, and the 8th meter is lower than the overflow part.
9A is a pull-pull that is made up of a large stack and a refrigerant tank by assembling an electric single-path element and a heat sink into one, an insulator that supports a 10A block, 11 is a pump that sends the refrigerant, 12A is a liquid pipe that carries a large refrigerant. is a large refrigerant reservoir provided at the bottom of the container, 13 is a connecting conductor, 14A, 14B terminals, 15
20 is a closed container, and 21 is condensation! ls%22#l; is the liquid phase refrigerant return p pipe, 23- is the liquid sending pipe, 30 is the liquid phase refrigerant, and 31 is the gas phase refrigerant. 022A is #! This is used in the second embodiment, and the refrigerant is transferred from the condenser 21 to mI! This is a liquid phase refrigerant return pipe leading to the refrigerant tank 6A.

第6図は、tIR5図のヒートシンク3Aの構造を説明
する構造図である。
FIG. 6 is a structural diagram illustrating the structure of the heat sink 3A in the tIR5 diagram.

1!46図において、aは液相冷媒の導入口、bFi電
気回路素子の熱が伝達し、液相冷媒が沸騰して気相とす
るヒートシンクの伝熱面、Cは気相冷媒を放出する開口
部、dは冷媒の沸騰により飛散する液の粒子をトラップ
するエリミネータ、1人は電気回路素子、3ムはヒート
シンク、3(l液相冷媒である。この第6図において、
導入口aより送)こまt′Lπ上記液相冷媒30はヒー
トシンク3八円に掴まり、電気回路素子1人の発生損失
がヒートシンク3ムに伝わると、液相冷媒が沸騰し、気
相化し大冷1sが開口部Cより密閉タンク内へ放出され
る。
In Figure 1!46, a is the inlet of the liquid phase refrigerant, b is the heat transfer surface of the heat sink to which the heat of the Fi electric circuit element is transferred and the liquid phase refrigerant boils to become a gas phase, and C is the heat transfer surface of the heat sink where the gas phase refrigerant is released. An opening, d is an eliminator that traps liquid particles scattered by boiling of the refrigerant, 1 is an electric circuit element, 3 is a heat sink, and 3 is a liquid phase refrigerant.
The above liquid phase refrigerant 30 is caught by the heat sink 38, and when the loss generated by one electric circuit element is transmitted to the heat sink 3, the liquid phase refrigerant boils and turns into a vapor phase. The cold 1s is discharged from the opening C into the closed tank.

以下この発明の詳細な説明する。上記電気回路素子IA
とヒートシンク3Aを一体に組み上は大スタックと冷媒
槽6Aで構成されるブロック9Aは、密閉容器20内に
支持碍子10Aにより収納される。密閉容器20は真空
引きさt1′ft俵、−足置の冷媒を密閉容器20円に
挿入する。この冷媒は密閉容器20の温度に相当する圧
力を持ち、液相冷媒3◎と気相冷媒31に分離さねてい
る。
This invention will be described in detail below. The above electric circuit element IA
A block 9A, which is made up of a large stack and a refrigerant tank 6A, is housed in an airtight container 20 by a support insulator 10A. The airtight container 20 is evacuated and a t1'ft bale of refrigerant is inserted into the airtight container. This refrigerant has a pressure corresponding to the temperature of the closed container 20, and is separated into a liquid phase refrigerant 3◎ and a gas phase refrigerant 31.

ポンプ11Aは冷媒溜12Aよプ液相冷媒30を吸みあ
げ、冷媒槽6AK注ぐ。冷媒槽6°Aに注いだ液相冷媒
30は送液管5At通過してヒートシンク3AK導入さ
れるか、冷媒槽6Aの液面は越流部7Aにより一足に保
持され、ヒートシンク3ム円の液面もほぼ同一に保7t
tlる。
The pump 11A sucks up the liquid phase refrigerant 30 from the refrigerant reservoir 12A and pours it into the refrigerant tank 6AK. The liquid phase refrigerant 30 poured into the refrigerant tank 6°A passes through the liquid sending pipe 5At and is introduced into the heat sink 3AK, or the liquid level in the refrigerant tank 6A is maintained at one level by the overflow part 7A, and the liquid level of the heat sink 3mm is maintained. Keep the surface almost the same 7t
tlru.

