JPS60257158A - Semiconductor refrigerator - Google Patents

Semiconductor refrigerator

Info

Publication number
JPS60257158A
JPS60257158A JP59112214A JP11221484A JPS60257158A JP S60257158 A JPS60257158 A JP S60257158A JP 59112214 A JP59112214 A JP 59112214A JP 11221484 A JP11221484 A JP 11221484A JP S60257158 A JPS60257158 A JP S60257158A
Authority
JP
Japan
Prior art keywords
container
laminate
laminated body
snubber circuit
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59112214A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakahana
坂鼻 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59112214A priority Critical patent/JPS60257158A/en
Priority to KR1019850003727A priority patent/KR860000715A/en
Priority to AU43184/85A priority patent/AU555550B2/en
Publication of JPS60257158A publication Critical patent/JPS60257158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/112Mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce a wiring inductance to elements by a method wherein, when a laminated body comprising switching elements and diodes is immersed in refrigerant in an enclosed container for ebullition and condensation, the laminated body is divided to locate the side of part comprising the switching elements on the position adjacent to the terminal leading out part provided in the container. CONSTITUTION:Diodes 4, 4' and gate turn off thyristors 3, 3' respectively connected in series are contained in an enclosed container 12 while refrigerant 13 filled therein is communicated with a condenser 15 through a communicating tube 14 to the ebullition and condensation of the refrigerant 13 for refrigerating the contrained elements. In such a constitution, the thyristors 3, 3' and the diodes 4, 4' are respectively composed of the first laminated body S1 and the second laminated body S2 with the first laminated body S1 approaching to a terminal fitting surface 18. Through these procedures, the thyristor groups may approach to snubber circuit comprising a diode 5 and a condenser 6 outside the container 12 to reduce the wiring inductance without containing the snubber circuit in the container 12.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、インバータ装置、チョッパ装置などの半導体
装置に係り、特にスナバ回路を必要とする半導体装置に
適した半導体冷却装置に洪1する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to semiconductor devices such as inverter devices and chopper devices, and particularly to a semiconductor cooling device suitable for semiconductor devices requiring a snubber circuit.

〔発明の背景〕[Background of the invention]

インバータ装置などの半導体装置には、UTo。 UTo is used for semiconductor devices such as inverter devices.

8CJ)ランジスタなどによるスイッチング素子やダイ
オードを含む半導体素子が多数個使用されているが、こ
れらの素子には何らかの冷却手段を必要とする場合か多
い。
8CJ) A large number of semiconductor elements including switching elements such as transistors and diodes are used, but these elements often require some kind of cooling means.

第2図はインバータ装置の一例で、フィルタコンデンサ
1を介して供給されている直流電力を3相交流電力に変
換し、誘等電動機2に供給する働きをするもので、スイ
ッチング素子としてGTOを用いた例を示し、3,3′
がGTo、4.4’はフリーホイルダイオード、5.5
’はスナバ回路の抵抗、6.6’はスナバ回路のコンデ
ンサ、7.7’ハスナバ回路の抵抗、8は相短絡時の電
流制限用リアクトル、9は電流しゃ断時にリアクトル8
がらの電流を循環させるためのダイオードである。なお
、以上はU相についてだけ示したが、■相、W相につい
ても全く同じ構成となっている。
Figure 2 shows an example of an inverter device, which converts DC power supplied via a filter capacitor 1 into three-phase AC power and supplies it to an induction motor 2, using a GTO as a switching element. 3,3'
is GTo, 4.4' is freewheel diode, 5.5
' is the resistance of the snubber circuit, 6.6' is the capacitor of the snubber circuit, 7.7' is the resistance of the snubber circuit, 8 is the reactor for limiting current when a phase is shorted, and 9 is the reactor 8 when cutting off the current.
This diode is used to circulate the current. Incidentally, although the above has been shown only for the U phase, the ■ phase and the W phase have exactly the same configuration.

そして、このような半導体装置においての主な発+li
iはG’l’o3,3/とタイオート4,4′テあり、
したがって、このような装置では、これらδGTOやダ
イオードについてだけ何らかの冷却手段を適用すれば充
分である。
The main emission +li in such semiconductor devices is
i has G'l'o3,3/ and tie oto4,4'te,
Therefore, in such a device, it is sufficient to apply some kind of cooling means only to these δGTOs and diodes.

ところで、近年、このような半導体装置の冷却に、いわ
ゆる佛腑冷却方式が広く採用されるようVCなってきた
Incidentally, in recent years, the so-called Buddha cooling method has been widely adopted in VC for cooling such semiconductor devices.

