JPS5848966A - Manufacture of insulated gate field-effect semiconductor device - Google Patents

Manufacture of insulated gate field-effect semiconductor device

Info

Publication number
JPS5848966A
JPS5848966A JP14847781A JP14847781A JPS5848966A JP S5848966 A JPS5848966 A JP S5848966A JP 14847781 A JP14847781 A JP 14847781A JP 14847781 A JP14847781 A JP 14847781A JP S5848966 A JPS5848966 A JP S5848966A
Authority
JP
Japan
Prior art keywords
mask
conduction type
diffusion
regions
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14847781A
Other languages
Japanese (ja)
Other versions
JPH0232785B2 (en
Inventor
Tadahiko Tanaka
田中 忠彦
Tsutomu Nozaki
勉 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP14847781A priority Critical patent/JPH0232785B2/en
Publication of JPS5848966A publication Critical patent/JPS5848966A/en
Publication of JPH0232785B2 publication Critical patent/JPH0232785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To avoid the shortening of channel length by projecting the bent section of a common mask and making the width of a reverse conduction type gate region larger than other sections when the reverse conduction type gate region and one conduction type source region are formed to one conduction type semiconductor substrate through double diffusion by using the common mask. CONSTITUTION:When the reverse conduction type gate region 2 and one conduction type source region 3 positioned into the region 2 are shaped to one conduction type semiconductor substrate 1 through double diffusion by employing the common mask 10 consisting of SiO2, etc., the mask 10 is formed as follows. That is, the rectangular projections 11 obliquely projected to the corner sections of the mask 10 are shaped previously, and the regions 2, 3 are formed through diffusion. Accordingly, since the regions 2, 3 spread under the mask 10 only by the diffusion depth, the ends of the regions 2 enter to the inside only by d from the mask 10 when the diffusion depth of the regions 2 is d. When the width l of the projections 11 is set previously to the condition of l<2d, the gate regions 2 are also generated under the projections 11, and the channel length of the regions 2 is lengthened.

Description

【発明の詳細な説明】 本発明は絶縁ゲート電界効果半導体装置の製造方法に関
Tる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an insulated gate field effect semiconductor device.

丁でに二重拡散法によるDSA MOS  )ランリス
タが提案されている。断るDSA  MOS )ランジ
ヌタは第1図に示す如くN型のドレイン領域となる半導
体基板(1)と、基板(1)表面C:同一拡散マスクに
より二重拡散して形成したP型のゲート領jd[2+!
よびN型のソース領域131と、ゲート領域(2)上の
絶縁m1(41上に設けたゲート′Wl極(51と、ソ
ースfIi滅+31(ニー f−ミック接触するソー7
電極16)と、基板+13の裏面に設けたドレイン電極
(7)より構成されている。
Recently, a DSA MOS (MOS) run lister using the double diffusion method has been proposed. Refuse DSA MOS) As shown in Fig. 1, the lung nut consists of a semiconductor substrate (1) which becomes an N-type drain region, and a P-type gate region (jd) formed by double diffusion using the same diffusion mask (1) surface C of the substrate (1). [2+!
and the N-type source region 131, the gate 'Wl pole (51) provided on the insulator m1 (41) on the gate region (2), and the source fIi +31 (neem
It consists of an electrode 16) and a drain electrode (7) provided on the back surface of the substrate +13.

斯上したDSA MOS)ランジヌタはチャンネル長を
ゲート領域(2)8よびソース領域(3)の拡散の深さ
C:よって決められ、チャンネル長をセルファライン効
果により自由に設定できる利点を有Tる。
In the DSA MOS described above, the channel length is determined by the diffusion depth C of the gate region (2) 8 and the source region (3), and has the advantage that the channel length can be freely set by the self-line effect. .

しかしながら斯るDSA MOS )ランリスタでは高
出力化等のために1000以上のセルを並列C二装置T
る。このために各セルの拡散マスクは極めて高11FW
の解像!を有するホトエツチング工程を要求される。と
ころが高精度のホトエツチング工程では第2図【二示す
卯くコーナ一部分等の拡散マスク0〔の曲折部C:於い
て精度よく解像できない欠点があり、この欠点はホトエ
ツチング工程の解像度を高める程顕著f二なる。このた
めに斯る拡散マスクOQを用いて二重拡散を行うと拡散
深さの浅いソース領域(31の拡散端が乱れて曲折部で
のゲートチャンネル長が他の部分より短かいものが発生
丁る。これ(二より第4図(:点線で示す如く耐圧劣化
を招くのである。
However, in such a DSA MOS) run lister, more than 1,000 cells are connected in parallel to two devices T in order to achieve high output.
Ru. For this reason, the diffusion mask of each cell is extremely high 11FW
resolution! A photo-etching process is required. However, in a high-precision photoetching process, there is a drawback that it is not possible to accurately resolve the curved part C of the diffusion mask 0, such as a part of the corner corner shown in FIG. f2. For this reason, if double diffusion is performed using such a diffusion mask OQ, the diffusion end of the source region (31) with a shallow diffusion depth will be disturbed and the gate channel length at the bend will be shorter than at other parts. This leads to a deterioration in breakdown voltage as shown by the dotted line in Figure 4 (2).