電気回路素子1Aに電流が1し熱が発生すると、この熱
はヒートシンク3Aに伝わり、ヒートシンク3A円の液
相冷媒30祉沸騰し、気相化し大冷媒31か、ヒートシ
ンクの開口部より密閉容器20円に放出される。気相冷
媒31は比重か軽く、書閉竺機上部に設けらn大凝縮@
21に昇到し、ζζで熱1奪わ4、液相冷媒30に再び
変化し、戻り管22を通過し、冷媒溜12AK落下する
。このように上記電気回路素子1Aの冷却は、沸騰現象
を用いている大め、優11*冷却効果を得ることができ
、1ftこの発熱する電気@路素子1人とヒートシンク
3A’&一体に組み上げ大ブロック9Aと密閉容器20
間には気相冷媒31で満されており、ブロック9Aと密
閉容器20に加わる電圧は、気相冷媒31の絶縁耐力に
よ多保持されるO気相冷媒の電界強度は、気相一液相冷
媒混在P電界強度にくらぺて著しく改善される大め、本
発明の実施例によれば、沸騰現象による良好な冷却特性
と、気相冷媒による良好な絶縁特性を達成することがで
き、更に気相冷媒には、sp、等81の絶縁特性の優r
t*冷媒を混在させ、絶縁特性をあげることも考えられ
る。
When a current is applied to the electric circuit element 1A and heat is generated, this heat is transferred to the heat sink 3A, and the liquid phase refrigerant 30 in the heat sink 3A boils, becomes vapor phase, and is transferred to the large refrigerant 31 or the airtight container 20 from the opening of the heat sink. released in a circle. The gas phase refrigerant 31 has a light specific gravity, and is installed at the top of the book-closing machine for large condensation.
21, takes away 1 heat at ζζ, changes again to liquid phase refrigerant 30, passes through the return pipe 22, and falls to the refrigerant reservoir 12AK. In this way, the above-mentioned electric circuit element 1A can be cooled by using the boiling phenomenon, and a large, excellent 11* cooling effect can be obtained, and the heat sink 3A' and the heat sink 3A' can be assembled together in one body. Large block 9A and airtight container 20
A gas phase refrigerant 31 is filled in between, and the voltage applied to the block 9A and the sealed container 20 is maintained by the dielectric strength of the gas phase refrigerant 31.The electric field strength of the gas phase refrigerant is According to the embodiments of the present invention, it is possible to achieve good cooling characteristics due to the boiling phenomenon and good insulation characteristics due to the gas phase refrigerant, which is significantly improved compared to the phase refrigerant mixed P electric field strength. Furthermore, gas phase refrigerants have excellent insulation properties such as sp, etc.
It is also possible to mix t* refrigerant to improve insulation properties.

本発明の1142%施例としては凝縮器21より戻)管
22ムを冷媒槽6ムに接続し、落下する液相冷媒1mm
冷媒槽6Aに導くことにより、ポンプ11At小型化す
ることができる0 1i流送電1c蒙用する−1M9ヌタ/<ルブで紘、1
00個程度のサイリスタが直列に接続されるので、1個
の賃イリスタパルプ円でも、10個のサイリスタとヒー
トシンクを組みこんだスタックYt10台組み合せて使
用される。第78はこのようが場合に用いらねる本発明
の第3の実施例で、複数のスタックで構成される0電気
機器の冷却袋Mを示すものである。
In the 1142% embodiment of the present invention, the return pipe 22m from the condenser 21 is connected to the refrigerant tank 6m, and 1mm of liquid phase refrigerant falls.
By guiding the refrigerant to the refrigerant tank 6A, the pump 11At can be made smaller.
Since about 00 thyristors are connected in series, even one iris thyristor pulp circle is used in combination with 10 stack Yts each incorporating 10 thyristors and a heat sink. The 78th embodiment is a third embodiment of the present invention which is not used in such a case, and shows a cooling bag M for an electric appliance made up of a plurality of stacks.

第5図と同一部分祉同一符号で示す第7図に基づき、本
発明の第3の実施例を以下説明する。密閉容器20は真
空引きさrL大後、−足置の冷媒を挿入され、複数個の
ブロック9Aは、支持絶縁碍子10AKよシ、上下方向
に積み上げられている。
A third embodiment of the present invention will be described below with reference to FIG. 7, in which the same parts as those in FIG. 5 are denoted by the same reference numerals. After the airtight container 20 is evacuated rL, a footrest of refrigerant is inserted, and the plurality of blocks 9A are stacked vertically along the support insulator 10AK.

