JPS6015580B2 - yellow iron oxide pigment - Google Patents

yellow iron oxide pigment

Info

Publication number
JPS6015580B2
JPS6015580B2 JP14717281A JP14717281A JPS6015580B2 JP S6015580 B2 JPS6015580 B2 JP S6015580B2 JP 14717281 A JP14717281 A JP 14717281A JP 14717281 A JP14717281 A JP 14717281A JP S6015580 B2 JPS6015580 B2 JP S6015580B2
Authority
JP
Japan
Prior art keywords
iron oxide
aqueous solution
yellow iron
yellow
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14717281A
Other languages
Japanese (ja)
Other versions
JPS5849693A (en
Inventor
聡一郎 信岡
和明 阿度
孝 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14717281A priority Critical patent/JPS6015580B2/en
Priority to US06/413,556 priority patent/US4459276A/en
Publication of JPS5849693A publication Critical patent/JPS5849693A/en
Publication of JPS6015580B2 publication Critical patent/JPS6015580B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Description

【発明の詳細な説明】 本発明は、粒子形態が米粒状(楕円体)をもつた、粒度
分布幅の狭い黄酸化鉄顔料、及びその製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a yellow iron oxide pigment having a rice grain-like (ellipsoidal) particle shape and a narrow particle size distribution, and a method for producing the same.

その目的とするところは、色調、分散性及び耐熱性の優
れた黄酸化鉄顔料を提供し、従来からの用途を更に拡大
し、熱加工樹脂、化粧品及びトラフィックベィント用な
どへの新しい用途を開拓するところにある。現在、黄酸
顔料としては、蓑鉛、ストロンチウム黄、カドミウム黄
及びペンジジン黄などがある。これらはすべて有毒性ま
たは発癌・性であるから環境汚染の防止、国民の健康保
全のために当然のことながらその使用は規制されてきて
いる。このようような情勢にかんがみ、色材工業界では
、上記の有毒性黄色顔料に代る優れた無毒性黄色顔料の
開発が待望されている。黄酸化鉄は、Q−Fe00日な
る組成でGoe仇ite構造を有し、針鉄鉱、黄土、オ
ーカーなどと呼ばれ、古くから着色材料として使用され
てきた。
The aim is to provide a yellow iron oxide pigment with excellent color tone, dispersibility, and heat resistance, further expand its existing uses, and create new uses such as heat-processable resins, cosmetics, and traffic paints. It's about to be explored. At present, the yellow acid pigments include chlorine lead, strontium yellow, cadmium yellow, and penzidine yellow. Since all of these are toxic or carcinogenic, their use has naturally been regulated in order to prevent environmental pollution and protect the health of the public. In view of this situation, the color material industry is eagerly awaiting the development of an excellent non-toxic yellow pigment to replace the above-mentioned toxic yellow pigment. Yellow iron oxide has a Goeite structure with a composition of Q-Fe00 days, is called goethite, loess, ocher, etc., and has been used as a coloring material since ancient times.

これは無毒性で耐涙性及び安定性があり、かつ安価であ
る。その用途は、塗料、印刷インキ、建築材料などを始
め、無毒性であることから化粧品、タバコフィルターの
巻紙及び養鶏飼料などの着色にまで及んでいる。また、
戦後、磁気記録用磁性粉の原料としても使用されるよう
になり、磁気記録方法の進歩普及と共にその需要の伸び
は顕著である。しかし、これの顔料としての性質は、満
足すべきものではなく改善の余地が多分にある。すなわ
ち、色調がやや不鮮明、針状粒形に基づく高粘性、耐熱
性が劣るなどの欠点を有している。これがため、上記有
毒性黄色顔料との代替は制約されており、かねてより、
この顔料の特性改善及び品質向上への要請は強かった。
黄酸化鉄の製造法は、現在、硫酸第1鉄水溶液の加水分
解と空気酸化反応を応用して、微小結晶核を所望の粒子
径まで成長させる方法が採用されている。
It is non-toxic, tear resistant and stable, and inexpensive. Its uses range from paints, printing inks, and building materials to coloring cosmetics, cigarette filter paper, and poultry feed because it is nontoxic. Also,
After the war, it began to be used as a raw material for magnetic powder for magnetic recording, and demand for it has increased markedly as magnetic recording methods have progressed and spread. However, its properties as a pigment are not satisfactory and there is much room for improvement. That is, they have drawbacks such as a slightly unclear color tone, high viscosity due to the acicular particle shape, and poor heat resistance. For this reason, substitution with the above-mentioned toxic yellow pigment has been restricted, and for some time,
There was a strong demand for improving the characteristics and quality of this pigment.
Currently, yellow iron oxide is produced by applying hydrolysis of an aqueous ferrous sulfate solution and air oxidation reaction to grow microcrystal nuclei to a desired particle size.

