JPS5849866A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5849866A
JPS5849866A JP14788181A JP14788181A JPS5849866A JP S5849866 A JPS5849866 A JP S5849866A JP 14788181 A JP14788181 A JP 14788181A JP 14788181 A JP14788181 A JP 14788181A JP S5849866 A JPS5849866 A JP S5849866A
Authority
JP
Japan
Prior art keywords
gas
evaporator
liquid
refrigerator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14788181A
Other languages
Japanese (ja)
Inventor
千秋 隆雄
研作 小国
晃 渥美
畑田 敏夫
久平 石羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14788181A priority Critical patent/JPS5849866A/en
Publication of JPS5849866A publication Critical patent/JPS5849866A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍冷蔵庫、冷蔵ユニット、シー−ケース、二
温度式冷凍庫、二温度式冷蔵庫等に好適な冷凍装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system suitable for refrigerator-freezers, refrigeration units, sea cases, two-temperature freezers, two-temperature refrigerators, and the like.

従来の冷凍冷蔵庫の冷凍サイクルを第1図に示す。図中
、1は圧縮機、2は凝縮器、3は減圧機構、4は蒸発器
、5は冷凍室、6は冷蔵室を示し、冷凍室の空気をまず
適温まで下げ、冷気の一部を冷蔵室へ供給している。冷
蔵室では、冷蔵室内空気と、冷凍室から供給された空気
とが混合して、必要な室温を得るようになっている。こ
の場合の冷凍サイクルをモリエル線図で表わすと第2図
のようKなる。この冷凍サイクルの線図上の成績係数(
cop)は式(1)で表わされる。
The refrigeration cycle of a conventional refrigerator-freezer is shown in FIG. In the figure, 1 is a compressor, 2 is a condenser, 3 is a pressure reduction mechanism, 4 is an evaporator, 5 is a freezer compartment, and 6 is a refrigerator compartment. Supplied to the refrigerator room. In the refrigerator compartment, the air inside the refrigerator compartment and the air supplied from the freezer compartment are mixed to obtain the required room temperature. When the refrigeration cycle in this case is represented by a Mollier diagram, it becomes K as shown in FIG. The coefficient of performance on the diagram of this refrigeration cycle (
cop) is expressed by equation (1).

ここにΔie:蒸発器 出入口の冷媒エンタルピ差 Δio:圧縮機 出入口の冷媒エンタルピ差 し九がって、蒸発器側の圧力が高いほど省エネルギ性は
高くなるが、蒸発温度が高くなるために冷凍室の温度を
目的の値まで下げることができなくなる。
Here, Δie: difference in refrigerant enthalpy at the entrance and exit of the evaporator Δio: refrigerant enthalpy at the entrance and exit of the compressor temperature cannot be lowered to the desired value.

次に1冷蔵庫(庫内温度が5℃前後)Kついて説明する
。庫内温度が5℃前後になるためKは、蒸発器内の冷媒
温度を0℃以下程度にする必要がある。したがって蒸発
器の表面に霜がついて性能が時間とともに低下するため
、着霜量が多くなうた時点でその霜を融かす必要がある
。着霜速度を低下させることは、性能低下速度を遅らせ
ることになり、省エネルギ性を高めることになる。さら
に1霜を融解する時の何らかの発熱くより、庫内温度が
上がることが多いが、そのために庫内に納められた品物
の温度に変動が生じ品質を下げる原因にもなる。上記冷
凍冷蔵庫および冷蔵庫の二つの例に対応した従来の二蒸
発温度式の冷凍サイクルの構成を第3図に示す。
Next, a refrigerator K (with an internal temperature of about 5° C.) will be explained. Since the temperature inside the refrigerator is around 5°C, it is necessary to keep the refrigerant temperature in the evaporator below 0°C. Therefore, frost forms on the surface of the evaporator and performance deteriorates over time, so it is necessary to melt the frost when the amount of frost becomes large. Reducing the rate of frost formation slows down the rate of performance deterioration and increases energy savings. Furthermore, the temperature inside the refrigerator often rises due to the heat generated when one frost is melted, which causes fluctuations in the temperature of the items stored in the refrigerator and causes a drop in quality. FIG. 3 shows the configuration of a conventional dual evaporation temperature type refrigeration cycle corresponding to the two examples of the refrigerator-freezer and refrigerator described above.

