JPS5849693A - Yellow pigment of iron oxide - Google Patents

Yellow pigment of iron oxide

Info

Publication number
JPS5849693A
JPS5849693A JP14717281A JP14717281A JPS5849693A JP S5849693 A JPS5849693 A JP S5849693A JP 14717281 A JP14717281 A JP 14717281A JP 14717281 A JP14717281 A JP 14717281A JP S5849693 A JPS5849693 A JP S5849693A
Authority
JP
Japan
Prior art keywords
iron oxide
hydroxide
pigment
aqueous solution
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14717281A
Other languages
Japanese (ja)
Other versions
JPS6015580B2 (en
Inventor
Soichiro Nobuoka
信岡 聡一郎
Kazuaki Ato
和明 阿度
Takashi Asai
浅井 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14717281A priority Critical patent/JPS6015580B2/en
Priority to US06/413,556 priority patent/US4459276A/en
Publication of JPS5849693A publication Critical patent/JPS5849693A/en
Publication of JPS6015580B2 publication Critical patent/JPS6015580B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Abstract

PURPOSE:To prepare yellow pigment of iron oxide like grains of rice, having improved color tone, dispersibility, and heat resistance, by adding an aqueous solution of a ferric salt to an alkali aqueous solution at a specific temperature to give iron hydroxide, aging it, subjecting it to hydrothermal treatment at a specified temperature. CONSTITUTION:An aqueous solution of a ferric salt at <=30 deg.C is added to an alkali aqueous solution at <=30 deg.C to prepare iron hydroxide. Ferric sulfate, etc. is used as the iron salt, its concentration is <=0.5M/l, sodium hydroxide, etc. is used as the alkali, its concentration is <=4M/l, and the reaction is carried out at -5-30 deg.C. The prepared precipitate of iron hydroxide is aged for >=30min, subjected to hydrothermal treatment at 120-250 deg.C for about 1hr, so that iron oxide hydroxide like grains of rice, namely, yellow iron oxide pigment is prepared. The long axis of the yellow iron oxide pigment like grains of rice is in 100-350mm., a ratio of long axis/short axis is 1.5-4.5, and the pigment has improved color tone, dispersibility and stability as pigment.

Description

【発明の詳細な説明】 た、f6度分布幅の狭い面酸化鉄顔料、及びぞの製造法
に関するものである。その目的とするところは、色調、
ろ)散性及び耐熱性の優れた黄酸化鉄顔料を提供し、従
来からの用途を更に拡大し、熱加工樹脂、化粧品及びト
ラフイツクペイント川などへの新しい用途を開拓すると
ころにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention also relates to a planar iron oxide pigment having a narrow f6 degree distribution width and a method for producing the same. The purpose of this is to
By providing yellow iron oxide pigments with excellent dispersibility and heat resistance, we are further expanding the range of conventional uses and developing new uses for heat-processing resins, cosmetics, and traffic paints.

現在、黄色顔料としては、黄鉛、ストロンヂウム黄、カ
ドミウノ・黄及びベンジノン611などかある。
Currently, yellow pigments include yellow lead, strondium yellow, cadmium yellow, and benzinone 611.

これらはすべて有毒性または発11i’i f/lであ
るから環境lり染の防11.、国民の健康保令のために
当然のことなからぞの使用は規制さ,11てきている。
All of these are toxic or emit 11i'i f/l, so protection against environmental staining 11. Naturally, the use of karazo has been regulated due to the National Health Order.

この上うな情勢にかんがみ、色祠工秦界では、寸−記の
有毒性黄色顔料に代る優れた無毒性黄色類$−1の開発
が待望されている。
In view of this situation, the development of an excellent non-toxic yellow pigment in place of the toxic yellow pigments is eagerly awaited in the coloring industry.

黄酸化鉄は、α−1i’ e 00夏I なる組成でG
oethitc構造を有し、針鉄鉱、黄土、オーカーな
どと呼ばれ、古くから着色桐材として使用されてきた。
Yellow iron oxide has the composition α-1i' e 00 summer I.
It has an oethitc structure and is called goethite, ocher, ocher, etc., and has been used as colored paulownia wood since ancient times.

これは無毒性で面1候性及び安定性があり、かつ安価で
ある。その用途は、塗料、印刷インキ、建築飼料などを
始め、無毒性であることから化粧品、タバコフィルター
の巻紙及び養鶏飼料などの着色にまで及んでいる。また
、戦後、磁気記録用磁性粉の原料としても使用されるよ
うになり、磁気記録方式の進歩普及と共にその需要の伸
びは顕著である。しかし、これの顔ネ−1としての性質
は、満足すべきものではなく改牌の余地が多分にある。
It is non-toxic, non-toxic, stable and inexpensive. Its uses range from paints, printing inks, and construction feeds to coloring cosmetics, cigarette filter paper, and poultry feed because it is nontoxic. After the war, it also came to be used as a raw material for magnetic powder for magnetic recording, and demand for it has increased markedly as magnetic recording methods have progressed and spread. However, the quality of this card as a face number one is not satisfactory and there is a lot of room for change.

