JPS5850767A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5850767A
JPS5850767A JP14791281A JP14791281A JPS5850767A JP S5850767 A JPS5850767 A JP S5850767A JP 14791281 A JP14791281 A JP 14791281A JP 14791281 A JP14791281 A JP 14791281A JP S5850767 A JPS5850767 A JP S5850767A
Authority
JP
Japan
Prior art keywords
layer
impurity concentration
diffused layer
insulating film
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14791281A
Other languages
Japanese (ja)
Inventor
Kenzo Masuda
増田 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14791281A priority Critical patent/JPS5850767A/en
Publication of JPS5850767A publication Critical patent/JPS5850767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To offer a semiconductor device containing capacity elements wherein resistance components are greatly reduced, by forming a diffused layer with low impurity concentration and one with high impurity concentration on the surface of a semiconductor substrate resulting in one side electrode of the capacity element. CONSTITUTION:A capacity element is constituted of a conductive poly Si layer 5 as one side electrode and of the diffused layer 3 with relatively low impurity concentration formed on the surface of the semiconductor substrate 2 via an insulating film 1 thereunder as the other side electrode. Since the diffused layer 3 is relatively larger in its resistance value, a diffused layer 4 with relatively higher impurity concentration is provided in the periphery of the end part thereof. Since the resistance value the diffused layer 3 has is not sufficiently reduced by the diffused layer 4, the diffused layer 4' with relatively higher impurity concentration is formed at approximately a central part of the diffused layer 3 by selectively removing the insulating film 1 and the poly Si layer 5. The diffused layer 4 and the diffused layer 4' formed on the central part are electrically connected by an Al layer 6 formed via an inter layer insulating film 1' formed on the surface of the conductive poly Si layer 5 and thus are taken out as the other side electrode of the capacity element.

Description

【発明の詳細な説明】 この発明は、半導体基板上に形成される容量素子を含む
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device including a capacitive element formed on a semiconductor substrate.

導電性ポリシリコンゲート等のセルファラインmMI8
FET(絶縁ゲート電界効果トランジスタ)回路におい
て、−容量、素子を形成する場合、第1図に示すようK
、絶縁膜1の下の半導体基板2の表面に、イオン打ち込
みなどの方法により不純物濃度の低い拡散層3を形成す
るとともに、上記絶縁膜1の端部の半導体基板20表面
に不純物濃度の高い拡散層4を形成して容量素子の一方
の電極とする。■L上配絶縁膜lの上に導電性ポリシリ
コン層5を形成して容量素子の他方の電極とする。
Self-line mMI8 such as conductive polysilicon gate
In a FET (insulated gate field effect transistor) circuit, when forming a -capacitance element, K is as shown in Figure 1.
, a diffusion layer 3 with a low impurity concentration is formed on the surface of the semiconductor substrate 2 under the insulating film 1 by a method such as ion implantation, and a diffusion layer 3 with a high impurity concentration is formed on the surface of the semiconductor substrate 20 at the end of the insulating film 1. A layer 4 is formed to serve as one electrode of the capacitive element. (2) A conductive polysilicon layer 5 is formed on the L upper insulating film 1 to serve as the other electrode of the capacitive element.

上記の容量素子は、公知のディプレッジ冒ンモードのM
ISFETの製造工程をそのまま利用して形成すること
ができる。すなわち、上記不純物濃度の低い拡散層3は
、ディプレッジ璽ンモート。
The above capacitive element has M
It can be formed using the ISFET manufacturing process as is. That is, the diffusion layer 3 with a low impurity concentration is a depression layer.

MI8FB’rのチャンネル領域を形成する工lilT
Lよって同時Vct成でき、上記拡散層4及び導電性ポ
リシリコン層5GS、MISFETのソース、ドレイン
ちびゲー!−電極を形成する工程にミーて形成できる。
Techniques for forming the channel region of MI8FB'r
Therefore, Vct can be formed simultaneously, and the diffusion layer 4, the conductive polysilicon layer 5GS, the source and drain of the MISFET can be formed at the same time. - Can be formed in accordance with the process of forming electrodes.

上記構造の容量素子にあっては、不純物濃度の低い拡散
層の有する比較的大な抵抗値のために、82図の等価回
路柁示すように、抵抗成分を多く持つことになるため、
容量素子としてのQが低くなるという欠点がある。
The capacitive element with the above structure has a large resistance component, as shown in the equivalent circuit diagram of Figure 82, due to the relatively large resistance value of the diffusion layer with a low impurity concentration.
There is a drawback that the Q as a capacitive element is low.