第2図において、圧縮機11を吐出され、凝縮器22で
液化した冷媒は二系統に分かれる。減圧機構13と14
゛は流路抵抗値を異にしており、また圧縮機11(本図
ではガスインジ、クシ」ンタイプで説明しである)の中
間部からの吸入力と低圧からの吸入力の選定によって蒸
発器15と16とを流れる冷媒量および諌二つの蒸発器
の圧力を調整することができる。それぞれの蒸発器(蒸
発した冷媒は圧縮機11によって高圧化し再び凝縮器1
2へ送られる。この冷媒の挙動をモリエル線図で表わす
と第4図のようKなる。中間圧を流れる冷媒は圧縮機の
中でΔ’CMだけエネルギを加えられるだけであり、冷
却能力はΔieMである。低圧側を流れる冷媒について
は圧−動力がΔ’CL、冷却能力がΔ8e、となる。従
って、蒸発器15を流れる冷媒量をql、蒸発器16を
流れる冷媒量をGLとすると本サイクルの線図上のCO
Pは式(2)のようになる。
In FIG. 2, the refrigerant discharged from the compressor 11 and liquefied in the condenser 22 is divided into two systems. Decompression mechanisms 13 and 14
The evaporator 15 has different flow path resistance values, and the suction force from the middle part of the compressor 11 (in this figure, the gas cylinder type is explained) and the suction force from the low pressure are selected. The amount of refrigerant flowing through and 16 and the pressure of the two evaporators can be adjusted. Each evaporator (the evaporated refrigerant is made high pressure by the compressor 11 and then sent to the condenser 1 again)
Sent to 2. When the behavior of this refrigerant is expressed in a Mollier diagram, it becomes K as shown in FIG. The refrigerant flowing at intermediate pressure is only energized by Δ'CM in the compressor, and the cooling capacity is ΔieM. Regarding the refrigerant flowing on the low pressure side, the pressure-power is Δ'CL and the cooling capacity is Δ8e. Therefore, if the amount of refrigerant flowing through the evaporator 15 is ql and the amount of refrigerant flowing through the evaporator 16 is GL, the CO on the diagram of this cycle is
P is as shown in equation (2).

GMが零のとき、式(1)のCOPを等しくG、が大き
くなるほど式(2)で示すCOPの方が大きくなる。
When GM is zero, the COP in equation (1) is equal to G, and as G becomes larger, the COP shown in equation (2) becomes larger.

いま、蒸発器15を通る空気を冷蔵室に、蒸発器゛16
を通る空気を冷凍室に供給すれば、冷凍冷蔵庫のサイク
ルに適用できる。また、蒸発器15の冷媒温度を0℃−
後にし、蒸発器16の温度を0℃以下にしておき、空気
流をまず蒸発器15tC流すことKより冷却するととも
に空気中の水蒸気゛を水の状態で除去し、次にその空気
を蒸発器16へ流せば、空気中の絶対湿度が低くなって
いるので着霜量を少なくして、目的の冷蔵室温度をえる
ことができる。これは、除霜周期を長くした冷蔵庫のサ
イクルに適用できる。
Now, the air passing through the evaporator 15 is transferred to the refrigerator compartment, and the air passing through the evaporator 16 is
If the air passing through is supplied to the freezer compartment, it can be applied to the freezer/refrigerator cycle. Also, the refrigerant temperature in the evaporator 15 is set to 0°C -
After that, the temperature of the evaporator 16 is kept below 0°C, and the air flow is first cooled by passing 15 tC through the evaporator, and the water vapor in the air is removed in the form of water, and then the air is passed through the evaporator. 16, the absolute humidity in the air is low, so the amount of frost formation can be reduced and the desired temperature in the refrigerator room can be achieved. This can be applied to refrigerator cycles with longer defrost cycles.

