JPS5848685A - Porous electrode for electrochemical reaction accompanied by generation of gas and electrolytic process using it - Google Patents

Porous electrode for electrochemical reaction accompanied by generation of gas and electrolytic process using it

Info

Publication number
JPS5848685A
JPS5848685A JP14552781A JP14552781A JPS5848685A JP S5848685 A JPS5848685 A JP S5848685A JP 14552781 A JP14552781 A JP 14552781A JP 14552781 A JP14552781 A JP 14552781A JP S5848685 A JPS5848685 A JP S5848685A
Authority
JP
Japan
Prior art keywords
electrode
bath voltage
porous electrode
distance
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14552781A
Other languages
Japanese (ja)
Inventor
Shigero Nishizawa
西澤 茂郎
Michiji Okai
理治 大貝
Osamu Nakagawa
修 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP14552781A priority Critical patent/JPS5848685A/en
Publication of JPS5848685A publication Critical patent/JPS5848685A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drop the bath voltage in the electrolysis of an aqueous soln. of alkali metallic salt or the like accompanied by the generation of gas by providing water repellency to the inner surfaces of the pores of a porous electrode to easily remove gas generated from the electrode to the rear. CONSTITUTION:A porous electrode is used as at least one gas generating electrode between a pair of a cathode and an anode used in an electrolytic cell for electrolyzing an aqueous soln. of alkali metallic salt or the like, and water repellency is provided to at least part of the inner surfaces of the pores of the porous electrode. The water repellent porous electrode is brought close to a diaphragm, and the distance between the electrode and the diaphragm is made practically zero to bring them into contact with each other. Thus, gas generated from the surface of the porous electrode is rapidly removed to the rear, and by the rapid removal combined with the short distance between the electrodes a drop of the bath voltage can be attained.

Description

【発明の詳細な説明】 本発明は、電極反応によってガス発生を伴なう電極に多
孔性電極を用いる時、多孔性電極から発生したガスを対
1#i、IIIIの背面に速やかに排除することによっ
て、ガスによる電流分布の乱れや電圧降下の余分な増大
を抑制し、低い電解電圧を得る多孔性電極およびその電
極を用いたアルカリ金属塩水溶液の電解方法を提供する
ものである。
DETAILED DESCRIPTION OF THE INVENTION When a porous electrode is used as an electrode that generates gas through an electrode reaction, the present invention promptly eliminates the gas generated from the porous electrode to the back surface of the pair 1#i and III. The present invention provides a porous electrode that suppresses disturbances in current distribution and excessive increases in voltage drop due to gas and obtains a low electrolytic voltage, and a method for electrolyzing an aqueous alkali metal salt solution using the electrode.

通常、工業的に用いられる電気化学セルにおいて、ガス
発生を伴なう電気化学反応の起きる部会が少なくない。
Generally, in electrochemical cells used industrially, there are many cells in which electrochemical reactions accompanied by gas generation occur.

例えば、水電解における水素ガスや、食塩電解における
塩素ガスなどのように、これらのガスを得ることを直接
目的としたもの、あるいは隔!I法食塩電解や塩素酸ソ
ーダ電解製造における水素ガスのように−J生物として
得られるものもある。ま友、陰陽極のうちの一方の電極
での反応生成物が他方へ拡散、泳動、あるいは流動して
ゆくのを阻止するために隔膜を陰陽極間に配置して、ま
た特定のイオンを選択的に透過させるために隔膜にイオ
ン交換膜を配置して、#&極室と陽極室に分割された電
気化学セルもまた工業的に多く川られる。
For example, hydrogen gas in water electrolysis or chlorine gas in salt electrolysis, etc., are used for the direct purpose of obtaining these gases, or are used separately! Some of them can be obtained as -J organisms, such as hydrogen gas produced by I-method salt electrolysis or sodium chlorate electrolysis. Well, in order to prevent the reaction products at one of the anodes from diffusing, migrating, or flowing to the other, a diaphragm is placed between the cathodes and the anodes, and specific ions can be selected. Electrochemical cells, which are divided into an electrode chamber and an anode chamber by placing an ion exchange membrane in the diaphragm to allow the electrolyte to permeate, are also widely used industrially.