ずなわら、色調がやや不鮮明、針状粒形に基つく高粘性
、面j熱性が劣るなどの欠点を有している。これがため
、上記有毒性黄色顔料との代替は制約されており、かね
てより、この顔料の特性改促及び品質向−にへの要請は
強かった。
However, it has drawbacks such as a slightly unclear color tone, high viscosity due to the acicular grain shape, and poor thermal properties. For this reason, replacement with the above-mentioned toxic yellow pigment is limited, and there has been a strong demand for improving the properties and quality of this pigment for some time.

黄酸化鉄の製造法は、現在、I:nj酸第1鉄水溶液の
加水分解と空気酸化反応を応用して、微小結晶核を所望
のオ\°1丁−径まで成長させる方法か採用されている
。この際、硫酸第1鉄水溶液を極めて緩で)かに中イ(
1し結晶成長を促す方法として、鉄屑による方法とアン
モニアカスによる方法の二)j法がある。1)ii V
lに−)いては、例えは、借問はか、王化、朋、4]2
(IQ63)にd子連されている。後者については、矢
111、エレクト[7ニク・セラミクス’72 、 l
fz、1 、  l’、] 5ニ記載され−Cいる。こ
れらの文献及び後詔の図3と図4から従来の黄酸化鉄は
、その粒子−形態が剣状タクトイド型で、その輔不溶性
j篇の水溶液中におりる結晶成長に関するもので、その
生成機構から考えて製造条件の調整のみにJ−リ、現在
以1に生成物の札′1度を揃えたり均質なものを得るこ
とは極めて困ツ;41てあり、また杓子−の形や軸比を
変えることは不可能である。従って、現在市販の黄酸化
鉄は、図;3と図4に見られるように、大粒子′?)小
A台丁−が混在j2、針状を6丁−の軸比も揃わす、幅
の広い粒度分布を示している。
Currently, the method for producing yellow iron oxide is a method in which microcrystalline nuclei are grown to a desired diameter by applying hydrolysis of an aqueous solution of ferrous I:nj acid and an air oxidation reaction. ing. At this time, add a very mild ferrous sulfate aqueous solution to the crab.
1) There are two methods for promoting crystal growth: a method using iron scraps and a method using ammonia scum. 1) ii V
In l -), the example is, borrow question ka, king, friend, 4]2
(IQ 63) has a d child. Regarding the latter, Arrow 111, Elect [7 Nik Ceramics'72, l
fz, 1, l', ] 5 is described as -C. From these documents and Figures 3 and 4 of the latter, the conventional yellow iron oxide has a sword-shaped tactoid particle morphology, and its formation is related to crystal growth in an insoluble aqueous solution. From a mechanical point of view, it is extremely difficult to adjust the manufacturing conditions, and it is extremely difficult to obtain products with uniformity or uniformity. It is impossible to change the ratio. Therefore, currently commercially available yellow iron oxide has large particles, as shown in Figures 3 and 4. ) It shows a wide particle size distribution with a mixture of small A tables and 6 needles with the same axial ratio.

一般に粉体系が示す詰物性は、その粉体か構成する粒子
形態と相関性のあることはよく知られている。顔料にお
いては、その粒子形態は、色調、隠ペイカ、吸油量、着
色力及O・塗料としたときのレオロシノノルな性質や塗
膜の強度などに影響を与える。黄酸化鉄の場合、大粒子
と小19子が混在ずれは、大粒子の示す物性と小粒子の
示す物性が異るが粉体としては相互に減殺された統削的
平均としての物性を示すことになる。色調を例にとれば
、借問、大工試報告、盃331.P、33(昭44)に
記述されているように、大粒子の示す色と小杓子の示す
色とは相違するから、これらを混合ずれは、絵具の混色
のように減色混合となり明度と彩度が小さくなり暗い感
じの色調となる。つまり、顔料としては、粒度分布幅の
狭い粉体であることが理想である。さらに、針状粒頂の
軸比の小さい分散性の良好な吸油量の低い顔料であるこ
とが要望されている。
It is well known that the filling properties of a powder system are generally correlated with the particle morphology of the powder. In the case of pigments, the particle morphology affects the color tone, obscurity, oil absorption, coloring power, rheolocinol properties and strength of the coating film when used as a paint. In the case of yellow iron oxide, the mixture of large particles and small particles indicates that the physical properties of large particles and small particles are different, but as a powder, they exhibit physical properties as a systematic average in which they are mutually attenuated. It turns out. Taking color tones as an example, borrow questions, carpentry exam report, and sake cup 331. As described in P. 33 (Sho 44), the color shown by the large particles and the color shown by the small ladle are different, so any mismixing of these results in a subtractive color mixture, similar to the color mixing of paints, resulting in changes in lightness and saturation. As the intensity decreases, the color tone becomes darker. In other words, it is ideal for the pigment to be a powder with a narrow particle size distribution. Furthermore, there is a demand for a pigment with a small axis ratio of the acicular grain tops, good dispersibility, and low oil absorption.