しかし、これらのサイクルのCOPでは現在の社会ニー
ズに対して満足できるものではない。さらKCOPの高
い冷凍サイクルが要求されている本発明は上記に鑑みて
発明されたもので、蒸発温度が二種類必要な冷凍装置や
、冷却器に霜が着く条件下1使わ7る冷凍装置にゝやて
・更に一層の省エネルギ性を高め、且つ除霜の周期を長
くすることを目的とする。
However, these cycle COPs are not sufficient to meet current social needs. Furthermore, the present invention, which requires a refrigeration cycle with a high KCOP, was invented in view of the above. - The purpose is to further improve energy saving and lengthen the defrosting cycle.

上記目的を達成するため本発明は、蒸発温度レベルの異
なる二個の蒸発器、−個の凝縮器、二個の減圧機構およ
び気液分離器を備え、減圧機構により一段膨張され九冷
媒を気液分離器で気液分離し、液の一部とガスを適宜混
合して蒸発器へ供給し、中間温度の冷却作用を得ると共
に、残りの液゛を他の減圧機構で更に二段目の膨張をさ
せて他の蒸発器へ供給し、低温の冷却作用を得る特徴を
有する。
In order to achieve the above object, the present invention includes two evaporators with different evaporation temperature levels, two condensers, two pressure reduction mechanisms, and a gas-liquid separator. Gas and liquid are separated in a liquid separator, and a part of the liquid and gas are appropriately mixed and supplied to the evaporator to obtain an intermediate temperature cooling effect, and the remaining liquid is further transferred to the second stage by another pressure reducing mechanism. It has the characteristic of being expanded and supplied to other evaporators to obtain a low-temperature cooling effect.

以下本発明の実施例を図面に基ずき説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5図、1716図は夫々本発明の実施例を示す冷凍サ
イクル系統図である。図中21はインジ、りて・ンタイ
プの圧縮機・ 21′″は主圧縮機・21bは補助圧縮
機、22は凝縮器、23.24は減圧機構、25.26
は蒸発器、2Tは気液分離器で、上記各機器は図示の如
く配管接続され夫々の冷凍サイクルが形成されている。
5 and 1716 are refrigeration cycle system diagrams showing embodiments of the present invention, respectively. In the figure, 21 is an engine type compressor, 21''' is a main compressor, 21b is an auxiliary compressor, 22 is a condenser, 23.24 is a pressure reducing mechanism, and 25.26
2T is an evaporator, 2T is a gas-liquid separator, and the above-mentioned devices are connected by piping as shown in the figure to form respective refrigeration cycles.

気液分離器27から蒸発器25へ流れる冷媒の気液混合
比を適当に調整するための一例としては第1図のような
エゼクタが考えられる。但し、別な方式を使ってもサイ
クルの根本的な特徴を変えるものではない。
An ejector as shown in FIG. 1 can be considered as an example for appropriately adjusting the gas-liquid mixture ratio of the refrigerant flowing from the gas-liquid separator 27 to the evaporator 25. However, using a different method does not change the fundamental characteristics of the cycle.

第5図、第6図の冷凍サイクルをモリエル線図に表わす
と第8図にて示される。
The refrigeration cycles shown in FIGS. 5 and 6 are represented in a Mollier diagram as shown in FIG. 8.