本発明は斯上した欠点に鑑みてなされ、従来の欠点を完
全に除去する絶縁ゲート電界効果半導体装置の製造方法
を実現するものであり、以下に第3図gよび@4図を参
照し°C本発明の一実施例を詳述する。
The present invention has been made in view of the above-mentioned drawbacks, and is intended to realize a method for manufacturing an insulated gate field effect semiconductor device that completely eliminates the conventional drawbacks. C An embodiment of the present invention will be described in detail.

本発明に依れば、半導体基板(1)上に第3図に示T如
き曲折部に斜めに矩形状の突起口υを設けた拡散マスク
01llを二酸化シリコン等で形成した後、点線で示す
ゲート領域(212よび一点鎖線で示すソース領域(3
1を二電拡散する。この結果ゲート領域(2)はその拡
散深さだけ拡散マスク0〔下に拡がり、ソース領域(3
)も同様に拡散マスクae下に拡がる。従ってゲート領
域(2)の拡散深さをdとTれば、ゲート領域(2)端
は拡散77りOaからdだけ入り込む。
According to the present invention, after forming a diffusion mask 01ll on a semiconductor substrate (1) with a diagonal rectangular protrusion υ at a bent portion as shown in FIG. 3 as shown in FIG. The gate region (212) and the source region (3
1 is diffused by two electric currents. As a result, the gate region (2) extends below the diffusion mask 0 by its diffusion depth, and the source region (3)
) similarly spreads under the diffusion mask ae. Therefore, if the diffusion depth of the gate region (2) is d and T, the end of the gate region (2) penetrates from the diffusion 77 by a distance d from Oa.

そこで突起■の巾をlとするとlく2αなる様にlを設
定Tれば、拡散マスクの突起011下は完全にゲート領
域(21が拡散されて突起011tl−設けないのと同
じ拡散形状が優られる。−万ソース領域(31の拡散深
さvsとすると、Iは#>287rる関係が成立する様
(二設定されるので拡散マスク01のパターンとほぼ類
似の端部を有するソース領域(31の拡散形状が得られ
る。
Therefore, if the width of the protrusion 2 is l, then if T is set so that l + 2α, the area under the protrusion 011 of the diffusion mask will be completely diffused into the gate region (21, and the same diffusion shape as without the protrusion 011tl) will be created. - 10,000 source region (31 diffusion depth vs. I is set to #287r, so the source region with an edge almost similar to the pattern of diffusion mask 01 (2) 31 diffusion shapes are obtained.

通常ゲートチャンネル長はd−sで与えられるが、本発
明の拡散マスクO(lの突起aυではd−8より大きい
チャンネル長が得られ、拡散マスクu(lの曲折部(二
於けるゲート領域(2)の短小による耐圧劣化は完全に
防止できる。
Normally, the gate channel length is given by d-s, but in the protrusion aυ of the diffusion mask O(l) of the present invention, a channel length larger than d-8 can be obtained, and the gate region at the bent part (2) of the diffusion mask u(l (2) Deterioration in breakdown voltage due to short or short distances can be completely prevented.

具体的実施例として本発明者はdt’10.IIm、S
を2戸mとし、lを15声胃とした。この結果gJ4図
に点線で示す異常耐圧波形は皆無となり、実線で示す正
常耐圧波鯵が得られる様になった。
As a specific example, the present inventor has developed dt'10. IIm,S
is set to 2 doors m, and l is set to 15 voices. As a result, there was no abnormal pressure waveform shown by the dotted line in the gJ4 diagram, and a normal pressure waveform shown by the solid line was obtained.

以上に詳述した如く本発明(二依れば、拡散マスクの曲
折部形状の改良により曲折部での拡散マスクのホトエッ
チ9グの乱れによるナヤンネlし長の短小は未然に防止
でさ、これ(二寄因Tるドレイン・ソース間の耐圧劣化
は完全C:防止できる。従って1000以上もセル数を
有する高出力用DI9AMO8)ランリスタにgいCは
ただ1個のセルの不良も素子を不良と下るので本発明に
よる効果は太きい。なを突起の形状は矩形状の他、半円
状でt陽くソー7領域側に突出下れば本発明の目的を達
成できる。
As detailed above, according to the present invention (2), by improving the shape of the curved portion of the diffusion mask, shortening and shortening of the length due to the disturbance of photoetching of the diffusion mask at the curved portion can be prevented. (Drain-source breakdown voltage deterioration due to two causes can be completely prevented. Therefore, high-output DI9AMO8 with over 1000 cells) If the run lister is damaged, even a single defective cell can cause the device to fail. Therefore, the effect of the present invention is significant.The object of the present invention can be achieved if the shape of the protrusion is not only rectangular but also semicircular and protrudes downward toward the saw 7 area.