本発明者らは、長年にわたる黄酸化鉄の研究から、その
本質的欠点を理解し、斯界のニーズに応え、鋭蕉研究を
市ね、これの品質向1・のノJめ貢献してきた。例えは
特許において(」、佐原、借問、特公昭3l−324)
2:借問、浅井、同腹、特公昭53−28158:借問
、浅井、同腹、[1,S。
Through many years of research on yellow iron oxide, the present inventors have understood its essential drawbacks, responded to the needs of the industry, conducted advanced research, and contributed to improving the quality of yellow iron oxide. For example, in patents (", Sahara, Borisoku, Tokuko Sho 3l-324)
2: Borrower, Asai, same litter, Tokuko Sho 53-28158: Borrower, Asai, same litter, [1, S.

Pat、、 3,969,494 :借問ら、特公昭5
5−9016などである。これらの技術の一部は、契約
され実施されている。今回、さらに新技術を開発するに
至った。それは、黄酸化鉄のlct了形態を針状から米
粒状へと改心し、粒度分布幅を狭くすることに成功した
。これによって顔料としての詰物性、ずなわら色調、分
散性、安定性などを飛fi(ij的に向−1ニさせるこ
とができた。
Pat, 3,969,494: Borrow et al., Tokuko Sho 5
5-9016 etc. Some of these technologies have been contracted and implemented. This time, we have developed a new technology. They succeeded in changing the morphology of yellow iron oxide from needle-like to rice-grain-like and narrowing the particle size distribution. As a result, it was possible to improve the fillability, solid color tone, dispersibility, stability, etc. of the pigment as a pigment.

次に本発明の構成について説明する。まず第2鉄塩水溶
dkとアルカリ水溶液とを反応させて水酸化鉄沈殿を調
製する。この際、使用する鉄塩は、硫酸第2鉄、塩化第
2鉄、及び硝酸第2鉄なとの水溶外鉄J’AAである。
Next, the configuration of the present invention will be explained. First, an aqueous ferric salt dk is reacted with an aqueous alkaline solution to prepare an iron hydroxide precipitate. In this case, the iron salts used are water-soluble foreign iron J'AA such as ferric sulfate, ferric chloride, and ferric nitrate.

使用する濃度は、0.5M//’以ドとし、好ましくは
0.2M1l付近である。一方、アルカリは、水酸化ナ
トリウム、水酸化カリラム、炭酸すトリウム、炭酸カリ
ウム、及び水酸化カルシウムなどである。使用濃度は、
4 M 71以下とし、好ましくは1.Mle付近であ
る。所定濃度以−1−で反応させると、生成物か不均質
となり、粒度分布幅を拡げ、好ましくない結果となる。
The concentration used is 0.5 M//' or less, preferably around 0.2 M/l. On the other hand, alkalis include sodium hydroxide, potassium hydroxide, thorium carbonate, potassium carbonate, and calcium hydroxide. The concentration used is
4 M 71 or less, preferably 1. It is near Mle. If the reaction is carried out at a concentration higher than a certain level, the product will be non-uniform and the particle size distribution will be widened, resulting in unfavorable results.

十記、鉄塩水溶液とアルカリ水溶液とを一5〜30℃で
反応させるが、この際、アルカリ水m Ktj−に鉄塩
水溶液を加えることが必要条件である。もしこれを逆に
行えば、41″成物の粒子形態は、軸比の大きい針状と
なるからである。また、両液を反応させる温度は、生成
物のR頂径、粒子の軸比に影響を与える重要な因子であ
る。30℃以十−では、軸比が大きくなり過きタクトイ
ドを形成し易くなる。
10. The iron salt aqueous solution and the alkaline aqueous solution are reacted at -5 to 30°C, and at this time, it is a necessary condition that the iron salt aqueous solution is added to the alkaline water. If this is done in reverse, the particle morphology of the 41" product will become acicular with a large axial ratio. Also, the temperature at which both liquids are reacted is determined by the R apex diameter of the product and the axial ratio of the particles. At temperatures above 30°C, the axial ratio becomes too large and tactoids tend to form.