この際、硫酸第1鉄水溶液を極めて緩やかに中和し結晶
成長を促す方法として、鉄屑による方法とアンモニアガ
スによる方法の二万法がある。前者については、例えば
、信岡ほか、工化、66,412(1963)に詳述さ
れている。後者については、矢田、ェレクトロニク・セ
ラミックス‘72,舷.1,P.15に記載されている
。これらの文献及び後記の図3と図4から従来の黄酸化
鉄は、その粒子形態が針状タクトィド型で、その軸比:
薫韓隼は50以上である。その製造方法は、不溶性塩の
水溶液中における結晶成長に関するもので、その生成機
構から考えて製造条件の調整のみにより、現在以上に生
成物の粒度を揃えたり均質なものを得ることは極めて困
難であり、また粒子の形や軸比を変えることは不可能で
ある。従って、現在市販の蓑酸化鉄は、図3と図4に見
られるように、大粒子や小粒子が混在し、針状粒子の軸
比も揃わず、幅の広い粒度分布を示している。一般に紛
体系が示す諸物性は、その総体が構成する粒子形態と相
関性あることはよく知られている。顔料においては、そ
の粒子形態は、色調、隠ベイ力、吸油量、着色力及び塗
料としたときのレオロジカルな性質や塗膜の強度などに
影響を与える。黄酸化鉄の場合、大粒子と小粒子が混在
すれば、大粒子の示す物性と小粒子の示す物性が異るが
紛体としては相互に減殺された統計的平均としての物性
を示すことになる。色調を例にとれば、信岡、大工試報
告、No.331,P.33(日召44)に記述されて
いるように、大粒子の示す色と小粒子の示す色とは相違
するから、これらを混合すれば、絵具の混色のように減
色混合となり明度と彩度が小さくなり暗い感じの色調と
なる。つまり、顔料としては、粒度分布幅の狭い織体で
あることが理想である。さらに、針状粒子の軸比の小さ
い分散性の良好な吸油量の低い顔料であることが要望さ
れている。本発明者らは、長年にわたる黄酸化鉄の研究
から、その本質的欠点を理解し、斯界のニーズに応え、
鋭意研究を重ね、これの品質向上のため貢献してきた。
At this time, there are 20,000 methods, which are a method using iron scraps and a method using ammonia gas, as methods for very gently neutralizing the ferrous sulfate aqueous solution and promoting crystal growth. The former is described in detail in, for example, Nobuoka et al., Koka, 66, 412 (1963). Regarding the latter, see Yada, Electronic Ceramics '72, Kanade. 1, P. 15. From these documents and FIGS. 3 and 4 described below, conventional yellow iron oxide has an acicular tactid particle morphology, and its axial ratio:
Kunhan Jun is over 50. The manufacturing method involves crystal growth in an aqueous solution of an insoluble salt, and considering the formation mechanism, it is extremely difficult to make the particle size of the product more uniform or to obtain a more homogeneous product than at present, just by adjusting the manufacturing conditions. It is also impossible to change the shape or axial ratio of the particles. Therefore, as shown in FIGS. 3 and 4, currently commercially available iron oxide has a wide particle size distribution, with a mixture of large and small particles and uneven axial ratios of acicular particles. It is well known that the physical properties exhibited by a powder system are generally correlated with the particle morphology of the powder system. The particle morphology of pigments affects color tone, bay hiding power, oil absorption, coloring power, rheological properties when used as a paint, strength of paint film, etc. In the case of yellow iron oxide, if large particles and small particles coexist, the physical properties exhibited by the large particles are different from those exhibited by the small particles, but as a powder, they exhibit physical properties as a statistical average that cancel each other out. . Taking color tones as an example, Nobuoka, Carpenter Examination Report, No. 331, P. As described in 33 (Hisho 44), the color shown by large particles and the color shown by small particles are different, so when they are mixed, it becomes a subtractive color mixture like the color mixture of paints, which changes the brightness and saturation. becomes smaller and the color tone becomes darker. In other words, it is ideal for the pigment to be a woven material with a narrow particle size distribution. Furthermore, there is a demand for a pigment with a small axial ratio of acicular particles, good dispersibility, and low oil absorption. Through many years of research on yellow iron oxide, the present inventors have understood its essential drawbacks, and in response to the needs of this industry,
He has conducted extensive research and contributed to improving the quality of this product.

