JPS5849918A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS5849918A
JPS5849918A JP14735181A JP14735181A JPS5849918A JP S5849918 A JPS5849918 A JP S5849918A JP 14735181 A JP14735181 A JP 14735181A JP 14735181 A JP14735181 A JP 14735181A JP S5849918 A JPS5849918 A JP S5849918A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
optical waveguides
optical switch
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14735181A
Other languages
Japanese (ja)
Inventor
Masataka Shirasaki
白崎 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14735181A priority Critical patent/JPS5849918A/en
Publication of JPS5849918A publication Critical patent/JPS5849918A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/335Acousto-optical deflection devices having an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a stable optical switch, by coupling two optical waveguides, which have parts parallel to each other and have different propagation constants, with a prescribed acoustic wave. CONSTITUTION:An optical switch consists of two optical waveguides 2 and 3 which are formed by diffusing titanium on a substrate consisting of a lithium niobate and have parallel parts, an ultrasonic transducer 4, and a sound absorber 5. For optical waves of wavelength lambda=0.8mum of optical waveguides 2 and 3, beta1=17.4437 and beta2=17.4751 are true, and¦beta1-beta2¦=0.0314 is true. Ultrasonic waves having a wave vector component (k) (wavelength lambdaa=200.1mum for m=1) which satisfies k=+ or -¦beta1-beta2¦/m (m is a positive constant) are applied by the transducer 4. The light of lambda=0.8mum which is incident from an end A of the optical waveguide 2 and is outputted to an end B when ultrasonic waves are not applied is transferred to the optical waveguide by application of ultrasonic waves when lengths of parallel parts of optical waveguides 2 and 3 satisfy the phase matching condition, and this light is outputted from an end C. Consequently, a stable optical switch is obtained.

Description

【発明の詳細な説明】 本発明は光通信等に用いる光スィッチに関す。[Detailed description of the invention] The present invention relates to an optical switch used for optical communications and the like.

従来の光スィッチの構成法の1つに、光ファイバやグリ
ズム、ミラーを動かして光路を切替える機械式スイッチ
があるが、この楕のスイッチは機械的な動作部を含む友
めに高速性に限界があり、かつ信頼性も光分でなく、時
に光回路の集積化に適しない。
One of the conventional configuration methods for optical switches is a mechanical switch that switches the optical path by moving an optical fiber, grism, or mirror, but this elliptical switch has a limit in high speed because it contains mechanical moving parts. However, the reliability is not as high as that of optical fibers, and it is sometimes not suitable for integrating optical circuits.

このよう碌欠点を解消するために機械的な動作部を含ま
ない元スイッチの構成が撫々提案されている。その一方
法として偏光面の回転を利用したものがある。この方法
では筐ず偏光子により光を特定方向の振動成分にしはっ
た後に偏光面変換素子に、より偏光面を回転させるか或
いはそのま一通過させ、次いで偏光公庫素子により偏光
面の方向により光の進行方向が選択されるものである◎
この偏光面変換素子として電気党学結鮎を用いるものは
、これに設けられた電極間に電圧を加え次と換素子とし
柔磁気光学結晶を用いるものは、光の進行方向と平行に
磁界が加えられたとき、磁気光字結晶中の進行距離に比
例して偏光面が回転し、しかも磁界の向*’i:反転す
ると偏光面の回転方向も反転する効果を応用するもので
ある。
In order to overcome these drawbacks, a number of proposals have been made for configurations of the original switch that do not include mechanical operating parts. One method is to use rotation of the plane of polarization. In this method, after the light is made into vibration components in a specific direction by a polarizer, the plane of polarization is rotated or passed through a polarization plane conversion element, and then the polarization element is used to convert the light according to the direction of the plane of polarization. The direction in which the light travels is selected◎
When using an electric polarization plane conversion element, a voltage is applied between the electrodes provided on it, and when a soft magnetic optical crystal is used as the conversion element, a magnetic field is generated parallel to the traveling direction of the light. When a magnetic field is applied, the plane of polarization rotates in proportion to the traveling distance in the magneto-optical crystal, and when the direction of the magnetic field *'i: is reversed, the effect that the direction of rotation of the plane of polarization is also reversed is applied.