−1−記のようにして調製した水酸化鉄沈殿を30分間
以上、好ましくは約1日間熟成させてから次の水熱処理
を行う。この熟成によって、均質な、よく揃った粒頂が
得られる。熟成した沈殿を120〜250℃の範囲、好
ましくは180℃で約1時間水熱処理を施す。処理温度
が低いときは結晶化に長時間を要し、所定以上の温度で
は赤色酸化鉄α−1” c 20 :3が混在してくる
。この水熱処J↓!!にょつ−C無定形水酸化鉄沈殿の
結晶化は促進され、溶解、析出作用によって米粒状の酸
化水酸化鉄α−FeOO11すなわち黄酸化鉄が生成す
る。
The iron hydroxide precipitate prepared as described in -1- is aged for 30 minutes or more, preferably for about 1 day, and then subjected to the next hydrothermal treatment. This ripening results in a homogeneous, well-aligned grain top. The aged precipitate is subjected to hydrothermal treatment at a temperature ranging from 120 to 250°C, preferably at 180°C for about 1 hour. When the treatment temperature is low, it takes a long time for crystallization, and at a temperature higher than a certain level, red iron oxide α-1" C 20:3 is mixed. This hydrothermal treatment J↓!! Crystallization of the regular iron hydroxide precipitate is promoted, and grain-like iron oxide hydroxide α-FeOO11, that is, yellow iron oxide, is produced by dissolution and precipitation.

本発明の概要はI−記のようであるか、つまり、この技
術は粒子形態の調整に関するものである。
The summary of the invention is as in I--that is, the technology is concerned with the control of particle morphology.

そして、この新技術の要点は、初期段階の水酸化鉄沈殿
の調製条件の11月こあ−った。この一連の技術は、各
段階における諸条件の組合せの集約である。
The key point of this new technology was the preparation conditions for the initial stage of iron hydroxide precipitation. This series of technologies is a collection of combinations of conditions at each stage.

諸条件の組合せは膨大な数となるが、その大部分は効果
なき結果しか得られない。しかし、結晶形態の調整に関
する理論が未だ確立されていない現 、在、多くの条件
を月念に実験することによってのみ有用な結果がル[待
できる。本発明者らは、多くの実験によって、遂lこ、
米tft状の黄酸化鉄を調製する有用な条件を見出すに
至ったのである。
There are a huge number of combinations of conditions, but most of them yield ineffective results. However, since the theory regarding the adjustment of crystal morphology has not yet been established, useful results can only be expected by carefully experimenting with various conditions. Through many experiments, the inventors finally found that
We have found useful conditions for preparing yellow iron oxide in the form of rice TFT.

次に本発明を実験例によって説明する。鉄」葡としテ」
島化第2鉄1”cC15−6o、、 o (7) 50
9/ l水溶液(約0.2M/V)を用い、アルカリと
して水酸化−)−1−IJ ラムNa0r−1ノア 5
9/ 2 l水溶液(約1M/A’)を用いる。両液を
一5〜35℃において、NaOH水溶液の中へ1i e
Cl 3水溶液を添加し、沈殿反応を行い水酸化鉄沈殿
を調製する。この場合、母液中の過剰遊離アルカリ濃度
は約0.4. M /lである。この遊離アルカリ濃度
かIM/lより高すきると、ID子形態が崩れるので好
ま(7くない。
Next, the present invention will be explained using experimental examples. Tetsu `` Grape Toshite ''
Ferric island 1”cC15-6o,, o (7) 50
Hydroxylation as an alkali using 9/l aqueous solution (approximately 0.2 M/V)-1-IJ Lamb Na0r-1 Noah 5
A 9/2 l aqueous solution (approximately 1 M/A') is used. Both solutions were poured into a NaOH aqueous solution at -5 to 35°C.
A Cl 3 aqueous solution is added and a precipitation reaction is performed to prepare iron hydroxide precipitate. In this case, the excess free alkali concentration in the mother liquor is approximately 0.4. M/l. If this free alkali concentration is higher than IM/l, the ID particle morphology will be disrupted, so this is not preferable (7).

水酸化鉄沈殿を母液と共に1[1熟成して後、180℃
で約1時間水熱処理を施すと、酸化水酸化鉄α−F e
 001 I  ずなわら黄酸化鉄が生成する。この実
験の中、沈殿生成の反応温度を変数とした結果の代表的
なものの顔料特性を表1に示した。
After aging the iron hydroxide precipitate with the mother liquor for 1 [1] time, it was heated to 180°C.
After hydrothermal treatment for about 1 hour, iron oxide hydroxide α-F e
001 I Zunawara yellow iron oxide is produced. Table 1 shows typical pigment properties of the results of this experiment, with the reaction temperature for precipitation being a variable.