例えば特許においては、安藤、信岡、袴公昭31−32
班;信岡、浅井、阿度、特公昭53一28158;信岡
、浅井、阿度、U.S.Pat.,3,969,4班:
信岡ら、特公昭55一9016などである。これらの技
術の一部は、契約され実施されている。今回、さらに新
技術を開発するに至った。それは、黄酸化鉄の粒子形態
を針状から米粒状へと改善し、粒度分布幅を狭くするこ
とに成功した。これによって顔料としての諸特性、すな
わち色調、分散性、安定隆などを飛躍的に向上させるこ
とができた。次に本発明の構成について説明する。
For example, in patents, Ando, Nobuoka, Hakama Kimishō 31-32
Group: Nobuoka, Asai, Ato, Special Public Service No. 53-28158; Nobuoka, Asai, Ato, U. S. Pat. , 3,969, Group 4:
Nobuoka et al., Special Publication No. 55-9016, etc. Some of these technologies have been contracted and implemented. This time, we have developed a new technology. They successfully improved the particle morphology of yellow iron oxide from needle-like to rice-grain-like and narrowed the particle size distribution. This made it possible to dramatically improve various properties as a pigment, such as color tone, dispersibility, and stability. Next, the configuration of the present invention will be explained.

まず第2鉄塩水溶液とアルカリ水溶液とを反応させて水
酸化鉄沈殿を調製する。この際、使用する鉄塩は、硫酸
第2鉄、塩化第2鉄、及び硝酸第2鉄などの水酸性鉄塩
である。使用する濃度は、0.8M/〆以下とし、好ま
しくは0.2M/〆付近である。一方、アルカリは、水
酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭
酸カリウム、及び水酸化カルシウムなどである。使用濃
度は、4M/そ以下とし、好ましくはIM/〆付近であ
る。所定濃度以上で反応させると、生成物が不均質とな
り、粒度分布幅を拡げ、好ましくない結果となる。上記
、鉄塩水溶液とアルカリ水溶液とを−5〜3000で反
応させるが、この際、アルカリ水溶液に鉄塩水溶液を加
えることが必要条件である。もしこれを逆に行えば、生
成物の粒子形態は、軸比の大きい針状となるからである
。また、両液を反応させる温度は、生成物の粒子蓬、粒
子の軸比に影響を与える重要な因子である。3000以
上では、軸比が大きくなり過ぎタクトィドを形成し易く
なる。
First, a ferric salt aqueous solution and an alkaline aqueous solution are reacted to prepare an iron hydroxide precipitate. In this case, the iron salt used is a hydroxyl iron salt such as ferric sulfate, ferric chloride, and ferric nitrate. The concentration used is below 0.8M/〆, preferably around 0.2M/〆. On the other hand, alkalis include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and calcium hydroxide. The concentration used is 4M/lower, preferably around IM/〆. If the reaction is carried out at a concentration higher than a predetermined concentration, the product will become heterogeneous and the particle size distribution will become wider, resulting in unfavorable results. As mentioned above, the iron salt aqueous solution and the alkaline aqueous solution are reacted at -5 to 3000, but at this time, it is a necessary condition that the iron salt aqueous solution is added to the alkaline aqueous solution. If this is done in reverse, the particle morphology of the product will be acicular with a large axial ratio. Furthermore, the temperature at which the two liquids are reacted is an important factor that affects the size of the product particles and the axial ratio of the particles. If it is 3000 or more, the axial ratio becomes too large and tactoids are likely to be formed.

上記のようにして調製した水酸化鉄沈澱を3粉〉間以上
、好ましくは約1日間熟成させてから次の水熱処理を行
う。
The iron hydroxide precipitate prepared as described above is aged for at least 3 days, preferably about 1 day, and then subjected to the next hydrothermal treatment.