この発明の4目的は、製造工程を増加させることなく、
抵抗成分を大幅に減少させた容量′素子を含む半導体装
置を提供することにある。
The four objectives of this invention are to:
An object of the present invention is to provide a semiconductor device including a capacitive element whose resistance component is significantly reduced.

この発明の他の目的は、以命の説明竺び図面から明らか
になるであろう。
Other objects of the invention will become apparent from the accompanying description and drawings.

第3図は、この発明の一実施例を示す容量素子のレイア
ウトパターン図、第4図は、そのA−B断面図である。
FIG. 3 is a layout pattern diagram of a capacitive element showing an embodiment of the present invention, and FIG. 4 is a sectional view taken along line AB thereof.

第3図において、点線で示した部分は、比較的高不純物
濃度の拡散層4,4′であり、一点線鎖線で示した部分
は、容量素子の一方の電極を構成する導電性ポリシリコ
ン層5である。
In FIG. 3, the parts indicated by dotted lines are diffusion layers 4, 4' with relatively high impurity concentration, and the parts indicated by dashed and dotted lines are conductive polysilicon layers constituting one electrode of the capacitive element. It is 5.

また、実線で示した部分は、アルミニウム層6であり、
主として上記拡散層4,4′間を接続する、ためのもの
である。
In addition, the part indicated by the solid line is the aluminum layer 6,
It is mainly used to connect the diffusion layers 4 and 4'.

以下、゛第3図及び第4図に従って、この実施例の容量
素子の構造を説明する。
The structure of the capacitive element of this embodiment will be described below with reference to FIGS. 3 and 4.

容量□1..、よ。導、性ポIJ71J:ry、415
ヶー万の電極とし、その下に絶縁膜1を介し1半導体基
板10表面に形成された比較的低不純物濃度の拡散層3
を他方の電極として構成される。。上記他力の電極を構
成する拡散層3は、その抵抗値が比較的大きいため、そ
の端部周辺忙比較的高不純物濃度の拡散層4が設けられ
ている。この実施例では、上記拡散層4によっては、上
記拡散層8の有する抵抗値が十分艷低減されないこ゛と
より、上記拡散層3の約中央部分に王妃絶縁膜1及び導
電性ポリシリコン層5を選択的忙除去して、上記同様な
比較的高不純物濃度の拡散層4′を形成する。
Capacity □1. .. ,Yo. Guide, sex point IJ71J:ry, 415
A diffusion layer 3 with a relatively low impurity concentration is formed on the surface of the semiconductor substrate 10 with an insulating film 1 interposed therebetween.
is configured as the other electrode. . Since the diffusion layer 3 constituting the above-mentioned passive electrode has a relatively large resistance value, a diffusion layer 4 having a relatively high impurity concentration is provided around its end. In this embodiment, since the resistance value of the diffusion layer 8 is not sufficiently reduced by the diffusion layer 4, the queen insulating film 1 and the conductive polysilicon layer 5 are selected at approximately the center of the diffusion layer 3. By selectively removing the impurity, a diffusion layer 4' having a relatively high impurity concentration similar to that described above is formed.

そして、上記端部周辺に設けられた拡散層4と中央部分
に形成された拡散層4′とを、上記導電性ポリシリコン
層50表面忙形成された層間絶縁膜1を介して形成され
たアルミニウム層6によって電気的に接続して、上記容
量素子の他方の電極として取り出すものである。
The diffusion layer 4 provided around the end portion and the diffusion layer 4' formed in the central portion are connected to the conductive polysilicon layer 50 through an interlayer insulating film 1 formed on the surface of the conductive polysilicon layer 50. It is electrically connected through the layer 6 and taken out as the other electrode of the capacitive element.

この実施例では、上記アル′ミエウム層94丁、単に拡
散層4,4′間を電気的に接続するだけにとどまらず、
上記層間絶縁膜1′を介して導電性ポリシリコン・層5
の上□に重ね合せ・ている。これにより上記拡散層・4
′を形成するために減少した導電性ポリシリコン層と半
導体基板表面の拡散層3とのMI8容量を補なって余゛
りあるよ、うな容量値を得るこ・とができる。したがっ
て、所定の容量値を得るための容量素子の占有面積を小
さくできる。
In this embodiment, the 94 aluminum layers do not merely electrically connect the diffusion layers 4 and 4';
A conductive polysilicon layer 5 is formed through the interlayer insulating film 1'.
It is superimposed on the top □. As a result, the above-mentioned diffusion layer 4
It is possible to obtain such a capacitance value that more than compensates for the MI8 capacitance between the conductive polysilicon layer and the diffusion layer 3 on the surface of the semiconductor substrate, which is reduced due to the formation of the semiconductor substrate. Therefore, the area occupied by the capacitive element for obtaining a predetermined capacitance value can be reduced.