冷媒は液i冷媒30と気相冷i31に分れており、ポン
プ11Aは冷媒12Aより液相冷媒30を汲み上け、最
上段ブロック9Aの冷媒槽6ムに注入する。冷媒槽6A
に注入した液相冷媒30は、送液管5A・童通過してヒ
ートシンク3AK導入されるが、冷媒槽6Aの液面は越
流部7Aにより一足に保持され、ヒートシンク3入内の
液面もほぼ向−に保穴する0最上段ブロック9Aの越流
部7Aより溢t1大液相冷媒30は、送液管8At降下
して、次段ブロックの冷媒槽に流入し、(4ぞれの越流
部によりlI次下段の冷媒槽に降下して行き、七わぞれ
のヒートシンクに導かむるか、各段のヒートシンクのi
I面も同一に保持される。
The refrigerant is divided into a liquid refrigerant 30 and a gas phase refrigerant i31, and the pump 11A pumps up the liquid refrigerant 30 from the refrigerant 12A and injects it into the refrigerant tank 6m of the uppermost block 9A. Refrigerant tank 6A
The liquid phase refrigerant 30 injected into the heat sink 3AK passes through the liquid feed pipe 5A and is introduced into the heat sink 3AK, but the liquid level in the refrigerant tank 6A is kept at a constant level by the overflow part 7A, and the liquid level in the heat sink 3 is also almost constant. The large liquid phase refrigerant 30 overflowing from the overflow section 7A of the uppermost block 9A, which is maintained in the direction of The flow part lowers the refrigerant to the lower refrigerant tank and leads to each of the seven heat sinks, or the refrigerant of each stage heat sink.
The I side is also kept the same.

電気回路素子IAに流れ大電流により発住し大熱量は、
ヒートシンク3Aに伝わ9、ヒートシンp 3 AP3
o液Q冷al:30に1沸jlL、zs化t、*e媒3
1かヒートシンクの開口部より密閉容器20円に放出さ
れる0気相冷媒31は、上昇し工凝縮器21に到達し、
ことて熱な奪われ、液相冷媒30となり、戻9管22を
通り、冷媒溜12Aに落下する。この実施例の構成では
、沸騰現象による優rL大冷却効果な得ることかでき、
ブロック9Aと密閉容器20間には気相冷媒31が充満
さ4ており、気相冷媒310結縁耐力が同上できる。不
実施例は沸騰現象菅利用し、しかも沸騰現象の欠点であ
る2相混在状態による電圧保持1避けたものである。
A large amount of heat is generated due to the large current flowing through the electric circuit element IA.
Transferred to heat sink 3A 9, heat sink p 3 AP3
o liquid Q cold al: 1 boiling jlL in 30, zs conversion t, *e medium 3
The gas phase refrigerant 31 released from the opening of the heat sink into the closed container 20 rises and reaches the condenser 21,
The heat is removed and becomes liquid phase refrigerant 30, which passes through the return pipe 22 and falls into the refrigerant reservoir 12A. With the configuration of this embodiment, it is possible to obtain a large cooling effect due to the boiling phenomenon.
The space between the block 9A and the closed container 20 is filled with a gas phase refrigerant 31, and the bond strength of the gas phase refrigerant 310 is the same as above. The non-embodiment utilizes the boiling phenomenon tube and avoids voltage holding 1 due to the two-phase mixed state, which is a disadvantage of the boiling phenomenon.

上記実施1PIIKおい1、凝縮器21よりの戻り管2
2ムを、最上段プロッタの冷媒槽6Aに接続し。
Above implementation 1 PIIK pipe 1, return pipe 2 from condenser 21
2 to the refrigerant tank 6A of the top plotter.

落下する液相冷媒311ml[接最上段ブロックに導く
ことにより、ポンプ11Aを74%型化することができ
る。
By guiding 311 ml of liquid phase refrigerant that falls to the uppermost block, the pump 11A can be reduced in size by 74%.