この熟成によって、均質な、よく揃った粒子が得られる
。熟成した沈殿を120〜25000の範囲、好ましく
は18000で約1時間水熱処理を施す。処理温度が低
いときは結晶化に長時間を要し、所定以上の温度では赤
色酸化鉄Q−Fe203が混在してくる。この水熱処理
によって無定形水酸化鉄沈殿の結晶化は促進され、溶解
、析出作用によって米粒状の酸化水酸化鉄Q−Fe00
日すなわち黄酸化鉄が生成する。
This ripening results in homogeneous, well-ordered particles. The aged precipitate is subjected to hydrothermal treatment at a temperature in the range of 120 to 25,000, preferably 18,000 for about 1 hour. When the processing temperature is low, it takes a long time for crystallization, and when the temperature is higher than a predetermined temperature, red iron oxide Q-Fe203 is mixed. This hydrothermal treatment promotes the crystallization of the amorphous iron hydroxide precipitate, and the dissolution and precipitation action results in grain-like iron oxide hydroxide Q-Fe00.
In other words, yellow iron oxide is produced.

本発明の概要は上記のようであるが、つまり、この技術
は粒子形態の調整に関するものである。
The outline of the present invention is as described above; that is, this technology relates to the adjustment of particle morphology.

そして、この新技術の要点は、初期段階の水酸化鉄沈澱
の調製条件の中にあった。この一連の技術は、各段階に
おける諸条件の組合せの集約である。諸条件の組合せは
膨大な数となるが、その大部分は効果なき結果しか得ら
れない。しかし、結晶形態の調整に関する理論が未だ確
立されていない現在、多くの条件を丹念に実験すること
によってのみ有用な結果が期待できる。本発明者らは、
多くの実験によって、遂に、米粒状の黄酸化鉄を調製す
る有用な条件を見出すに至ったのである。次に本発明を
実施例によって説明する。鉄塩として塩化第2鉄FeC
13・母LOの5M/〆水溶液(約0.2M/そ)を用
い、アルカリとして水酸化ナトリウムNaOHの75夕
/2そ水溶液(約IM/そ)を用いる。両液を−5〜3
5℃において、NaOH水溶液の中へFeC13水溶液
を添加し、沈澱反応を行い水酸化鉄沈殿を調製する。こ
の場合、母液中の過剰遊離アルカリ濃度は約0.4け/
そである。この遊離アルカリ濃度がIM/夕より高すぎ
ると、粒子形態が崩れるので好ましくない。水酸化鉄沈
殿を母液と共に1日熟成して後、180℃で約1時間水
熱処理を施すと、酸化水酸化鉄Q−Fe00日すなわち
黄酸化鉄が生成する。この実験の中、沈殿生成の反応温
度を変数とした結果の代表的なものの顔料特性を表1に
示した。表 1 1)BET法, 2)JISK5101, 3)水中に
おネナる沈殿の容積, 4)図1参照表1の結果から、
反応温度が高くなるほど長軸、短軸ともによく成長して
いる。
The key point of this new technology was in the preparation conditions for iron hydroxide precipitation at the initial stage. This series of technologies is a collection of combinations of conditions at each stage. There are a huge number of combinations of conditions, but most of them yield ineffective results. However, since no theory regarding the adjustment of crystal morphology has yet been established, useful results can only be expected by carefully experimenting with many conditions. The inventors
Through many experiments, they finally found useful conditions for preparing rice grain-like yellow iron oxide. Next, the present invention will be explained by examples. Ferric chloride FeC as iron salt
13. Use a 5M aqueous solution (approximately 0.2M/so) of the mother LO, and use a 75/2 aqueous solution (approximately IM/so) of sodium hydroxide NaOH as the alkali. Both liquids -5~3
At 5° C., an aqueous FeC13 solution is added to an aqueous NaOH solution to perform a precipitation reaction to prepare an iron hydroxide precipitate. In this case, the excess free alkali concentration in the mother liquor is approximately 0.4 K/
It's a sleeve. If this free alkali concentration is too higher than IM/T, the particle morphology will collapse, which is not preferable. When the iron hydroxide precipitate is aged with the mother liquor for one day and then subjected to hydrothermal treatment at 180° C. for about one hour, iron hydroxide oxide Q-Fe00 day, that is, yellow iron oxide is produced. Table 1 shows typical pigment properties of the results of this experiment, with the reaction temperature for precipitation being a variable. Table 1 1) BET method, 2) JISK5101, 3) Volume of precipitate in water, 4) From the results in Table 1 (see Figure 1),
As the reaction temperature increases, both the long and short axes grow better.