■机上記拡散層4′を設けるとともに、端部周辺の拡散
層4と電気的に接続すること・Kより、上記拡散層3に
おける分布抵抗値が小さくなることに並列形111に*
絖されることの結果、上記拡散層3における等価抵抗値
を大幅に減少させることができる。
■Providing the diffusion layer 4' above the desk and electrically connecting it to the diffusion layer 4 around the edge ・Because of K, the distributed resistance value in the diffusion layer 3 becomes smaller, and the parallel type 111 *
As a result of this, the equivalent resistance value in the diffusion layer 3 can be significantly reduced.

そして、IVIVC制限されないが、上記容量素子は公
知のセルファライン型のディプレッジ曹ン篭−ドのMI
SFETの製造工程を利用して形成″′C′きるため1
%別な製造工程を追加する必要がない。
Although not limited to IVIVC, the above-mentioned capacitive element can be used as a MI of a well-known self-line type depression cord.
Formed using SFET manufacturing process 1
There is no need to add separate manufacturing processes.

上述のように、この実施例に係る容、量素子は、抵抗成
分の小さなものとなるので2.そのQを高くすることが
できる。         。
As mentioned above, the capacitor/quantitative element according to this embodiment has a small resistance component, so 2. Its Q can be increased. .

このように抵抗成分を小さぐした容量素子、は、特に制
限されtいが、高周波発振回路を構廖する回路素子とし
て有段なものとなる。さらに、実質的な容量値を大きく
した容量素子として線用できるので、各種モノリシック
ICK広(利用できる。
Although there are no particular restrictions, a capacitive element with a reduced resistance component can be used as a circuit element for constructing a high-frequency oscillation circuit. Furthermore, since it can be used as a line capacitive element with a large actual capacitance value, various monolithic ICKs can be used.

この場合、この冥施例における容量素子は、ディグレッ
ジ、ンモードのMI8.FETと同時JC形成で′t!
るため・ディグレッジ智ンモー)”QMI81i’ET
を含むモノリシックIC1c適・シタものということが
できる。
In this case, the capacitive element in this embodiment is a degree mode MI8. JC formation at the same time as FET!'t!
QMI81i'ET
It can be said that it is suitable for monolithic IC1c including.

この発明は、前記実施例に限定されない。The invention is not limited to the above embodiments.

MI8容量を構成する第1層目の導電性ポリシリコ、ン
層及び絶縁膜を部分的に除去し1設けられる比較的高不
純物濃度の拡散層4′は、複数個設けるものであっても
よい。また、比較的低不純物濃度の拡散層3の端!fl
VC設けられる比較的高不純物濃度の拡散層4は、上記
周辺端部に分割して設けて。
A plurality of relatively high impurity concentration diffusion layers 4' may be provided by partially removing the first conductive polysilicon layer and the insulating film constituting the MI8 capacitor. Also, the end of the diffusion layer 3 with relatively low impurity concentration! fl
The relatively high impurity concentration diffusion layer 4 provided with VC is divided and provided at the peripheral end portion.

一方の電極を構成する第1層目の導体層とは分離された
第1層目の導体層又は第2層目の導体層を利用して相互
[接続する本のであってもよい。
The first conductor layer constituting one electrode may be connected to each other using a first conductor layer or a second conductor layer separated from the first conductor layer.

さらに、上記第2層目の導体層は、アルミニウム層の他
に導電性ポリシリコン層を用いる亀のであってもよい。
Further, the second conductive layer may be a conductive polysilicon layer in addition to the aluminum layer.

そして、3層以上の多線配線構造のIcでは、上記拡散
層4,4′間を接続するために、第3層目以上の導体層
を利用して行なうものであって本よい。
In Ic having a multi-wire wiring structure of three or more layers, it is preferable to use a third or higher conductor layer to connect the diffusion layers 4 and 4'.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の容量素子の一例を示す構造断面図、第
2図は、その等価回路図、第3図は、この発明の一実施
例を示すレイアウトパターン図、@4図は、その断面図
である。 1・・・絶縁膜、1′・・・層間絶jlJ[、2・・・
半導体基板、3・・・拡散層、4,4′・・・拡散層、
5・・・導電性ポリシリコン層、6・・・アルミニウム
層。 第  1  図 第 21’21 第  4  図
Fig. 1 is a structural cross-sectional view showing an example of a conventional capacitive element, Fig. 2 is its equivalent circuit diagram, Fig. 3 is a layout pattern diagram showing an embodiment of the present invention, and Fig. @4 is its equivalent circuit diagram. FIG. 1... Insulating film, 1'... Interlayer isolation jlJ[, 2...
Semiconductor substrate, 3...diffusion layer, 4,4'...diffusion layer,
5... Conductive polysilicon layer, 6... Aluminum layer. Figure 1 Figure 21'21 Figure 4