表1の結果から、反応温度が高くなるほど長軸、短軸と
もよく成長している。しかし、短軸に比へ長軸の成長の
方か大きいので、軸比か1fir度の1−昇と共に大き
くなっている。そして、30℃付近から軸比が急激に増
加している。比表面積は、吸油量とほぼ比例し、小さい
方か望ましいが、粒子の軸比が大きくなって嵩が高くな
るのC′A分散させる場合好ましくない。沈降容積ずな
わら嵩(4輔比と比例して高くなっている。隠ペイ力は
粒子の短軸とほぼ比例して大きくなっている。針状オ拵
子と顔料特性の関係については、借問、大工試報告、I
(x331 、P、35(1969):借問、態度、浅
井、色材研究発表会(] 980)で詳細に報告されて
いる。一般に顔料特性−L1粒子は表面エネルギーの最
も小さい球状であることが理想である。そして針状粒子
の場合、色調及び隠ペイカは主に短軸(幅)に支配され
ている。表1の結果より、粒頂形態が米粒状のものは、
反応温度30℃以下の場合であり、とりわけ−5℃〜2
0℃の範囲のものか軸比約3以−トで顔料として好適で
ある。
From the results in Table 1, the higher the reaction temperature, the better the growth on both the long and short axes. However, since the growth of the long axis is greater than that of the short axis, it increases as the axial ratio increases by 1 degree. Then, the axial ratio increases rapidly from around 30°C. The specific surface area is approximately proportional to the oil absorption amount, and a smaller one is preferable, but it is not preferable when dispersing C'A because the axial ratio of the particles increases and the bulk increases. The sedimentation volume and bulk (increasing in proportion to the four-dimensional ratio).The hidden force increases in proportion to the short axis of the particle.As for the relationship between the needle-like structure and pigment properties, Borrowed questions, carpentry exam report, I
(x331, P, 35 (1969): Borisoku, Attitude, Asai, Coloring Materials Research Presentation Meeting (] 980) reported in detail.In general, pigment characteristics - L1 particles are spherical with the smallest surface energy. This is ideal.In the case of acicular grains, the color tone and hidden spectra are mainly controlled by the short axis (width).From the results in Table 1, the grain top shape is rice grain-like.
This is the case when the reaction temperature is 30°C or lower, especially -5°C to 2°C.
It is suitable as a pigment in the range of 0°C or with an axial ratio of about 3 or more.

顔$’l ill 、牛ネ1、印刷インキ及び化粧品な
どO看ぐ1色桐材と1〜で使用される。従って、色調、
ベヒクルへの分散すノ1及び面1候性か重要な1ノ1竹
″7アある。黄酸化鉄の」場合、色調は#’:f−Fの
短軸径に支配されて変わる。つまり短軸径と明度に相関
性かある。実用十、との程度の明度の71“を酸化鉄か
よいか(4、用途によって様々−Cある。実際、商品と
して(」、各社とも数種類取揃えでいる。表1に示した
。j、うに、短軸イーηの大きさによ−)で隠ペイ/J
か塵っているか、これの太さいものは、はは明度も大き
く明るい顔料である。これの小さいもの(J、1)・ン
明性を・(1)ひてくるから、透明性LIIIf色顔料
(o −@パンティ)と[7て使用される。
Used in one color paulownia wood and one color for face, cow paste, printing ink, cosmetics, etc. Therefore, the tone,
There are two important aspects of dispersion into the vehicle and surface properties.In the case of yellow iron oxide, the color tone changes depending on the minor axis diameter of f-F. In other words, there is a correlation between the minor axis diameter and brightness. Iron oxide (4) has a brightness of 71", which is about 100% for practical use. There are various types depending on the purpose. In fact, each company has several types available as products ("). Hidden pay/J depending on the size of the short axis E η
The thick pigments are very bright and have a large brightness. The smaller one of this (J, 1) is used as a transparent LIII pigment (o-@panty) because it brings clarity (1).

顔ネ・1のベヒクル′\の分散性(,1,1述のように
表向エネルギーの最小を示す球状粒子が最良−C゛ある
ことC」勿論であるが、黄酸化鉄の場合、未だ球状ね子
の合成法は発明されていない。本発明者らは、従来の剣
状粉子を米粒状へ改冴し、緒特性を向1−させた。それ
は、鉄製の縫剣とホールベアリンクを粉体と考え、ベヒ
クルへの分11を特性を比較したときに似ている。前者
は嵩昼くからみ合って分散し難いが、後者は嵩低く分散
は容易である。米粒状の黄酸化鉄は、同じ色の針状のも
のと比較すると、吸油量、嵩が低く、分散し易く、また
分散したとき低粘度である。これらは顔料として大変好
ましい性質である。なお、面1候性φ而j熱性は化合物
固有のものであるが、顔料の場合、その粉体の均質性、
結晶性及び粒度分布などが影響を及ぼず。
The dispersibility of the vehicle '\ for Face Ne・1 (as mentioned in 1, 1, spherical particles exhibiting the minimum surface energy are the best -C') Of course, in the case of yellow iron oxide, there is still a A method for synthesizing spherical nets has not yet been invented.The present inventors have modified the conventional sword-shaped powder into rice-grain-shaped powder and improved its properties. It is similar to when considering the link as a powder and comparing the characteristics of the part 11 in the vehicle.The former is bulky and entangled and difficult to disperse, but the latter is low in bulk and easy to disperse. Iron oxide has a lower oil absorption, lower bulk, and easier dispersion than needle-like materials of the same color.It also has a low viscosity when dispersed.These are very desirable properties as a pigment. Thermal properties are inherent to the compound, but in the case of pigments, it is dependent on the homogeneity of the powder,
Crystallinity and particle size distribution are not affected.