しかし、短軸に比べ長軸の成長の方が大きいので、軸比
が温度の上昇と共に大きくなっている。そして、300
0付近から軸比が急激に増加している。比表面積は、吸
油量とほぼ比例し、小さい方が望ましいが、粒子の軸比
が大きくなって嵩が高くなるのは分散させる場合好まし
くない。沈降容積すなわち嵩は軸比と比例して高くなっ
ている。隠ベイ力は粒子の短軸とほぼ比例して大きくな
っている。針状粒子と顔料特性の関係については、信岡
、大工試報告、No.331,P.35(1969);
信岡、阿度、浅井、色材研究発表会(1980)で詳細
に報告されている。一般に顔料特性上、粒子は表面エネ
ルギーの最も小さい球状であることが理想である。そし
て針状粒子の場合、色調及び隠ベイ力は主に短軸(幅)
に支配されている。表1の結果より、粒子形態が米粒状
のものは、反応温度3000以下の場合であり、とりわ
け一5〜20o0の範囲のものが鞠比約3以下で顔料と
して好適である。顔料は、塗料、印刷インキ及び化粧品
などの着色材料として使用される。
However, since the growth of the long axis is greater than that of the short axis, the axial ratio increases with increasing temperature. And 300
The axial ratio increases rapidly from around 0. The specific surface area is approximately proportional to the oil absorption amount, and a smaller one is preferable, but it is not preferable that the axial ratio of the particles increases and the bulk increases when dispersing the particles. The settled volume or bulk increases in proportion to the axial ratio. The hidden Bey force increases almost in proportion to the short axis of the particle. Regarding the relationship between acicular particles and pigment properties, see Nobuoka, Carpentry Test Report, No. 331, P. 35 (1969);
This was reported in detail in Nobuoka, Ado, and Asai, Color Materials Research Presentation (1980). Generally, in terms of pigment properties, it is ideal for particles to have a spherical shape with the smallest surface energy. In the case of acicular particles, the color tone and hidden Bay force are mainly determined by the short axis (width).
is controlled by. From the results in Table 1, it is found that particles having a rice grain shape are suitable for use as pigments when the reaction temperature is 3000 or less, and in particular particles in the range of 15 to 20o0 have a mari ratio of about 3 or less. Pigments are used as coloring materials in paints, printing inks, cosmetics, etc.

従って、色調、ベヒクルへの分散性及び耐候I性が重要
な性質である。黄酸化鉄の場合、色調は粒子の短軸経に
支配されて変わる。つまり短軸径と明度に相関性がある
。実用上、どの程度の明度の黄酸化鉄がよいかは、用途
によって様々である。実際、商品としては、各社とも数
種類取揃えている。表1に示したように、短軸径の大き
さによって隠ベイ力が変っているが、これの大きいもの
は、ほぼ明度も大きく明るい顔料である。これの小さい
ものは、透明性を帯びてくるから、透明性黄色顔料(ロ
ーオバシティ)として使用される。顔料のべヒクルへの
分散性は、上述のように表面エネルギーの最小を示す球
状粒子が最良であることは勿論であるが、黄酸化鉄の場
合、未だ球状粒子の合成法は発明されていない。
Therefore, color tone, dispersibility in vehicles, and weather resistance are important properties. In the case of yellow iron oxide, the color tone changes depending on the long axis of the particles. In other words, there is a correlation between the minor axis diameter and brightness. Practically speaking, the desired brightness of yellow iron oxide varies depending on the application. In fact, each company offers several types of products. As shown in Table 1, the hidden bay power changes depending on the size of the short axis diameter, and pigments with a large value have a large brightness. Smaller pigments become transparent and are therefore used as transparent yellow pigments (low-oversity). As mentioned above, it goes without saying that spherical particles exhibiting the minimum surface energy are best for pigment dispersibility in a vehicle, but in the case of yellow iron oxide, a method for synthesizing spherical particles has not yet been invented. .