本実施例の第5図、lllES図に示す冷凍サイクルと
、従来のIII図、第3図に示す冷凍サイクルの省エネ
ルギ性の比較をモリエル線図を参照して比較する。−9
図は、第3図に示す従来サイクルにおいて、中間圧力を
吐出圧Pdと低圧P、に対してJii7鳳−とした場合
のモリエル線図を示す。
The energy saving performance of the refrigeration cycle shown in FIG. 5 and IllES diagram of this embodiment and the conventional refrigeration cycle shown in FIG. 3 and III will be compared with reference to the Mollier diagram. -9
The figure shows a Mollier diagram when the intermediate pressure is set to Jii 7 - with respect to the discharge pressure Pd and the low pressure P in the conventional cycle shown in FIG. 3.

従来のモリニル線図#E2図、第9図と本実施例のモリ
エル線図第8図に対し、それぞれの成績係数は次式で求
められる。伺中間圧力を、吐出圧Pd第8図のCOP。
The coefficient of performance of the conventional Mollier diagram #E2 and FIG. 9 and the Mollier diagram of this embodiment shown in FIG. 8 can be obtained by the following formula. The intermediate pressure is calculated as the discharge pressure Pd in the COP of Fig. 8.

ここに 第9図のCOP争 こζに ハ:中間圧から吐出圧まで圧縮する場合の圧縮機効率の
逆数 m、:低圧から吐出圧まで圧縮する場合の圧縮機効率の
逆数 i:エンタルピ(添字 g:飽和ガス、l:飽和液) G:冷媒流量(添字 M:中間圧側、L:低圧II) いま、省エネルギ性の効果を具体的に求めてみよう。
Here, the COP competition ζ in Fig. 9 is expressed as follows: C: Reciprocal of compressor efficiency when compressing from intermediate pressure to discharge pressure, m: Reciprocal of compressor efficiency when compressing from low pressure to discharge pressure: Enthalpy (subscript g: saturated gas, l: saturated liquid) G: refrigerant flow rate (subscript M: intermediate pressure side, L: low pressure II) Now, let's specifically determine the energy saving effect.

条件  n = 5   亀=為=1.4冷媒R−22
,吐出圧力17 ata 。
Conditions n = 5 Tortoise = 1.4 Refrigerant R-22
, discharge pressure 17 ata.

中間圧5 ata 、低圧1.5 atas□ = 1
101d119 とすると下表のようになる。
Intermediate pressure 5 ata, low pressure 1.5 atas = 1
101d119, it becomes as shown in the table below.

即ち、本発明のサイクルは、省エネルギ性の効果が非常
に大きい。
That is, the cycle of the present invention has a very large energy saving effect.

以上説明しえように、本発明によれば、従来の冷凍装置
に較べ成績係数が大巾に向上され、省エネルギ性を高め
ることが出来る。
As explained above, according to the present invention, the coefficient of performance is greatly improved compared to conventional refrigeration equipment, and energy saving performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍装置のサイクル図、第2図は第1図
の装置のモリエル線図、第3図は従来の他の冷凍装置の
サイクル図、第4図は第3図の装置の一般的なモリエル
線図を示す。第5図は本発明の一実施例を示す冷凍装置
のサイクル図1.第6図は他の実施例を示す冷凍装置の
サイクル図、第7図は気液分離器の一例を示す。第8図
は第5図および第6図の装置のサイクルのそりiル線図
、第9図は従来の第3図のサイクルの比較用のモリエル
線図を示す。 21.21a、21b・・・圧縮機 22・・・凝縮器
23.24・・・減圧機構 25.26・・・蒸発器2
7・・・気液分離器 箒bm  、、 f 着r国
Figure 1 is a cycle diagram of a conventional refrigeration system, Figure 2 is a Mollier diagram of the system shown in Figure 1, Figure 3 is a cycle diagram of another conventional refrigeration system, and Figure 4 is a cycle diagram of the system shown in Figure 3. A general Mollier diagram is shown. FIG. 5 is a cycle diagram of a refrigeration system showing one embodiment of the present invention. FIG. 6 is a cycle diagram of a refrigeration system showing another embodiment, and FIG. 7 shows an example of a gas-liquid separator. FIG. 8 shows a sorrel diagram of the cycles of the apparatuses shown in FIGS. 5 and 6, and FIG. 9 shows a comparative Mollier diagram of the conventional cycle shown in FIG. 3. 21.21a, 21b... Compressor 22... Condenser 23.24... Pressure reduction mechanism 25.26... Evaporator 2
7... Gas-liquid separator bm,, f Country of arrival