本発明の黄酸化鉄は、これらの点については、前述のよ
うに、水熱処理によって完全な結晶化を行っているため
特に優れたものである。
The yellow iron oxide of the present invention is particularly excellent in these respects because it is completely crystallized by hydrothermal treatment as described above.

次に本発明を実施例によってさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例I F e C/ 3 ・51−12050’i/z及びN
 a OlT 7 s/21の水溶液をそれぞれ調製し
、両液を一2℃に冷却しておく。そして、よく攪拌しな
がら、N a Otl水溶液の中にF e CI!3水
溶液を徐々に添加し、Fe’(O12)3沈殿を作る。
Example I Fe C/3 ・51-12050'i/z and N
a Prepare aqueous solutions of OlT 7 s/21 and cool both solutions to -2°C. Then, while stirring well, add F e CI! into the Na Otl aqueous solution. 3 aqueous solution is gradually added to form a Fe'(O12)3 precipitate.

沈殿終了後の液温は約0℃となる。この沈殿を時折攪拌
しながら母液と共に1目熟成さけ−る。熟成後の沈殿の
沈降容積は約250mI!となるから、1.澄液を捨て
、rJ液を含む沈殿約300 rnlをテフロンビーカ
ーに移し、オートクレーブに仕込み、180℃、60分
間、水熱処理を施す。このときの圧力は水蒸気の飽和圧
である。
The liquid temperature after precipitation is approximately 0°C. This precipitate is aged with the mother liquor while stirring occasionally. The settling volume of the precipitate after aging is approximately 250 mI! Therefore, 1. The clear liquid is discarded, and approximately 300 rnl of the precipitate containing the rJ liquid is transferred to a Teflon beaker, placed in an autoclave, and subjected to hydrothermal treatment at 180°C for 60 minutes. The pressure at this time is the saturation pressure of water vapor.

この処理によって無定形F e (011) 3  の
れ・3色沈殿は完全に結晶化し、結晶性黄色沈殿へと塵
わる。
Through this treatment, the amorphous Fe (011) 3 tricolor precipitate is completely crystallized and turns into a crystalline yellow precipitate.

これを水洗すると沈殿の沈降容積は150 lll1と
嵩低くなっている。〃]過、乾燥すると米オ1ン状の酸
化水酸鉄α−1・eooHずなわら黄酸化鉄が得られる
When this was washed with water, the settling volume of the precipitate was as low as 150 lll1. [〃] When it is filtered and dried, a yellow iron oxide in the form of rice hydroxide α-1·eooH is obtained.

これの顔料特性は次のようである。f台子径、長軸: 
l 34 nn1.短軸55nm、  軸比:2.4.
比表面積: 35 nt / 9 、隠ペイカニ 53
0 t:f/g、  収量:i5S’、沈降容積: 1
 oml/g、(図1参照)。
The pigment properties of this are as follows. f Tablet diameter, long axis:
l 34 nn1. Minor axis: 55 nm, axial ratio: 2.4.
Specific surface area: 35 nt / 9, hidden crab 53
0 t: f/g, Yield: i5S', Sedimentation volume: 1
oml/g, (see Figure 1).

実施例2 Fe2(504)3 369/l  及びNa0117
5p、/2Iの水溶液をそれぞれ調製し、両液を9℃に
冷却しておく。そして、よく攪拌しながら、Na011
水溶液の中にli’e2(SO4)3水溶液を徐々に添
加し、F c (OTI ) 3  沈殿を作る。沈殿
終了後の液温は約10℃吉なる。以下、実施例1と全く
同1一方法で米イCt状の黄酸化鉄か得られる。これの
顔ネロロ!i性は次のよってある。粒子径、長軸: 1
.94. nm 。
Example 2 Fe2(504)3 369/l and Na0117
Aqueous solutions of 5p and /2I are prepared respectively, and both solutions are cooled to 9°C. Then, while stirring well, Na011
A li'e2(SO4)3 aqueous solution is gradually added to the aqueous solution to form an F c (OTI) 3 precipitate. The liquid temperature after the precipitation is about 10°C. Hereinafter, yellow iron oxide in the form of rice Ct was obtained using exactly the same method as in Example 1. This face is Neroro! The i-character is as follows. Particle diameter, major axis: 1
.. 94. nm.