隔11jiifKよって陰極室と陽極室に分割され、か
つガス発生を伴なう電極反応の起きる電気化学セルにお
いて、電気的に絶縁瞼であるガスが陰陽極間に滞留する
と、電解液の電圧降下を増大させるので、このような電
気化学セルでは多孔性電極を用いてガスを背面に抜は易
くする努力が払われているのは周知である。
In an electrochemical cell that is divided into a cathode chamber and an anode chamber by a partition 11jiifK, and in which an electrode reaction accompanied by gas generation occurs, when gas, which is an electrically insulating eyelid, stagnates between the cathode and anode, it causes a voltage drop in the electrolyte. It is well known that in such electrochemical cells, efforts have been made to use porous electrodes to facilitate gas removal to the rear surface.

特にアルカリ金属塩水溶液の電解411は上8己タイプ
の電気化学セルの典型であり、なかでも、塩化ナトリウ
ム水浴液の電解は、得られる塩素および水酸化す) I
Jウムが工業的に非常に重要であるため、大規模な工業
設備で実施されている。
In particular, the electrolysis of aqueous solutions of alkali metal salts (411) is typical of the above-mentioned type of electrochemical cell, and in particular, the electrolysis of aqueous sodium chloride solutions involves the production of chlorine and hydroxide.
Because Jum is of great industrial importance, it is carried out in large-scale industrial facilities.

その電解方法の一つとして、隔m法なかでも隔膜にイオ
ン交換膜金柑いたイオン交換膜法が、公舎対策上、さら
には省エネルギープロセスとして開発採用されつつある
As one of the electrolysis methods, among the diaphragm methods, the ion exchange membrane method, which uses an ion exchange membrane in the diaphragm, is being developed and adopted as a measure for public buildings and as an energy saving process.

しかしながら、現状では50 A /d*”程度の電流
密度で五5v以下の電解電圧を得ることFi困難である
。このため、イオン交換膜法食塩電解法が省エネルギー
プロセスとしての地位を真に確保するためには、高電流
効率を維持して、かつ電解電圧をいかに低下させるがと
いう大きな昧題を兇服しなければならない。
However, at present, it is difficult to obtain an electrolytic voltage of less than 55 V at a current density of about 50 A/d*''.For this reason, it is difficult for the ion-exchange membrane method and salt electrolysis method to truly secure its position as an energy-saving process. In order to achieve this goal, it is necessary to consider the big problem of how to reduce the electrolytic voltage while maintaining high current efficiency.

この方法における電解電圧に占める主要な要素は、分解
電圧、膜による電圧降下、および陰陽極室各電解液によ
る電圧降下であるが、これらの各ll!累は互いに独立
なものではなく、電極から発生するガス気泡が、電極と
隔膜の#!面近傍やその間に存在し滞留することによっ
てこれらの各要素に複雑に影響し台って異常な電圧上昇
を招くことがこの方法における最大の障害となっている
The main elements in the electrolysis voltage in this method are the decomposition voltage, the voltage drop due to the membrane, and the voltage drop due to each electrolyte in the cathode and anode chambers, but each of these ll! The formation is not independent of each other, and the gas bubbles generated from the electrode are connected to the #! of the electrode and diaphragm. The biggest obstacle to this method is that the presence and stagnation in the vicinity of or between the surfaces affects each of these elements in a complex manner, leading to an abnormal voltage rise.

この友め一般に電極の形状°として、ガス抜きおよび液
の混合あるいは攪拌を良好にするために、いわゆる多孔
性電極、例えば第1図に示すようなエキスバンドメタル
(a)、パンチトメタル(b)、 金m状(C)、ロッ
ド状(d)、あるいはその他の形状のものが採用されて
いる。これによって、電極反応によって発生するカスを
陰陽極間の背面に速やかにガスリフト効果あるいは強制
循環方式などで排除し易くし、同時にガスによる攪拌効
果も促進する方策を採用している。
Generally speaking, the shape of the electrode is so-called a porous electrode, such as expanded metal (a) or punched metal (b) as shown in Figure 1, in order to improve degassing and liquid mixing or stirring. ), gold-shaped (C), rod-shaped (d), or other shapes are adopted. This makes it easy to quickly remove the scum generated by the electrode reaction to the back surface between the cathode and anode using a gas lift effect or forced circulation method, and at the same time, a measure is adopted to promote the stirring effect of the gas.