Claims (1)

【特許請求の範囲】 1、第1導電製の半導体基板上に形成され、比較的不純
物濃度の低い第2導電型の第1の半導体領域と、この半
導体領域上に絶縁膜を介して形成された導体層と、上記
第1の半導体領域の周辺に設けられ、比較的不純物濃度
の高い第2導電製の第2の半導体領域と、上記導体層及
び絶縁膜を部分的に除去して上記第1の半導体領域−面
に設けられ、比較的不純物濃度の高い第2導電型の第3
の半導体領域とを具備し、上記導体層を一方の電極とし
、上記第2.第30牛導′体領域を電気的に接続して他
方の電極取り出し点とする容量素子を含むことを特徴と
する半導体装置。 2、上記第1の半導体領域は、少なくとも絶縁膜を通し
て行なわれるイオン打ち込み法によって形成され、第2
.第3の半導体領域は、上記絶縁膜をマスクの一部とし
て同時に形成されるものであることを特徴とする特許請
求の範囲第1項記載の半導体装置。
[Claims] 1. A first semiconductor region of a second conductivity type formed on a semiconductor substrate made of a first conductivity and having a relatively low impurity concentration; a second conductive layer provided around the first semiconductor region and made of a second conductive material with a relatively high impurity concentration; A third semiconductor region of the second conductivity type provided on the first semiconductor region-plane and having a relatively high impurity concentration.
a semiconductor region, the conductor layer is one electrode, and the second semiconductor region is the semiconductor region. A semiconductor device comprising a capacitive element electrically connected to the 30th conductor region to serve as the other electrode extraction point. 2. The first semiconductor region is formed by an ion implantation method performed through at least an insulating film, and the second
.. 2. The semiconductor device according to claim 1, wherein the third semiconductor region is formed simultaneously using the insulating film as part of a mask.
JP14791281A 1981-09-21 1981-09-21 Semiconductor device Pending JPS5850767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14791281A JPS5850767A (en) 1981-09-21 1981-09-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14791281A JPS5850767A (en) 1981-09-21 1981-09-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5850767A true JPS5850767A (en) 1983-03-25

Family

ID=15440912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14791281A Pending JPS5850767A (en) 1981-09-21 1981-09-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5850767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261855A (en) * 1988-04-12 1989-10-18 Nec Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104088A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Mis capacitor
JPS5558561A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Semiconductor capacitance element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104088A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Mis capacitor
JPS5558561A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Semiconductor capacitance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261855A (en) * 1988-04-12 1989-10-18 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPH02228063A (en) Radio frequency integrated circuit channel capacitor
KR910020906A (en) Semiconductor device and manufacturing method thereof
US3643139A (en) Integrated circuit having four mosfet devices arranged in a circle surrounding a guard diffusion
JPS5850767A (en) Semiconductor device
US5637526A (en) Method of making a capacitor in a semiconductor device
JPS58213460A (en) Semiconductor integrated circuit device
KR840000082A (en) Semiconductor Memory and Manufacturing Method
EP0104754A1 (en) Metal insulator semiconductor device with source region connected to a reference voltage
JPS5951143B2 (en) MIS type semiconductor device
JPS6074665A (en) Semiconductor device
JPS62234363A (en) Semiconductor integrated circuit
JPH1065148A (en) Semiconductor device and its manufacture
JPS61170057A (en) Vertical type capacitor
JPS5944787B2 (en) MOS type ROM
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JPS61224348A (en) Semiconductor integrated circuit device
KR940009351B1 (en) Edge seal and manufacturing method of a semiconductor chip
JP2512902B2 (en) Method for manufacturing semiconductor memory device
JPS6149458A (en) Semiconductor integrated circuit device
JPS60153167A (en) Semiconductor ic
JPH03276680A (en) Semiconductor device and manufacture thereof
JPS6141152B2 (en)
JPS59985B2 (en) Semiconductor integrated circuit device
JPS62176154A (en) Semiconductor integrated circuit and manufacture thereof
JPH10233500A (en) Semiconductor device