本発明者らは、従来の針状粒子を米粒状へ改善し、諸特
性を向上させた。それは、鉄製の縫針とボールベアリン
グを粉体と考え、ベヒクルへの分散特性を比較したとき
に似ている。前者は嵩高〈からみ合って分散し難いが、
後者は高低く分散は容易である。米粒状の黄酸化鉄は、
同じ色の針状のものと比較すると、吸油量、意が低く、
分散し易く、また分散したとき低粘度である。これらは
顔料として大変好ましい性質である。なお、耐優性や耐
熱性は化合物固有のものであるが、顔料の場合、その粉
体の均質性、結晶性及び粒度分布などが影響を及ぼす。
本発明の黄酸化鉄は、これらの欠点については、前述の
ように、水熱処理によって完全な結晶化を行っているた
め特に優れたものである。次に本発明を実施例によって
さらに詳細に説明する。実施例 1 FeC13・細2050夕/そ及びNaOH75/2そ
の水溶液をそれぞれ調製し、両液を−2℃に冷却してお
く。
The present inventors improved the conventional acicular particles into rice grain-like particles and improved various properties. This is similar to considering a steel sewing needle and a ball bearing as powder and comparing their dispersion characteristics into a vehicle. The former is bulky (intertwined and difficult to disperse, but
The latter is easy to disperse at low altitudes. Rice grain-shaped yellow iron oxide is
Compared to needle-shaped ones of the same color, the oil absorption is lower,
It is easy to disperse and has a low viscosity when dispersed. These properties are very desirable as a pigment. Note that superiority resistance and heat resistance are inherent to the compound, but in the case of pigments, the homogeneity, crystallinity, particle size distribution, etc. of the powder affect them.
The yellow iron oxide of the present invention is particularly excellent in terms of these drawbacks because it is completely crystallized by hydrothermal treatment, as described above. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Aqueous solutions of FeC13/Fine 2050/So and NaOH75/2 were prepared, and both solutions were cooled to -2°C.

そして、よく壇拝しながら、NaOH水溶液の中にFe
C13水溶液を徐々に添加し、Fe(OH)3沈殿を作
る。沈殿終了後の液温は約0℃となる。この沈殿を時折
蝿拝しながら母液と共に1日熟成させる。熟成後の沈殿
の沈降容積は約250叫となるから、上燈液を捨て、母
液を含む沈殿約300の上をテフロンビーカーに移し、
オートクレ−ブに仕込み、180qo、6び分間、水熱
処理を施す。このときの圧力は水蒸気の飽和圧である。
この処理によつて無定形Fe(OH)3の褐色沈殿は完
全に結晶化し、結晶性黄色沈殿へと変わる。これを水洗
すると沈殿の沈降容積は150の‘と高低くなっている
。淀過、乾燥すると米粒状の酸化水酸鉄は−Fe00日
すなわち黄酸化鉄が得られる。
Then, while praying carefully, I put Fe into the NaOH aqueous solution.
C13 aqueous solution is gradually added to form Fe(OH)3 precipitate. The liquid temperature after precipitation is approximately 0°C. This precipitate is aged with the mother liquor for one day, with occasional stirring. The sedimentation volume of the precipitate after aging is about 250 ml, so discard the top solution and transfer the top of the 300 ml precipitate containing the mother liquor to a Teflon beaker.
The mixture was placed in an autoclave and subjected to hydrothermal treatment at 180 qo for 6 minutes. The pressure at this time is the saturation pressure of water vapor.
By this treatment, the brown precipitate of amorphous Fe(OH)3 is completely crystallized and turns into a crystalline yellow precipitate. When this was washed with water, the settling volume of the precipitate was as low as 150'. When filtered and dried, iron hydroxide oxide in the form of rice grains yields -Fe00 days, that is, yellow iron oxide.

これの顔料特性は次のようである。粒子径、長軸:13
4nm、短欧5則m、軸比:2.4、比表面積:35〆
/夕、隠ベイ力:530の/夕、収量:15夕、沈降容
積:10の上/夕、(図1参照)。
The pigment properties of this are as follows. Particle diameter, major axis: 13
4 nm, short European 5 m, axial ratio: 2.4, specific surface area: 35 / m, hidden bay power: 530 / m, yield: 15 m, sedimentation volume: 10 / m, (see Figure 1) ).

実施例 2 .Fe2(S04)336夕/そ及びNaOH75夕/
2その水溶液をそれぞれ調製し、両液を9℃に冷却して
おく。
Example 2. Fe2 (S04) 336 evening/So and NaOH75 evening/
2. Prepare each aqueous solution and cool both solutions to 9°C.

そして、よく燭拝しながら、NaOH水溶液の中にFe
2(S04)3水溶液を徐々に添加し、Fe(OH)3
沈殿を作る。沈殿終了後の液温は約10qoとなる。以
下、実施例1と全く同じ方法で米粒状の黄酸化鉄が得ら
れる。これの顔料特性は次のようである。粒子径、最軸
:194nm、短軸:7mm、軸比:2.8比表面積:
30の/夕、隠ベイ力:580の/夕、収量:15夕。
実施例 3 Fe(N03)3・班2075夕/そ及びKOHIOO
タノ2その水溶液をそれぞれ調製し、両液を1900に
保持しておく。
Then, while praying well, Fe was added to the NaOH aqueous solution.
2(S04)3 aqueous solution was gradually added, Fe(OH)3
Make a precipitate. The liquid temperature after the precipitation is about 10 qo. Thereafter, rice grain-shaped yellow iron oxide is obtained in exactly the same manner as in Example 1. The pigment properties of this are as follows. Particle diameter, maximum axis: 194 nm, short axis: 7 mm, axial ratio: 2.8 Specific surface area:
30/evening, hidden power: 580/evening, yield: 15 evening.
Example 3 Fe (N03) 3 Group 2075 Yu/Soto KOHIOO
Prepare aqueous solutions of Tano 2 and keep both solutions at 1900.