またこれと異なる光スィッチの構成方法として光導波路
相互間の結合を応用する方法がある0すなわち二つの光
導波路が接近して存在するとき、両光導波路間で光波パ
ワーの移行が生ずる◎このft、aパワーの移行量は、
二つの導波モードの漏れ電磁界の1なり、即ち結合の強
さと伝搬定数の差に依存する。電気光学結晶を用いた光
導波路では、導波モード間の結合の強さ及び位相差を、
光導波路上に設けた制御電極に加える電圧で制御する構
成によりスイッチングが行われる0 以上述べた如き光スィッチの構成方法において、電気光
学結晶を用い、制御電極に電圧を加える方法においては
、結晶内の電界にニジ電荷が移動して界面近傍に蓄積で
れるために、光導波路内の電界すなわち屈折率で代表さ
れる光学的特性が時間的に灰化し、スイッチングされた
状態を安定して保持することが困難である。また、磁気
光学結晶を用いる方法においても、元スイッチに用いる
ために必要とする特性を満足する材料が得られない現状
にある。
Another method of configuring an optical switch is to apply coupling between optical waveguides. In other words, when two optical waveguides are located close to each other, a transition of optical power occurs between the two optical waveguides.◎This ft. , the amount of power transferred is
It depends on the difference between the leakage electromagnetic fields of the two waveguide modes, that is, the strength of the coupling and the propagation constant. In optical waveguides using electro-optic crystals, the coupling strength and phase difference between guided modes are
Switching is performed by a configuration controlled by a voltage applied to a control electrode provided on an optical waveguide.0 In the method of configuring an optical switch as described above, an electro-optic crystal is used and a voltage is applied to the control electrode. As rainbow charges move in the electric field of It is difficult to do so. Furthermore, even in the method of using magneto-optic crystals, it is currently difficult to obtain a material that satisfies the characteristics required for use in the original switch.

本発明は、光スィッチに関して前記の構成方式とは異な
る新しい構成方式を提供し、前記欠点管補うことを目的
とする。
An object of the present invention is to provide a new configuration method for an optical switch that is different from the above-described configuration method, and to compensate for the above-mentioned drawbacks.

本発明の光スィッチは、相互に平行な部分を有する伝搬
定数の異なる二以上の光導波路を含み、前記光導波路の
うち、伝搬定数がβ1なる第一の光導波路と、伝搬定数
がβ、なる第二の光導波路とが互に平行なる方向の波数
ベクトル成分kかに=±1β、−β、l/m(但しmは
正の整数)なる弾性波を、該第−〇光導波路及び第二の
光導波路並びに当該二元導波路間の間隙管含む近傍に加
えるときに、該第−〇光導波路中を伝搬する光波が葭第
二の光導波路中に移行し、前記弾性波を加えないときに
前記光波の移行を生じないことを4I徴とする〇 以下に本発明を実施例により図面を参照して具体的に説
明する0 図は本発明の一実施例の主費部を示す平面図であつて、
1は基板、2FJ第1の光導波路、3は第二〇光導波路
、4は超音波トランスジューサ、5は吸音材である。基
板1はニオブ敏リチウム(Li NboI )よりなり
光導波路2及び3は基板lにチタン(TiJを拡散する
ことにより形成これる。基板1の屈折率にn、w2.2
2であり、第10光導波路2の実効屈折率にn、=2.
221、第20光導波路3の実効屈折率in、=2.2
25となる如く、T1のatを変化させている。
The optical switch of the present invention includes two or more optical waveguides having mutually parallel portions and having different propagation constants, and among the optical waveguides, a first optical waveguide has a propagation constant β1, and a first optical waveguide has a propagation constant β1. An elastic wave with a wave number vector component k = ±1β, -β, l/m (where m is a positive integer) in a direction parallel to the second optical waveguide and the -0th optical waveguide and the When adding to the second optical waveguide and the vicinity including the gap pipe between the two binary waveguides, the light wave propagating in the second optical waveguide moves into the second optical waveguide and does not apply the elastic wave. The 4I characteristic is that the light wave does not sometimes migrate.〇The present invention will be explained in detail below using an embodiment with reference to the drawings.〇The figure is a plan view showing the main part of an embodiment of the present invention. It is a diagram,
1 is a substrate, 2 is a FJ first optical waveguide, 3 is a 20th optical waveguide, 4 is an ultrasonic transducer, and 5 is a sound absorbing material. The substrate 1 is made of niobium-based lithium (LiNboI), and the optical waveguides 2 and 3 are formed by diffusing titanium (TiJ) into the substrate 1.The refractive index of the substrate 1 is n and w2.2.
2, and the effective refractive index of the tenth optical waveguide 2 is n,=2.
221, effective refractive index in of the 20th optical waveguide 3, = 2.2
At of T1 is changed so that it becomes 25.