【図面の簡単な説明】[Brief explanation of drawings]

弔11]は、DSA  Mis)ランリスタを説明Tる
断面図、第2図は従来の拡散マスクを説明する上面区、
第3図は本発明の拡散マスクを説明する上面図、第4図
は従来ぢよび本発明のMOS)ランリスタの耐圧を説明
するより−VDR特性図である。 主な図番の説明 (1)は半導体基板、(2)はゲート領域、(31はソ
ース領鰻、01は拡散マスク、旧)は突起である。
11] is a cross-sectional view to explain the DSA Mis) run lister, and Figure 2 is a top view to explain the conventional diffusion mask.
FIG. 3 is a top view illustrating the diffusion mask of the present invention, and FIG. 4 is a -VDR characteristic diagram illustrating the withstand voltage of the conventional MOS (MOS) run lister and the present invention. Explanation of the main figure numbers: (1) is the semiconductor substrate, (2) is the gate region, (31 is the source region, 01 is the diffusion mask, old) is the protrusion.

Claims (1)

【特許請求の範囲】[Claims] t −導電型の半導体基板に共通のマスクを用いて逆導
電型のゲート領域8よび一導電型のソース領域な二重拡
散Tる絶縁ゲート電界効果半導体装置の製造方法に於い
て、前記マスクの曲折部分を突出させて二重拡散により
形成される@記ゲーと領域の巾を他の部分より大きくす
ることを持金とする絶縁ゲート電界効果半導体装置の製
造方法。
In a method for manufacturing an insulated gate field effect semiconductor device in which a gate region 8 of an opposite conductivity type and a source region of one conductivity type are double-diffused T using a common mask on a semiconductor substrate of a t-conductivity type, A method for manufacturing an insulated gate field effect semiconductor device, in which the bent portion is made to protrude and the width of the gate region formed by double diffusion is made larger than other portions.
JP14847781A 1981-09-18 1981-09-18 ZETSUENGEETODENKAIKOKAHANDOTAISOCHINOSEIZOHOHO Expired - Lifetime JPH0232785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14847781A JPH0232785B2 (en) 1981-09-18 1981-09-18 ZETSUENGEETODENKAIKOKAHANDOTAISOCHINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14847781A JPH0232785B2 (en) 1981-09-18 1981-09-18 ZETSUENGEETODENKAIKOKAHANDOTAISOCHINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5848966A true JPS5848966A (en) 1983-03-23
JPH0232785B2 JPH0232785B2 (en) 1990-07-23

Family

ID=15453624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14847781A Expired - Lifetime JPH0232785B2 (en) 1981-09-18 1981-09-18 ZETSUENGEETODENKAIKOKAHANDOTAISOCHINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0232785B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150068A (en) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd Double diffused mosfet
JPH02281758A (en) * 1989-04-24 1990-11-19 Shindengen Electric Mfg Co Ltd Insulated-gate field-effect transistor
JPH03128935U (en) * 1990-04-05 1991-12-25

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150068A (en) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd Double diffused mosfet
JPH02281758A (en) * 1989-04-24 1990-11-19 Shindengen Electric Mfg Co Ltd Insulated-gate field-effect transistor
JPH03128935U (en) * 1990-04-05 1991-12-25

Also Published As

Publication number Publication date
JPH0232785B2 (en) 1990-07-23

Similar Documents

Publication Publication Date Title
US4639754A (en) Vertical MOSFET with diminished bipolar effects
JPH05259454A (en) Semiconductor device with improved breakdown-voltage characteristic
KR930005257A (en) Thin film field effect element and its manufacturing method
JPS6237545B2 (en)
KR890013796A (en) Semiconductor device and manufacturing method
JPS5848966A (en) Manufacture of insulated gate field-effect semiconductor device
JPH07263693A (en) Preparation of fet and integration structure
KR960014720B1 (en) Method of formation gate electrode with poly silicide type
JP2001298187A (en) Manufacturing method for high-voltage transistor
JP2925161B2 (en) Insulated gate field effect transistor
JPS6115369A (en) Semiconductor device and manufacture thereof
JPH07183309A (en) Semiconductor device
JP2808882B2 (en) Insulated gate bipolar transistor
JP3320476B2 (en) Method for manufacturing semiconductor device
JPH0682686B2 (en) Field effect transistor
JPS61207051A (en) Semiconductor device
JPH0548109A (en) Vertical type mos transistor and its manufacture
JPS6489372A (en) Semiconductor device
JPH0469939A (en) Field effect transistor of insulation gate type
KR0161840B1 (en) Method of manufacturing mosfet
JPH0541523A (en) Semiconductor device
KR940006698B1 (en) Manufacturing method of semiconductor element
JPH0251278A (en) Manufacture of double diffusion type field effect semiconductor device
KR910004316B1 (en) Semiconductor device and its manufacturing method for high voltage
JPS5814574A (en) Mos field effect transistor