ま六上記実施例ではサイリスタパルプの場合について説
明し大が、こねに駆足することなく、変圧器や開閉機器
など他の高電圧で使用さする電気機器の冷却にも同様の
効果をもって適用できる。
Although the above example describes the case of thyristor pulp, it can also be applied to cooling other electrical equipment used at high voltage, such as transformers and switchgear, with the same effect, without going too far. .

以上のように、この発明によれば、沸騰冷却による良好
な冷却特性なガスの高い絶縁耐力な用いているので、/
I)型て安価な、しかも安全性の高い電気機器の冷却装
置が得らする効果がある0
As described above, according to the present invention, since the gas with good cooling properties and high dielectric strength is used by boiling cooling, /
I) An inexpensive and highly safe cooling system for electrical equipment has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の沸騰冷却サイリスタバルブを示す構成図
□、第2図はフロンの絶縁特性な示す特性図、第3図社
平等電界の電界強度を説明する説明図、第4図ti液相
−気相混在する場合の電界強度を説明する説明図、第5
図及び第6図は本発明の一*施例な示す構成図、第7図
は本発明の他の実施例を示す構成図である。 1・・・密閉容器、2・・・凝縮器、3・・・冷却扇、
4・・・液相フロン%5・・・気相フロン、6・・・液
相フロンの泡、?−・サイリスタ、8−・・ヒートシン
ク、9・・・スタック、10−・絶縁外碍、11.12
・一端子、13・・・気相パイプ、14 +=e液相パ
イプ、IA−電気一路素子、2A−袖強装砺、3A−ヒ
ートシンク、5 A−・・送液管、6 A−・・冷媒槽
、7A−越流部%8A・・・送液管、9ム・−ブロック
、10 A−・・絶縁外碍、11ム・・・ポンプ、12
A−冷媒溜、13 A −・接続導体、14A、14B
・・・端子、15A−・・フづルタ、20・・・密閉容
器、21−#Ji器、23・−液相冷媒戻り管、22,
22A−液相冷媒戻り管、30−液相冷媒、31−・気
相冷媒。なお、図中同一符号は同−又拡相当部分を示す
。 代理人  蔦 野 伯− →食邑禾ロ圧ノv Kg/Cm2 第3図 11’i4図 @6図
Figure 1 is a configuration diagram showing a conventional evaporative cooling thyristor valve, Figure 2 is a characteristic diagram showing the insulation properties of fluorocarbons, Figure 3 is an explanatory diagram explaining the electric field strength of a homogeneous electric field, Figure 4 is a ti liquid phase -Explanatory diagram explaining electric field strength when gas phase is mixed, Part 5
6 and 6 are block diagrams showing one embodiment of the present invention, and FIG. 7 is a block diagram showing another embodiment of the present invention. 1... Airtight container, 2... Condenser, 3... Cooling fan,
4...Liquid phase Freon %5...Gas phase Freon, 6...Liquid phase Freon foam, ? - Thyristor, 8- Heat sink, 9 Stack, 10- Insulation, 11.12
・One terminal, 13... Gas phase pipe, 14 +=e liquid phase pipe, IA-Electric circuit element, 2A-Sleeve reinforcement, 3A-Heat sink, 5 A-...Liquid pipe, 6 A--・Refrigerant tank, 7A-Overflow part %8A...Liquid pipe, 9mm--Block, 10 A-...Insulation outer shell, 11mm...Pump, 12
A - Refrigerant reservoir, 13 A - Connection conductor, 14A, 14B
...Terminal, 15A--Futurta, 20--Airtight container, 21-#Ji device, 23--Liquid phase refrigerant return pipe, 22,
22A-liquid phase refrigerant return pipe, 30-liquid phase refrigerant, 31-.vapor phase refrigerant. Note that the same reference numerals in the figures indicate the same or enlarged equivalent parts. Agent Haku Tsutano - → Shokumura Hero pressure no v Kg/Cm2 Figure 3 11'i4 Figure @6

Claims (1)