真空中の波長J −0,8μmの光波に対し、第一の光
導波路2の伝搬定数βI=17.4437、第二の光導
波路3の伝搬定数β、=17.4751であって、J/
For a light wave of wavelength J −0.8 μm in vacuum, the propagation constant βI of the first optical waveguide 2 is 17.4437, the propagation constant β of the second optical waveguide 3 is 17.4751, and J/
.

=βll−0,0314となる。=βll-0,0314.

本実施例においては超音波トランスジ、−サ4によって
基板1に加えられる超音波は、両光導波路2及び3の互
に平行となる部分に平行に進行する。従ってこの方向の
超音波の波数ベク)/しの成分kfl波数ベクトルの大
きさに勢しく、かつ、創成においてmzlとしてに=0
.0314より超taO波長スaz200.5pm’k
Nる0前記の如き本実施例の光スィッチの第一〇光導波
路2のA端よりλ=0.8μmの光波を導入し、超音波
トランスジューサ4により超音波を加えないときは光波
は第一0党導波路2のB端に出力する。
In this embodiment, the ultrasonic wave applied to the substrate 1 by the ultrasonic transducer 4 travels parallel to the mutually parallel portions of the optical waveguides 2 and 3. Therefore, the wave number vector of the ultrasonic wave in this direction is strong in the magnitude of the wave number vector (kfl), and in creation, as mzl = 0
.. 0314 super taO wavelength az200.5pm'k
Nru0 A light wave of λ=0.8 μm is introduced from the A end of the 10 optical waveguide 2 of the optical switch of this embodiment as described above, and when no ultrasonic wave is applied by the ultrasonic transducer 4, the light wave is Output to the B end of the 0-party waveguide 2.

超音波が加えられ九と1は、光波は第一の光導波路2よ
り第二の光導波M3に移行し、両光導波路の平行部分の
長さが位相整合条件を満足する完全結合長り、であると
きに完全に移行して、第二の光導波路のC端のみに出力
する。
When ultrasonic waves are applied, the light wave moves from the first optical waveguide 2 to the second optical waveguide M3, and the length of the parallel portion of both optical waveguides is a perfect coupling length that satisfies the phase matching condition, When , the signal is completely shifted and outputted only to the C end of the second optical waveguide.