そして、よく渡洋しながらKOH、水溶液の中にFe(
N03)3水溶液を徐々に添加し、Fe(OH)3沈殿
を作る。沈殿終了後の液温は約20℃となる。以下、実
施例1と全く同じ方法で半粒状の黄酸化鉄が得られる。
これの顔料特性は次のようである。粒子径、長軸:26
紬m、短軸:8かm、軸比:3.2、比表面積:26わ
/夕、隠ベイ力:920の/夕、収量:16夕、(図2
参照)。
Then, while often crossing the ocean, KOH and Fe(
N03)3 aqueous solution is gradually added to form Fe(OH)3 precipitate. The liquid temperature after the precipitation is about 20°C. Thereafter, semi-granular yellow iron oxide is obtained in exactly the same manner as in Example 1.
The pigment properties of this are as follows. Particle diameter, major axis: 26
Tsumugi m, short axis: 8 m, axial ratio: 3.2, specific surface area: 26 w/w, concealment power: 920 w/w, yield: 16 w/w, (Figure 2
reference).

【図面の簡単な説明】[Brief explanation of the drawing]

図1及び図2は、本発明の方法によって得られた黄酸化
鉄顔料の40,000倍の電子顕微鏡写真である。 図3及び図4は、従来の黄酸化鉄顔料の40,00ぴ音
の電子顕微鏡写真である。第1図 第2図 第3図 第4図
1 and 2 are electron micrographs of a yellow iron oxide pigment obtained by the method of the present invention at a magnification of 40,000 times. 3 and 4 are 40,00 pm electron micrographs of a conventional yellow iron oxide pigment. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 粒子形態が楕円体(米粒状)の黄酸化鉄において、
その長軸:100〜350nm、軸比:長軸/短軸=1
.5〜3.2の範囲にあることを特徴とする黄酸化鉄顔
料。 2 30℃以下のアルカリ水溶液の中に、第2鉄塩水溶
液を30℃以下の温度において、添加、混合して水酸化
鉄を調製し、これを熟成して後、120〜250℃の温
度で水熱処理を施し、酸化水酸化鉄粉末を生成させるこ
とを特徴とする黄酸化鉄顔料の製造法。 3 水酸化鉄の調製は、第2鉄塩の水溶液濃度を0.5
M/l以下とし、アルカリの水溶液濃度を4M/l以下
として反応させることを特徴とする第2項記載の方法。 4 水酸化鉄の調製は、化学量論的中和に必要な第2鉄
塩及びアルカリの式量よりアルカリを過剰となるよう予
め算出した量を以て反応させるが、そのアルカリの過剰
度は、沈澱反応終了後、全液量中、遊離アルカリ濃度が
、1.0M/l以下であることを特徴とする第2項記載
の方法。5 水酸化鉄の沈澱反応終了後、その沈澱を母
液と共に約1日間熟成させてから、水熱処理を施すこと
を特徴とする第2項記載の方法。
[Claims] 1. Yellow iron oxide having an ellipsoidal (rice grain-like) particle shape,
Its long axis: 100-350 nm, axial ratio: long axis / short axis = 1
.. A yellow iron oxide pigment, characterized in that it is in the range of 5 to 3.2. 2 Prepare iron hydroxide by adding and mixing a ferric salt aqueous solution at a temperature of 30°C or less into an alkaline aqueous solution at a temperature of 30°C or less, and after aging it, add it at a temperature of 120 to 250°C. A method for producing a yellow iron oxide pigment, which comprises performing hydrothermal treatment to produce iron oxide hydroxide powder. 3. To prepare iron hydroxide, adjust the concentration of the ferric salt aqueous solution to 0.5.
3. The method according to item 2, characterized in that the reaction is carried out at an alkali aqueous solution concentration of 4 M/l or less. 4. Iron hydroxide is prepared by reacting with a pre-calculated amount of alkali in excess of the formula amounts of ferric salt and alkali required for stoichiometric neutralization. 3. The method according to item 2, wherein the free alkali concentration in the total liquid volume is 1.0 M/l or less after the reaction is completed. 5. The method according to item 2, wherein after the precipitation reaction of iron hydroxide is completed, the precipitate is aged together with the mother liquor for about 1 day, and then subjected to hydrothermal treatment.
JP14717281A 1981-09-17 1981-09-17 yellow iron oxide pigment Expired JPS6015580B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14717281A JPS6015580B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment
US06/413,556 US4459276A (en) 1981-09-17 1982-08-31 Yellow iron oxide pigment and method for manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14717281A JPS6015580B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment

Publications (2)

Publication Number Publication Date
JPS5849693A JPS5849693A (en) 1983-03-23
JPS6015580B2 true JPS6015580B2 (en) 1985-04-20

Family

ID=15424205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14717281A Expired JPS6015580B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment

Country Status (1)

Country Link
JP (1) JPS6015580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076033A (en) * 2003-09-03 2005-03-24 Bayer Chemicals Ag METHOD FOR PRODUCING YELLOW IRON OXIDE PIGMENT WITH CaCO3 PRECIPITANT

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168536A (en) * 1985-01-21 1986-07-30 Agency Of Ind Science & Technol Production of acicular iron oxyhydroxide
CN100432156C (en) * 2005-04-30 2008-11-12 河南黄河旋风股份有限公司 Process for preparing nano iron oxide yellow pigment
CN102604435A (en) * 2012-02-21 2012-07-25 升华集团德清华源颜料有限公司 Nano transparent iron oxide yellow pigment
CN105504883B (en) * 2015-12-29 2018-01-02 中国科学院宁波材料技术与工程研究所 A kind of preparation method of high temperature tolerance ferric oxide yellow pigment
CN110422886A (en) * 2019-08-23 2019-11-08 上海新禹固废处理有限公司 A kind of preparation method of hydrated ferric oxide
CN112126252B (en) * 2020-08-18 2021-10-15 江苏宇星科技有限公司 Production process of heat-resistant iron oxide yellow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076033A (en) * 2003-09-03 2005-03-24 Bayer Chemicals Ag METHOD FOR PRODUCING YELLOW IRON OXIDE PIGMENT WITH CaCO3 PRECIPITANT
JP2014062256A (en) * 2003-09-03 2014-04-10 Lanxess Deutschland Gmbh Yellow iron oxide pigment

Also Published As

Publication number Publication date
JPS5849693A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
US4459276A (en) Yellow iron oxide pigment and method for manufacture thereof
US2388659A (en) Manufacture of pigments
DE69837721T2 (en) PREPARATION OF FINE, DYED TITANIUM DIOXIDE BY PULVERATION OF FINE, HOLLOWED TiO2 POWDER, AND METHOD OF PRODUCTION OF BOTH POWDER
EP0417567B1 (en) Process for manufacturing hematite pigmentary platelets
DE69918220T2 (en) Ultraviolet light absorbers
EP0290908B1 (en) Pure colour iron oxide pigments, process for manufacturing them and their use
EP1151966A1 (en) Stable plate-like calcitic calcium carbonate, process for its preparation and the use thereof
JPS6015580B2 (en) yellow iron oxide pigment
US5500043A (en) Lustrous pigment and the method of producing the same
EP0631984B1 (en) Magnesium hydroxide and method for its preparation
EP0350625B1 (en) Ion oxide pigments, process for their preparation and their use
JPH06219749A (en) Transparent iron oxide pigment and its preparation
EP0203470B1 (en) Process for the production of particulate acicular hexagonal ferrites and their use in the production of magnetic-recording media and plastoferrites
JPS6013975B2 (en) yellow iron oxide pigment
EP0315849B1 (en) Process for preparing nacreous bismuth oxychloride pigments
DE3103989C2 (en)
DE2455158C2 (en) Process for the production of goethite
US2866686A (en) Preparation of red oxide of iron
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
CN112408448B (en) Preparation method of mulberry fruit-shaped calcite micron calcium carbonate
DE4235944A1 (en) Color-pure iron oxide direct red pigments, process for their preparation and their use
US3009821A (en) Red oxide of iron
DE4235947A1 (en) Color-pure iron oxide direct red pigments, process for their preparation and their use
JPS627633A (en) Plate goethite and preparation of the same
JPH0859398A (en) Alpha-ferric oxide and its production