第3図は第2図のインバータ装置に沸に律動方式を適用
した場合の従来例の一例を示したもので、12は密閉容
器、13は酢1s液、14は連結管、15は凝縮器、1
6は端子、17は縛体、18は端子取付面、19は市却
片(フィン)である。なお、Sは半導体素子の槓ノ一体
(スタック)を表わす。
Fig. 3 shows an example of a conventional example in which a rhythmic boiling method is applied to the inverter device shown in Fig. 2, where 12 is a closed container, 13 is a vinegar solution, 14 is a connecting pipe, and 15 is a condenser. ,1
6 is a terminal, 17 is a binding body, 18 is a terminal mounting surface, and 19 is a fin. Note that S represents a stack of semiconductor elements.

密封容器12は第2図に破線で示すように、インバータ
装置の各相([J、V、W)ごとに独立して設けられ、
内部にtjTO3,3’、ダイオード4゜4′、9と冷
却片19を積車ねた積層体Sを収容し、フロン113(
部品名)などの所定の冷媒液13を封入して浸漬しであ
る。
The sealed container 12 is provided independently for each phase ([J, V, W) of the inverter device, as shown by the broken line in FIG.
A stacked body S including tjTO3, 3', diodes 4°4', 9, and a cooling piece 19 is housed inside, and a fluorocarbon 113 (
A predetermined refrigerant liquid 13 such as part name) is sealed and immersed.

そこで、これらG ’l’ 0なとの発熱により積層体
Sの温度が上昇すると、冷媒液13に熱が与えられ、こ
の冷媒/&13が沸騰することにより積層体Sの一=1
“が奪われ、冷却が行なわれる。そして、沸騰により冷
媒液13から蒸発した蒸気は連結管14から凝縮器15
に入り、外気により冷却されて欣化し、再び連結管14
から尿ってくる。従って、この連続したサイクルにより
(jTOなどの半導体素子は効率よく冷却されることに
なる。
Therefore, when the temperature of the laminate S rises due to the heat generated by these G 'l' 0, heat is given to the refrigerant liquid 13, and this refrigerant /&13 boils, so that the laminate S becomes 1 = 1
The vapor evaporated from the refrigerant liquid 13 by boiling is transferred from the connecting pipe 14 to the condenser 15.
It enters the connecting pipe 14, is cooled by the outside air, and then returns to the connecting pipe 14.
Urine comes from Therefore, by this continuous cycle, semiconductor elements such as (jTO) are efficiently cooled.

次に、この第3図の従来例では、その密閉容器12の中
に積層体Sのほかスナバ回路のダイオード5.5’、 
コンデンサ6.6′なども一緒に収容されている。
Next, in the conventional example shown in FIG. 3, in addition to the laminated body S, the snubber circuit diode 5.5',
Capacitors 6 and 6' are also housed together.

しかして、これらは、上記したように、ことさら冷却の
要はないものである。
However, as mentioned above, these do not require any particular cooling.

にもかかわらす、これらが密閉容器12の中に収容しで
ある理由は次のとおりである。すなわち、スナバ回路は
G’l’03,3’を保雌するためのものであり、従っ
て、そのダイオード5.5′とコンデンサ6.6′とは
GTO3,3’の両端子間に可能な限り短かい接続路で
結合されなければf[らない。
However, the reason why these are housed in the closed container 12 is as follows. In other words, the snubber circuit is to protect G'l'03, 3', and therefore the diode 5.5' and capacitor 6.6' are connected between the terminals of GTO3, 3'. Unless they are connected by the shortest connection path, there is no f[.

つまり、第2図の接続点aとb、或いはCとdに対する
ダイオード5,5′とコンデンサ6.6′からの接続線
が長くなると、この間での配線のインダクタンスが大き
くなり、GTO3,3’が電流をしゃ断したときに発生
する高電圧をスナバ回路によって充分に吸収することが
できな(なって保護機能が得られなくなってしまうから
である。
In other words, as the connection lines from diodes 5, 5' and capacitors 6.6' to connection points a and b or C and d in FIG. This is because the snubber circuit cannot sufficiently absorb the high voltage generated when the current is cut off (thus, the protective function cannot be obtained).