さらに、ただ多孔性電極を使用するのみならず、その′
#L極の形状や膜との位置関係あるいは陰陽極間の距離
や位置などについて様々な工夫が試みられ、種々の提案
がなされている(%開昭50−109899号公報、同
52−114・571号公報、同55−16371号公
報、同53−102874号公報、同54−60278
号公報および回54−77285号公報など)。
Furthermore, not only porous electrodes are used, but also their
# Various attempts have been made to improve the shape of the L pole, its positional relationship with the film, and the distance and position between the cathode and anode, and various proposals have been made (% 1989-109899, 1982-114, etc.). No. 571, No. 55-16371, No. 53-102874, No. 54-60278
Publication No. 54-77285, etc.).

上記の公開特許にみられるような様々な方法は、その目
的に応じたそれなりの効果が期待されるものの、極〈限
られた形状の電極を用いなければならないし、その取付
けや操作などに細心の注意を払わなければならない。
Although the various methods shown in the above-mentioned published patents are expected to have certain effects depending on their purpose, they must use electrodes with very limited shapes and require careful attention to their installation and operation. care must be taken.

これらの難点を解消すぺ〈本発明者らは、一般に使われ
るエキスバンドメタル、パンチトメタル。
To solve these difficulties, the present inventors have developed a commonly used expanded metal and punched metal.

金網状、あるiはロッド状などの各種多孔性電極の形状
やその開口部の大きさと、陰陽極間距離との浴電圧に与
える影響について種々検討を重ねた結果、意外にも電極
の形状や開口率などには殆んど関係なく、多孔性電極の
開口部の最短径L(第1図)と陰陽極間距離dとの間に
第2図に示すような極めて特異的な関係のあることを先
に見出したq すなわち、開口部最短径と浴電圧とには、浴電圧の極小
値の存在する関係があり、浴電圧が極小値を示す開口部
最短径は極間距離dKよって変わり、浴電圧の極小値も
また変わる。そして最適な極間距離を4.4 よりも小
さい極間距*dtおよび4より大きい極間距離を4 と
すると、極間距離t−(Itにしても、4にしても浴電
圧の極小値は、極間距離4の時よりも島vh値を示す。
As a result of various studies on the shape of various porous electrodes, such as wire mesh shape and rod shape, the size of their openings, and the effect of the distance between cathode and anode on bath voltage, we unexpectedly found that the shape of the electrode There is a very specific relationship between the shortest diameter L of the opening of the porous electrode (Fig. 1) and the distance d between the cathode and anode, as shown in Fig. 2, almost unrelated to the aperture ratio etc. In other words, there is a relationship between the shortest diameter of the aperture and the bath voltage in which a minimum value of the bath voltage exists, and the shortest diameter of the aperture at which the bath voltage has a minimum value varies depending on the distance between the poles dK. , the minimum value of the bath voltage also changes. Then, if the optimal distance between poles is 4.4 and the distance between poles is *dt which is smaller than 4, and the distance between poles which is larger than 4 is 4, then the minimum value of the bath voltage is , the island vh value is higher than that when the distance between poles is 4.

つまり、適正な開口部最短径(2≦L≦6■)の多孔性
電極を用いて、かつ最適な極間距離(5≦d≦4■)を
維持することによって低い浴電圧が達成される。
In other words, a low bath voltage can be achieved by using a porous electrode with an appropriate shortest diameter of the opening (2≦L≦6■) and by maintaining an optimal interelectrode distance (5≦d≦4■). .

しかしながら、この方法でも極間t−ある一定限度以下
に小さくし過ぎると第5図の曲1INAIのようにかえ
りて浴電圧の上昇を来危すという問題点がある。
However, even with this method, there is a problem in that if the distance t between the poles is made too small below a certain limit, the bath voltage may increase as shown in track 1INAI in FIG.

本発明者らは、イオン交換膜を介して一対の陰陽極が対
向している系で、極間を一定限度以下に狭くするとかえ
って給電圧の上昇を招くとしう現象を克服するために、
多孔性電極の孔部と電極部に関する寸法的因子がどのよ
うに浴電圧に影響するかということについてさらに研究
を進めた。
The present inventors have developed a system in which a pair of cathodes and anodes face each other via an ion exchange membrane, in order to overcome the phenomenon that narrowing the gap between the electrodes below a certain limit would actually lead to an increase in the supply voltage.
We further investigated how the dimensional factors regarding the pores and electrode part of the porous electrode affect the bath voltage.