先に述べた従来技術による電気光学結晶を用い九九導波
路の結合を応用する元スイッチにおいて、一般に位相整
合条件を満足するためKは厳しい製作精度が要求され、
完全な光スイッチングを実現することは困難であって補
助電極を付加する等の試みがなでれている0 本発明の光スィッチにおいては位相整合条件の補正は、
超音波の強さすなわち振幅の調整によって行なうことが
可能である0 前記実施例においてに基板1として電気光学効果を有す
るLiNb0.を用いたが、本発明は弾性波による媒質
Of!嵐変化に伴うJQ$lp変化の応用―、ニー、I するものであって、電気光早効果を応用するものでにな
い。使用する媒質としては光弾性定数の大きいことが希
ましく、8i0.、ガラス等も使用可能であり、又、光
スィッチの構造、材料に対応して弾性波の伝搬モードを
選択することも可能であるO また光の完全なスイッチングf目的とせず、スイッチン
グ機能を有する光分岐回路等も本発明の方法により形成
可能である□ 本発明に以上説明した如く、相互に平行な部分を有する
伝搬定数の異なる二元導波路を前記の如き弾性波により
結合せしめることにより光スイツチング作用を行うもの
であって、従来技術の欠点を補う新しい光スィッチを提
供するものである0
In the original switch using the electro-optic crystal described above and applying multiplication waveguide coupling, strict manufacturing precision is generally required for K in order to satisfy the phase matching condition.
It is difficult to realize perfect optical switching, and attempts such as adding auxiliary electrodes have been made. In the optical switch of the present invention, correction of the phase matching condition is as follows:
This can be done by adjusting the intensity or amplitude of the ultrasonic waves. In the embodiment described above, the substrate 1 is LiNb0. However, in the present invention, a medium of elastic waves is used. This is an application of JQ$lp changes associated with storm changes, but is not an application of the electrophotonic effect. It is rare that the medium used has a large photoelastic constant, and 8i0. , glass, etc. can also be used, and it is also possible to select the propagation mode of elastic waves depending on the structure and material of the optical switch. Optical branch circuits, etc. can also be formed by the method of the present invention.As explained above, optical branching circuits, etc. It provides a new optical switch that performs a switching action and compensates for the shortcomings of the conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示す平面図である。 The drawing is a plan view showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 相互に平行な部分を有する伝搬定数の異なる二以上の光
導波路を含み、前言Q j’t、 41&路中、伝搬定
数がβ、なる第一の光導波路と、伝搬定数がβ、なる泥
二〇光尋波路とが相互に平行なる方向の波動ベクトル成
分kが、 k=±1β1−1.17m  (但しmu正C)整数)
である弾性波を、該第−〇光導波路及び該第二〇ft、
4tIL路が相互に平行である部分並びに当誼二光導波
路間の間隙を含む近傍に加えるときに、該第−の光4波
路中を伝搬する光波が該第二の光導波路中に移行し、前
記弾性tBLを加えないときに、前記光波の移行を生じ
ないことを特徴とする光スィッチ0
[Claims] A first optical waveguide having a propagation constant β, which includes two or more optical waveguides having mutually parallel portions and having different propagation constants; is β, and the wave vector component k in the direction parallel to the 20-light wave path is k=±1β1-1.17m (where mu positive C is an integer)
The elastic wave that is
When the 4tIL paths are added to the vicinity including the mutually parallel portion and the gap between the two optical waveguides, the light wave propagating in the second optical waveguide transfers into the second optical waveguide, and An optical switch 0 characterized in that the light wave does not shift when no elasticity tBL is applied.
JP14735181A 1981-09-18 1981-09-18 Optical switch Pending JPS5849918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14735181A JPS5849918A (en) 1981-09-18 1981-09-18 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14735181A JPS5849918A (en) 1981-09-18 1981-09-18 Optical switch

Publications (1)

Publication Number Publication Date
JPS5849918A true JPS5849918A (en) 1983-03-24

Family

ID=15428216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14735181A Pending JPS5849918A (en) 1981-09-18 1981-09-18 Optical switch

Country Status (1)

Country Link
JP (1) JPS5849918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655430A1 (en) * 1989-12-04 1991-06-07 Northrop Corp OPTICAL CUTTER AND COMPUTER SYSTEM WITH DISTRIBUTED PROCESSORS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655430A1 (en) * 1989-12-04 1991-06-07 Northrop Corp OPTICAL CUTTER AND COMPUTER SYSTEM WITH DISTRIBUTED PROCESSORS.

Similar Documents

Publication Publication Date Title
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
US4291939A (en) Polarization-independent optical switches/modulators
JP3158460B2 (en) Polarized beam splitter for guide light
JP2679570B2 (en) Polarization separation element
US5416859A (en) Broadband, low drive voltage, electrooptic, intergrated optical modulator
US3856378A (en) Method and means for modulating light propagating in an optical waveguide by bulk acoustic waves
US4983006A (en) Polarization-independent optical waveguide switch
JPH0121481B2 (en)
JPH0769526B2 (en) Electro-optical mode converter
JPS6125122A (en) Modulation of electromagnetic carrier
JP2847660B2 (en) Waveguide type optical modulator
JPS5849918A (en) Optical switch
JPH04172316A (en) Wave guide type light control device
JP3067760B1 (en) Waveguide type optical device
JP2613942B2 (en) Waveguide type optical device
US4199221A (en) Electro-optic thin-film waveguide modulator device
WO2021131272A1 (en) Optical waveguide element and optical modulator
WO2024201876A1 (en) Optical waveguide element and optical modulation device using same, and optical transmission device
Petrov Acoustooptic and electrooptic guided wave conversion to leaky waves in an anisotropic optical waveguide
JPS62103604A (en) Optical circuit and its production
JP3735685B2 (en) Integrated optical waveguide device
JP2792306B2 (en) Polarization separation element
JP2900569B2 (en) Optical waveguide device
JPH03188423A (en) Optical directional coupler and production thereof
JPS6283731A (en) Optical switch