そこで、いま、これらスナバ回路用のダイオード5,5
′とコンデンサ6.6′を密閉容器12の中に収容しな
かったとすれば、第4図に示すように、端子16を介し
て外部のダイオード5,5′とコンデンサ6j 6’を
a’r03,3/に接続しなければならす、このため、
たとえ、第4図のように、積層体S中でのGTO3,3
’の位置を端子16の方に移したとしても、これらの間
の配線の長さはLlで示すように長くなってしまい、充
分な保護機能が得られなくなってしまうことになり、こ
れが第3図の従来例でダイオード5,5′やコンデンサ
6#6′を積層体Sと一緒に密閉容器12の中に収容し
である理由である。
Therefore, we will now introduce diodes 5 and 5 for these snubber circuits.
If the capacitors 6 and 6 are not housed in the sealed container 12, the external diodes 5 and 5' and the capacitors 6 and 6 are connected to a'r03 through the terminals 16, as shown in FIG. , 3/, therefore,
For example, as shown in FIG. 4, GTO3,3 in the stack S
Even if the position of ' is moved toward the terminal 16, the length of the wiring between them will become longer as shown by Ll, and a sufficient protective function will not be obtained, which is the reason for the third This is why in the conventional example shown in the figure, the diodes 5, 5' and the capacitor 6#6' are housed together with the laminate S in the closed container 12.

ところで、このような半導体冷却装置における密閉容器
12内の圧力は、低温時でのほぼ真空状態から高温時で
の数気圧まで常時変動する。
Incidentally, the pressure inside the closed container 12 in such a semiconductor cooling device constantly fluctuates from a substantially vacuum state at low temperatures to several atmospheres at high temperatures.

従って、この容器の中に収容される素子や部品などは全
て上記した圧力変化に耐えるものとなっていなければな
らない。
Therefore, all the elements and parts housed in this container must be able to withstand the above-mentioned pressure changes.

しかして、半導体素子などでは、このような圧力変動に
よる問題点はほとんどないか、一般のコンデンサではこ
のような圧力変動に耐えるものとはなっていない。そこ
で、第3図の従来例ではコンデンサ6.6′に特殊仕様
のものを用いる必要がある。
However, in semiconductor devices and the like, there are almost no problems caused by such pressure fluctuations, or general capacitors are not designed to withstand such pressure fluctuations. Therefore, in the conventional example shown in FIG. 3, it is necessary to use capacitors 6, 6' of special specifications.

また、コンデンサは減圧雰囲気中では耐電出が低下する
という性質がおり、このため、第3図の従来例では、コ
ンデンサ6.6′として耐電圧に充分余裕をもったもの
を用いる必要がある。
Further, capacitors have a property that their electric current resistance decreases in a reduced pressure atmosphere, and for this reason, in the conventional example shown in FIG. 3, it is necessary to use capacitors 6 and 6' that have a sufficient margin in voltage resistance.

さらに、第3図の従来例では、積層体Sだけではなくて
、これに加えてコンデンサ6.6′も収容しなければな
らないから、密閉容器12に大きな容積が必要になる。
Furthermore, in the conventional example shown in FIG. 3, not only the laminate S but also the capacitors 6 and 6' must be accommodated, so the closed container 12 requires a large volume.

以上の結果、上記第3図に示した従来例では、スナバ回
路用のコンデンサに特殊仕様のものが必要な上、その耐
圧にも充分な余裕をもたせる必要があり、加えて密閉容
器が大型化するため、コストアップが者しいという欠点
かあった。
As a result of the above, in the conventional example shown in Figure 3 above, the capacitor for the snubber circuit requires a special specification, it also needs to have sufficient margin for its withstand voltage, and in addition, the sealed container becomes large. Therefore, the disadvantage was that the cost was likely to increase.

また、我が国では、この密閉容器のようにかなりの内圧
を生じるものでは、その内容積が所定の大きさ以上にな
った場合に圧力容器としての法的な規制を受けるように
なる。そして、容器がこのような法的規制を受けるよう
になると、そのコストは大きく上昇するようになる。
Furthermore, in Japan, a sealed container that generates a considerable amount of internal pressure is legally regulated as a pressure vessel if its internal volume exceeds a predetermined size. If containers are subject to such legal regulations, their costs will rise significantly.

従って、上記した従来例のように、スナバ回路用のコン
デンサまで密閉容器に収容した場合には、その分だけ密
閉容器の容積が増加し、このコンデンサを収容しなげれ
ば受けないで済んだであろう法的規制を受けることにな
ってしまう場合を生じてしまうという欠点があった。
Therefore, if the capacitor for the snubber circuit is housed in a sealed container as in the conventional example described above, the volume of the sealed container will increase by that amount, and if this capacitor is not housed, it will not be damaged. This has the disadvantage that it may result in legal restrictions being imposed.