【特許請求の範囲】[Claims] (1)電気回路素子及び密着し大ヒートシンク等管収納
ブゐ密閉容器と、上記ヒートシンク円に大〈わ見らねる
冷媒管供給ブる冷媒槽と、上記密閉容器1部K11ff
らnる冷却溜よシ冷媒を上記冷媒槽重で送るポンプと、
気化した上記冷媒を液化ブる凝縮器を設は大電気機器の
冷却1i1Kをいて、上記ヒートシンクは気化し大冷媒
管密閉容器円に放出ブる開口部taけ、気化し大鏡冷媒
か該密閉−5を充満し、電気回路の絶縁を保つことを特
徴とする電気機器の冷却装置。 情)冷媒1戻)管にて、上記凝縮−より該冷媒槽に導電
、上記ポンプ看小形とすることtt特徴とする特許請求
の範1第l潰記載の電気機器の冷却装置f。 C)上記電気回路素子、鋏ヒ“−トシンク及び鋏冷媒槽
にて構成されるブロックtm数個上下方向に積み重ね、
上記冷却溜より該ポンプにより最上段のブロックの冷媒
槽に冷媒を供給し、順次下のブ。 ロックの該ヒートシンクの冷媒液面を一足に保つことt
%徴とする特許請求範囲第1項記載の電気機器の冷却1
i1i。
(1) An airtight container for storing electrical circuit elements and large heat sink tubes that are in close contact with each other, a refrigerant tank that supplies refrigerant tubes that can be seen in the heat sink circle, and one part of the airtight container K11ff.
a pump that sends refrigerant from the cooling reservoir to the refrigerant tank;
A condenser that liquefies the vaporized refrigerant is installed in the cooling 1i1K for large electrical equipment, and the heat sink evaporates and releases the large refrigerant pipe into the sealed container. -5, and maintains insulation of an electric circuit. 1. A cooling device f for an electrical appliance according to claim 1, characterized in that the refrigerant (1) is electrically conductive from the condensation to the refrigerant tank through the refrigerant (1) return pipe, and the pump is small in size. C) Stacking several blocks tm consisting of the above electric circuit elements, scissor heat sinks, and scissor coolant tanks in the vertical direction,
The pump supplies refrigerant from the cooling reservoir to the refrigerant tank in the uppermost block, and then the refrigerant tank in the lower block. Keep the refrigerant liquid level on the heat sink of the lock at a constant level.
Cooling of electrical equipment according to claim 1 as a percentage 1
i1i.
JP14990481A 1981-09-22 1981-09-22 Cooler for electric device Pending JPS5851547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14990481A JPS5851547A (en) 1981-09-22 1981-09-22 Cooler for electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14990481A JPS5851547A (en) 1981-09-22 1981-09-22 Cooler for electric device

Publications (1)

Publication Number Publication Date
JPS5851547A true JPS5851547A (en) 1983-03-26

Family

ID=15485136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14990481A Pending JPS5851547A (en) 1981-09-22 1981-09-22 Cooler for electric device

Country Status (1)

Country Link
JP (1) JPS5851547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610265A (en) * 1992-04-28 1994-01-18 Unilever Nv Rinse conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610265A (en) * 1992-04-28 1994-01-18 Unilever Nv Rinse conditioner

Similar Documents

Publication Publication Date Title
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US4502286A (en) Constant pressure type boiling cooling system
US3852806A (en) Nonwicked heat-pipe cooled power semiconductor device assembly having enhanced evaporated surface heat pipes
US3270250A (en) Liquid vapor cooling of electrical components
US2886746A (en) Evaporative cooling system for electrical devices
JP3067399B2 (en) Semiconductor cooling device
US20050083655A1 (en) Dielectric thermal stack for the cooling of high power electronics
US3818983A (en) Cooled enclosure
US3261905A (en) Stationary induction apparatus cooling system
US4260014A (en) Ebullient cooled power devices
JPS5851547A (en) Cooler for electric device
JPS5749787A (en) Boiling cooler
JPH0897338A (en) Cooler for power semiconductor device
JPH0320070B2 (en)
JPH04196154A (en) Semiconductor cooling device
JPS59129577A (en) Cooler for electric device
JPS59195852A (en) Cooler of electric device
JPS59129578A (en) Cooler for electric device
JPS59129580A (en) Cooler for electric device
JPS59129579A (en) Cooler for electric device
JPH0442931Y2 (en)
JP4142334B2 (en) Electrically insulated heat pipe cooler
JP2001326310A (en) Electronic equipment cooling device
JP7168850B2 (en) Evaporator and cooling system
JPS60257158A (en) Semiconductor refrigerator