短軸: 70 nm、  軸比=28.比表面債: 3
 Q nf/g、隠ペイカニ580ca/9.収帛:]
59゜実施例3 Fc (No3):31g1120 75 ’i / 
l及び■ζ0I11.00g/27?  の水溶液をそ
れぞれ調製1−1両液を19℃に保持しておく。そし−
〇、よく攪拌しなから1(0口、水溶液の中にl’c(
NO3)r3 水溶液を徐々に添加1〜、I” c (
011) :s沈殿を作る。沈殿終了後の液温(1約2
0℃となる。以ド、実施例1と全く同し方θミで半1檜
状の黄酸化鉄が得られる。これの顔料特性は次のようで
ある。粒子径、長軸:266nm、  短軸; 82 
nm、  り仙比:32.比表面債: 26 nf /
 7.隠ペイカニ920cn/!、収楕:16!i/、
(図2参照)。
Short axis: 70 nm, axial ratio = 28. Specific surface bond: 3
Q nf/g, hidden pay crab 580ca/9. Collection: ]
59゜Example 3 Fc (No3): 31g1120 75'i/
l and ■ζ0I11.00g/27? Prepare aqueous solutions of 1-1 and keep both solutions at 19°C. Soshi-
〇, Stir well.
NO3)r3 Gradually add the aqueous solution 1~, I”c (
011): Make a precipitate. Liquid temperature after precipitation (1 approx. 2
It becomes 0℃. Thereafter, semi-cylindrical yellow iron oxide was obtained in exactly the same manner as in Example 1. The pigment properties of this are as follows. Particle diameter, long axis: 266 nm, short axis: 82
nm, ratio: 32. Specific surface bond: 26 nf/
7. Hidden pay crab 920cn/! , Collection: 16! i/,
(See Figure 2).

【図面の簡単な説明】[Brief explanation of drawings]

図1及び図2は、本発明の方法によって得られた黄酸化
鉄顔料の4.0 、000倍の電r顕微鏡写真である。 図;3及び図4は、従来の黄酸化鉄面*−1の40 、
0 (10倍の電子−顕微鏡写真である。 り、511′j出願人 工業技術院I(石板誠〜 指定代理人 工業技術院 大阪工業技術試験所長内藤−
1 and 2 are electron micrographs of a yellow iron oxide pigment obtained by the method of the present invention at a magnification of 4.0,000 times. Figure; 3 and 4 show the conventional yellow iron oxide surface *-1 of 40,
0 (This is an electron micrograph at a magnification of 10.
Man

Claims (1)

【特許請求の範囲】 1 粒子形態が楕円体(米粒状)の黄酸化鉄において、
その長軸:100〜350にり、軸比:る黄酸化鉄顔料
。 230℃以下のアルカリ水溶液の中に、第2鉄塩水溶液
を30℃以下の温度において、添加、混合して水酸化鉄
を調製し、これを熟成した後、120〜250℃の温度
で水熱処理を施し、酸化水酸化鉄粉末を生成させること
を特徴とする黄酸化鉄顔料の製造法。 3、水酸化鉄の調製は、第2鉄塩の水溶液濃度を0.5
M//以下とし、アルカリの水溶液濃度を4M/l以下
として反応させることを特徴とする第2項記載の方法。 4、水酸化鉄の調製は、化学晴論的中和に必要な第2鉄
塩及びアルカリの式[汁よりアルカリを過剰となるよう
予め算出した債を以て反応させるか、そのアルカリの過
剰度は、沈殿反応終了後、全ΔkFn中、遊割アルカリ
濃度か、]、OM//以下であることを!1h徴とする
第2項記載の方法。 5、水酸化鉄の沈殿反応路r後、その沈殿をIU液と共
に約1 [1間熟成させてから、水熱処理を施すことを
特徴とする第2項記載の方法。
[Claims] 1. Yellow iron oxide having an ellipsoidal (rice grain-like) particle shape,
A yellow iron oxide pigment whose long axis is 100 to 350 and whose axial ratio is . Iron hydroxide is prepared by adding and mixing an aqueous ferric salt solution into an alkaline aqueous solution at a temperature of 230°C or lower at a temperature of 30°C or lower, and after aging this, hydrothermal treatment is performed at a temperature of 120 to 250°C. 1. A method for producing a yellow iron oxide pigment, which comprises applying the following steps to produce iron oxide hydroxide powder. 3. To prepare iron hydroxide, adjust the concentration of the ferric salt aqueous solution to 0.5.
3. The method according to item 2, characterized in that the reaction is carried out at an aqueous alkali solution concentration of 4 M/l or less. 4. To prepare iron hydroxide, use the formula for ferric salt and alkali necessary for chemical neutralization [either react with a pre-calculated amount so that the alkali is in excess of the liquid, or , After the precipitation reaction is completed, the free alkali concentration in the total ΔkFn is less than ], OM//! 2. The method according to item 2, wherein the 1 h characteristic is obtained. 5. The method according to item 2, wherein after the precipitation reaction process of iron hydroxide, the precipitate is aged with the IU solution for about 1 hour, and then subjected to hydrothermal treatment.
JP14717281A 1981-09-17 1981-09-17 yellow iron oxide pigment Expired JPS6015580B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14717281A JPS6015580B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment
US06/413,556 US4459276A (en) 1981-09-17 1982-08-31 Yellow iron oxide pigment and method for manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14717281A JPS6015580B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment

Publications (2)

Publication Number Publication Date
JPS5849693A true JPS5849693A (en) 1983-03-23
JPS6015580B2 JPS6015580B2 (en) 1985-04-20

Family

ID=15424205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14717281A Expired JPS6015580B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment

Country Status (1)

Country Link
JP (1) JPS6015580B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168536A (en) * 1985-01-21 1986-07-30 Agency Of Ind Science & Technol Production of acicular iron oxyhydroxide
CN100432156C (en) * 2005-04-30 2008-11-12 河南黄河旋风股份有限公司 Process for preparing nano iron oxide yellow pigment
CN102604435A (en) * 2012-02-21 2012-07-25 升华集团德清华源颜料有限公司 Nano transparent iron oxide yellow pigment
CN105504883A (en) * 2015-12-29 2016-04-20 中国科学院宁波材料技术与工程研究所 Preparation method of high-temperature-resistant ferric oxide yellow pigment
CN110422886A (en) * 2019-08-23 2019-11-08 上海新禹固废处理有限公司 A kind of preparation method of hydrated ferric oxide
CN112126252A (en) * 2020-08-18 2020-12-25 江苏宇星工贸有限公司 Production process of heat-resistant iron oxide yellow

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1512726T3 (en) * 2003-09-03 2016-03-31 Lanxess Deutschland Gmbh Process for precitating yellow iron oxide pigments using caco3 as precipitating agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168536A (en) * 1985-01-21 1986-07-30 Agency Of Ind Science & Technol Production of acicular iron oxyhydroxide
JPH033612B2 (en) * 1985-01-21 1991-01-21 Kogyo Gijutsu Incho
CN100432156C (en) * 2005-04-30 2008-11-12 河南黄河旋风股份有限公司 Process for preparing nano iron oxide yellow pigment
CN102604435A (en) * 2012-02-21 2012-07-25 升华集团德清华源颜料有限公司 Nano transparent iron oxide yellow pigment
CN105504883A (en) * 2015-12-29 2016-04-20 中国科学院宁波材料技术与工程研究所 Preparation method of high-temperature-resistant ferric oxide yellow pigment
CN110422886A (en) * 2019-08-23 2019-11-08 上海新禹固废处理有限公司 A kind of preparation method of hydrated ferric oxide
CN112126252A (en) * 2020-08-18 2020-12-25 江苏宇星工贸有限公司 Production process of heat-resistant iron oxide yellow

Also Published As

Publication number Publication date
JPS6015580B2 (en) 1985-04-20

Similar Documents

Publication Publication Date Title
US4459276A (en) Yellow iron oxide pigment and method for manufacture thereof
EP0317272B1 (en) Flaky powder of zinc oxide and its composition for external use
DE2740561C2 (en)
US2388659A (en) Manufacture of pigments
CN101407324B (en) Method of preparing silicon dioxide delustrant by large pore volume gel
DE1223352B (en) Process for the production of gamma-FeOOH
JPS5849693A (en) Yellow pigment of iron oxide
US2558303A (en) Production of iron oxide pigments
EP0631984B1 (en) Magnesium hydroxide and method for its preparation
JPS5849694A (en) Yellow pigment of iron oxide
CN110228823B (en) Iron oxide yellow and preparation method thereof, and iron oxide red and preparation method thereof
DE2543917A1 (en) PROCESS FOR PRODUCING TITANIUM DIOXYDE BY THE SULPHATE PROCESS
US4014977A (en) Process for the hydrolysis of titanium sulphate solutions
JPH01153760A (en) Production of pearl gloss pigment composed of bismuth oxychloride
DE2848566A1 (en) METHOD FOR PRODUCING LEAD CONNECTIONS
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
DE2455158C2 (en) Process for the production of goethite
DE112022000279T5 (en) Manufacturing process for a ternary precursor
DE2727864A1 (en) PROCESS FOR THE MANUFACTURING OF A PIGMENTARY, LUMINOUS KEYFLOWER-YELLOW, MONOCLINE WISMUTH VANADATE
CN113881248A (en) Preparation method of ferrosilicon red pigment
JPS603012B2 (en) Precipitation method for producing red iron oxide
US2006016A (en) Method of making pigmented paper
JPH04164813A (en) Production of zinc oxide powder
US3009821A (en) Red oxide of iron
JPH03195779A (en) Yellow hydrated iron oxide pigment and production thereof