そこで、このような従来例の欠点を除くための提案が種
油なされているが、例えは特開昭59−10248号の
発明などもその一つ一〇ある。
Therefore, proposals have been made to eliminate such drawbacks of the conventional examples, and one example is the invention of Japanese Patent Application Laid-open No. 10248/1983.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の争悄に−みてなされたもので、その目
的とするところは、簡単な構成でスナバ回路用のコンデ
ンサを密閉容器外に設けても配線長を充分に短か(する
ことができるようにした半導体冷却装置を提供するにあ
る。
The present invention has been made in view of the above-mentioned concerns, and its purpose is to provide a simple structure with a sufficiently short wiring length even if the capacitor for the snubber circuit is provided outside the sealed container. An object of the present invention is to provide a semiconductor cooling device that can perform the following steps.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、半得体系子の積層
体を2つに分割し、その一方の積層体の側部を密閉容器
内の端子引出部に近接して取付けるようにした点を性徴
とする。
In order to achieve this object, the present invention has a structure in which the laminate of the semi-solid element is divided into two parts, and the side of one of the laminates is attached close to the terminal pull-out part in the airtight container. is a sexual characteristic.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による半導体冷却装置について、図示の実
施例により詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the semiconductor cooling device according to the present invention will be explained in detail with reference to illustrated embodiments.

第1図は本発明の一災施Vuで、この図において、Sl
は第1の積層体、Slは@2の槓j一体を表わし、その
他の符号は第3図の従来例と同じ栴成要糸を表わす。
FIG. 1 shows the disaster application Vu of the present invention, and in this figure, Sl
indicates the first laminate, S1 indicates the @2 laminate, and other symbols indicate the same threads as in the conventional example shown in FIG.

8+41の積層体S、はGTO3,3’と冷却片19を
積層したもので、その側部が密閉容器12の端子取付面
18に充分接近するようにして、この密閉容器12の中
に保持されている。
The 8+41 laminate S is a stack of the GTOs 3, 3' and the cooling piece 19, and is held in the hermetic container 12 so that its sides are sufficiently close to the terminal mounting surface 18 of the hermetic container 12. ing.

第2のM麺体S2はダイオード4.4’、それに9と、
冷却片19とを積層したもので、第1の8を増体S、と
並べて密閉容器12の中に保持されている。
The second M noodle body S2 has a diode 4.4' and 9;
The cooling pieces 19 are stacked together, and the first 8 and the cooling pieces S are held side by side in the closed container 12.

この結果、1.1TO3,3’から外部への配線は、端
子16を介しただけでほとんどそのまま引出すことがで
き、スナバ回路のダイオード5,5′やコンデンサ6.
6′を密閉容器12の外に設けても、それに対する配線
長し、は図示のように最短距離とすることができ、従っ
て、との実施例によれば、コンデンサ6.6′を密閉容
器12の外に設置したにもかかわらず、GTO3,3’
とスナバ回路との間の配線インダクタンスは充分に少く
抑えられ、GTO3,3′の保護を確実に侍ることがで
きる。
As a result, the wiring from 1.1TO3, 3' to the outside can be led out almost as is, just via the terminal 16, and the diodes 5, 5' of the snubber circuit and the capacitor 6.
Even if the capacitor 6' is provided outside the sealed container 12, the wiring length for it can be made the shortest distance as shown in the figure. Therefore, according to the embodiment, the capacitor 6. Despite being installed outside of 12, GTO3,3'
The wiring inductance between the snubber circuit and the snubber circuit can be suppressed to a sufficiently low level, and the GTOs 3 and 3' can be reliably protected.

なお、この第1図の実施例では、谷&増俸S1とS、が
、その積層方向を縦にして、つまり、はぼ円板状をした
GTOやダイオード、それに冷却片などが水平になった
状態で密閉容器12の中に収められているが、これら檀
J@体S1 + S2を横に12、qTOなどが縦にな
るように配慮してもよい。
In the embodiment shown in Fig. 1, the stacking directions of the valleys and increases S1 and S are vertical, and that is, the disc-shaped GTO, diode, cooling plate, etc. are horizontal. Although they are housed in a closed container 12 in a closed state, consideration may be given so that these bodies S1 + S2 are arranged horizontally and qTO, etc. are arranged vertically.