Claims (1)

【特許請求の範囲】[Claims] 蒸発温度レベルの異なる二個の蒸発器、ガスインシーク
シーン可能な圧縮機または二個の圧縮機、−個の凝縮器
、二個の減圧機構および気液分離器を備え、減圧機構に
より一般膨張された冷媒を気液分離器で気液分離し、液
の一部とガスとを適宜混合して蒸発器へ供給し中間温度
の空気あるいはブラインを得るとともに1残りの液を他
の減圧機構でさらに二段目の膨張をさせて他の蒸発器へ
供給し、低温の空気あるいはブラインを得ることを特徴
とする冷凍装置。
Equipped with two evaporators with different evaporation temperature levels, a compressor or two compressors capable of gas in-seeking, two condensers, two pressure reduction mechanisms and a gas-liquid separator, and the pressure reduction mechanism allows general expansion. The refrigerant is separated into gas and liquid using a gas-liquid separator, and a part of the liquid and gas are appropriately mixed and supplied to the evaporator to obtain air or brine at an intermediate temperature, and the remaining liquid is removed using another pressure reducing mechanism. A refrigeration system characterized by further expanding the second stage and supplying it to another evaporator to obtain low-temperature air or brine.
JP14788181A 1981-09-21 1981-09-21 Refrigerator Pending JPS5849866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14788181A JPS5849866A (en) 1981-09-21 1981-09-21 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14788181A JPS5849866A (en) 1981-09-21 1981-09-21 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5849866A true JPS5849866A (en) 1983-03-24

Family

ID=15440321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14788181A Pending JPS5849866A (en) 1981-09-21 1981-09-21 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5849866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147264A1 (en) * 2007-04-24 2010-01-27 Carrier Corporation Refrigerant vapor compression system and method of transcritical operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147264A1 (en) * 2007-04-24 2010-01-27 Carrier Corporation Refrigerant vapor compression system and method of transcritical operation
EP2147264A4 (en) * 2007-04-24 2013-04-03 Carrier Corp Refrigerant vapor compression system and method of transcritical operation

Similar Documents

Publication Publication Date Title
KR100437946B1 (en) Refrigerator
US6327871B1 (en) Refrigerator with thermal storage
KR102262722B1 (en) Cooling Cycle Apparatus for Refrigerator
EP1394481A2 (en) Refrigerator
WO2018121425A1 (en) Refrigeration system utilizing parallel and serial-connected dual evaporators, and control method thereof
US2146797A (en) Refrigerating apparatus
US4528823A (en) Heat pump apparatus
US10895411B2 (en) Cooling system
JPH10300321A (en) Cooler for freezer refrigerator and its defrosting method
CN206593361U (en) A kind of vehicle-mounted energy-saving refrigerator
JPS5849866A (en) Refrigerator
JPS6230691Y2 (en)
JP2003106693A (en) Refrigerator
KR100549062B1 (en) Refrigerator
JP2003207220A (en) Cooling device
JP2002277082A (en) Freezer
JP2711879B2 (en) Low temperature refrigerator
JPS5837457A (en) Refrigerant circuit for refrigerator
CN220062196U (en) Refrigerating unit of multi-evaporator refrigerator car and refrigerator car
KR100394008B1 (en) Refrigerating cycle for refrigerator and method for controlling the same
JPS58178159A (en) Multistage cascade cooling system
JPS6119413Y2 (en)
JPH0821664A (en) Refrigerating cycle device
JP2000320908A (en) Refrigerating cycle circuit
JPH07234041A (en) Cascade refrigerating equipment