また、以上の実施例では、スナバ回路を心安とするスイ
ッチング系子がU ’r uの場合Vこついてだけ示し
たが、SCRやトランジスタなどによるスイッチング素
子としても実施可能なことはいうまでもない。
In addition, in the above embodiment, only the case where the switching element that can safely be used as a snubber circuit is V is shown, but it goes without saying that it can also be implemented as a switching element such as an SCR or a transistor. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれは、槓ノ一体のスイ
ッチング系子に対する外部引出配線のインダクタンスを
充分に小さく抑えゐことができるから、スナバ回路用の
コンチンサラ密閉容器の外に設置することができ、この
結果、スナバ回路用のコンデンサに対する暮囲気圧力の
大きな変動がなくなるので特殊仕様や筒劇圧のものとす
る必要がなくなり、小形でローコストのコンデンサか使
用できる。
As explained above, according to the present invention, the inductance of the external wiring for the switching system integrated with the ram can be kept sufficiently small, so that it can be installed outside the continuous airtight container for the snubber circuit. As a result, large fluctuations in ambient air pressure relative to the snubber circuit capacitor are eliminated, so there is no need for special specifications or cylinder pressure, and a small, low-cost capacitor can be used.

また、本発明によれは、スナバ回路用のコンデン垂を積
層体と一緒に密閉容器内に収容する必敦がないから、密
閉容器を小形化でき、圧力容器としての規定を受けない
で済む場合が多くなり、この面でのローコスト化も期待
できる。
Further, according to the present invention, since there is no need to house the condensate droplet for the snubber circuit in the sealed container together with the laminate, the sealed container can be made smaller and does not need to be regulated as a pressure vessel. In this respect, lower costs can be expected.

さらに、コンデンサを比較的高温になる冷媒液中に収め
る必要がないから、コンデンサの劣化の虞れが少く、高
い信頼性を容易に得ることができる。
Furthermore, since there is no need to place the capacitor in a refrigerant liquid that becomes relatively high temperature, there is less risk of deterioration of the capacitor, and high reliability can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体冷却装置の一実施例を示す
断面図、第2図は本発明の適用対象の一例であるインバ
ータ装置の回路図、編3図は半導体冷却装置の従来例を
示す断面図、第4図は従来例の問題点に対する説明図で
ある。 3.3′・・・・・・ <iTo、4.4’、g・・・
・・・ダイオード。 5.5′・・・・・・スナバ回路用ダイオード、6.6
′・・・・・・スナバ回路用コンデンサ、12・・・・
・・密閉容器、13・・・・・・冷媒液、】5・・・・
・・凝糊器、16・・・・・・端子、18・・・・・・
端子取付面、19・・・・・・冷却片# 51aSt・
・・・・・積層体。 第1図 5
Fig. 1 is a sectional view showing an embodiment of a semiconductor cooling device according to the present invention, Fig. 2 is a circuit diagram of an inverter device which is an example of the application of the present invention, and Fig. 3 shows a conventional example of a semiconductor cooling device. The sectional view, FIG. 4, is an explanatory view of the problems of the conventional example. 3.3'...<iTo, 4.4', g...
···diode. 5.5'... Diode for snubber circuit, 6.6
'... Capacitor for snubber circuit, 12...
... Airtight container, 13 ... Refrigerant liquid, ]5 ...
・・Sizing device, 16・・・・・・Terminal, 18・・・・・・
Terminal mounting surface, 19...Cooling piece #51aSt・
...Laminated body. Figure 1 5

Claims (1)

【特許請求の範囲】 1、 スイッチング素子とダイオードとを含む半導体素
子の槓I一体を密閉容器中の冷媒液に浸漬し、冷媒液の
沸騰・#I!縮作用により冷却を行なう方式の半導体冷
却装置において、上記積層体を、スイッチング素子を宮
む第1の4”k層体部分とダイオードを含0第2の積層
体部分とに分割し、この第1の積層体部分を、その側部
が上記密閉容器に形成されている端子引出部の近傍に位
置するように配置したことを特徴とする半導体冷却装置
。 2、特許請求の範囲第1項Vこおいて、上記第1の積層
体部分と第2の積層体部分とがそれらの側部が対向する
ようにして配置され、かつ、上記密閉容器の端子引出部
が形成されている壁面と上記第1の積層体部分の側部と
が平行になるように配置されていることを特徴とする半
導体冷却装置。
[Claims] 1. Immerse a semiconductor element including a switching element and a diode in a refrigerant liquid in a closed container, and boil the refrigerant liquid. In a semiconductor cooling device that performs cooling by compression, the laminate is divided into a first 4"k laminate portion that houses the switching element and a second 4"k laminate portion that includes the diode. A semiconductor cooling device characterized in that the laminate portion of No. 1 is disposed such that its side portion is located near a terminal pull-out portion formed in the airtight container. 2. Claim 1: V In this case, the first laminate part and the second laminate part are arranged such that their sides face each other, and the wall surface on which the terminal pull-out part of the sealed container is formed and the above-mentioned A semiconductor cooling device characterized in that the semiconductor cooling device is arranged so that the side portions of the first laminate portion are parallel to each other.
JP59112214A 1984-06-02 1984-06-02 Semiconductor refrigerator Pending JPS60257158A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59112214A JPS60257158A (en) 1984-06-02 1984-06-02 Semiconductor refrigerator
KR1019850003727A KR860000715A (en) 1984-06-02 1985-05-29 Semiconductor chiller
AU43184/85A AU555550B2 (en) 1984-06-02 1985-05-31 Semiconductor device with cooling means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112214A JPS60257158A (en) 1984-06-02 1984-06-02 Semiconductor refrigerator

Publications (1)

Publication Number Publication Date
JPS60257158A true JPS60257158A (en) 1985-12-18

Family

ID=14581108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112214A Pending JPS60257158A (en) 1984-06-02 1984-06-02 Semiconductor refrigerator

Country Status (3)

Country Link
JP (1) JPS60257158A (en)
KR (1) KR860000715A (en)
AU (1) AU555550B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006592A1 (en) * 1988-12-05 1990-06-14 Sundstrand Corporation Hydrostatic clamp for compression type power semiconductors
DE102013215913A1 (en) * 2013-08-12 2015-02-12 Siemens Aktiengesellschaft High voltage diode rectifier
DE102013215911A1 (en) * 2013-08-12 2015-02-12 Siemens Aktiengesellschaft High voltage diode rectifier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU618203B2 (en) * 1989-09-29 1991-12-12 Mitsubishi Denki Kabushiki Kaisha Boiling type cooler device for power semiconductor switching elements
GB2565138A (en) * 2017-08-04 2019-02-06 Adaptix Ltd X-ray generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006592A1 (en) * 1988-12-05 1990-06-14 Sundstrand Corporation Hydrostatic clamp for compression type power semiconductors
DE102013215913A1 (en) * 2013-08-12 2015-02-12 Siemens Aktiengesellschaft High voltage diode rectifier
DE102013215911A1 (en) * 2013-08-12 2015-02-12 Siemens Aktiengesellschaft High voltage diode rectifier

Also Published As

Publication number Publication date
KR860000715A (en) 1986-01-30
AU555550B2 (en) 1986-10-02
AU4318485A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US10574151B2 (en) Inverter capacitor with phase-out bus bar
US4941530A (en) Enhanced air fin cooling arrangement for a hermetically sealed modular electronic cold plate utilizing reflux cooling
US4944344A (en) Hermetically sealed modular electronic cold plate utilizing reflux cooling
JPH0779576A (en) Half bridge device
JP2005012940A (en) Inverter device
CN106033934A (en) Integrated power conversion circuit assembly module
JP2896454B2 (en) Inverter device
JPS60257158A (en) Semiconductor refrigerator
EP0590502B1 (en) Inverter apparatus for electric rolling stock
US11533012B2 (en) High-density integrated power control assemblies having shared cooling system with a motor
US5381330A (en) Half-bridge arrangement for switching electrical power
JPS6285449A (en) Cooling structure for semiconductor device
US11545874B2 (en) Thermal management assemblies for electronic assemblies circumferentially mounted around a motor using a flexible substrate
JP6721066B2 (en) Power converter
JP2015053775A (en) Semiconductor power conversion device
WO2021065259A1 (en) Semiconductor device
JP2013089924A (en) Ebullient cooling device
JPS636148B2 (en)
CN85104187A (en) Semiconductor subassembly with cooling device
Kranzer et al. Aspects of filter design and isolation for medium voltage drives inverters with 6.5 kV SiC-MOSFETs and high Switching Frequency
JPH02161760A (en) Semiconductor stack
JPS5855834Y2 (en) Air-cooled electrical equipment
JPH06225548A (en) Inverter device for electric rolling stock
JPH1167996A (en) Semiconductor stack provided with device for cooling through boiling
RU1790014C (en) Power semiconductor module