その結果、通常用いられるようなりIl、極部の巾M(
第1図)が2〜5露以上ある多孔性電極を使うと、極間
を極めて小さくした時の浴電圧の異常な上昇現象を抑え
られず、これに代えて使用するイオン交換膜の厚さに対
応した電極部の巾Mを持つ多孔性電極を使うと、上記の
浴電圧の異常な上昇を抑制できることが判明した。
As a result, Il, the width of the pole M(
If a porous electrode with a diameter of 2 to 5 or more (Fig. 1) is used, it will not be possible to suppress the phenomenon of abnormal rise in bath voltage when the electrode gap is made extremely small, and the thickness of the ion exchange membrane used instead. It has been found that the above abnormal rise in bath voltage can be suppressed by using a porous electrode having an electrode portion width M corresponding to .

すなわち、電極部の巾Mが2〜3s!以上ある通常の多
孔性電極を使った場合、極間距離と浴電圧との関係は第
5図の曲線A、のようになるのに対して、使用するイオ
ン交換膜の厚さの5倍以下の電極部の巾Mf持つ多孔性
電極を使うと第3図の曲!iB1 のようになり、極間
を極めて小さくした時の浴電圧の異常な上昇は抑えられ
、かつ曲線ム1に比べて浴電圧の大巾な低下が達成され
た。
That is, the width M of the electrode part is 2 to 3 seconds! When using the above-mentioned normal porous electrodes, the relationship between the interelectrode distance and the bath voltage is as shown in curve A in Figure 5, whereas the relationship between the electrode distance and the bath voltage is less than 5 times the thickness of the ion exchange membrane used. If you use a porous electrode with an electrode width Mf of , the song shown in Figure 3! iB1, the abnormal increase in bath voltage when the electrode gap was made extremely small was suppressed, and a large decrease in bath voltage was achieved compared to curve M1.

上述のように1その理由は定かではないが、多孔性電極
の寸法的因子とイオン交換膜の厚さとの間に特異な関係
があり、両者の適正な寸法を組合わせ、かつ極間を極め
て狭くした時、従来の方法では得られなかった低い浴電
圧が達成された。しかしながら、浴電圧が第3図の曲線
B、のように極間距離の減少につれて低下するとはいう
ものの、ある程WIL&間を小さくすると浴電圧の低下
は鈍くな)、それ以上極間を小さくしても浴電圧の実質
的な低下はあまり期待できない。そこで、本発明者らは
、電極およびイオン交換膜の寸法的因子に加えて、イオ
ン交換膜の電導性の浴電圧に対する係わりについて検討
し、その面での浴電圧低下の方策を研究した。その結果
、使用するイオン交換膜の表面に、それよりも電導性の
良い層を形成させることによりて、極間を極めて小さく
した時、さらに浴電圧が低下することを見出した。すな
わち、電導度の高い、低抵抗層を膜表面に形成させるこ
とによって、第3図の曲線A、1kA、のように、そし
てまた−1図曲線B、をB2のようにすることができた
As mentioned above, 1 The reason for this is not clear, but there is a unique relationship between the dimensional factors of the porous electrode and the thickness of the ion exchange membrane, and it is necessary to combine the appropriate dimensions of the two and minimize the gap between the electrodes. When narrowed, low bath voltages not obtainable with conventional methods were achieved. However, although the bath voltage decreases as the inter-electrode distance decreases, as shown by curve B in Figure 3, if the inter-electrode distance is reduced to a certain extent, the decrease in bath voltage becomes slower). However, a substantial decrease in bath voltage cannot be expected. Therefore, in addition to the dimensional factors of the electrodes and ion exchange membrane, the present inventors investigated the relationship between the conductivity of the ion exchange membrane and the bath voltage, and researched measures for lowering the bath voltage in this respect. As a result, they found that when the electrode gap was made extremely small by forming a layer with better conductivity on the surface of the ion exchange membrane used, the bath voltage was further reduced. In other words, by forming a highly conductive, low resistance layer on the film surface, we were able to change the curve A in Figure 3 to 1kA, and the -1 curve B to B2. .

一般に、陰V#極間に隔膜を配置して、陰陽極のうち少
なくとも一方の極でガス発生を伴なう電極反応を起こす
時、ガス発生電極に多孔性電極を用いるのが浴電圧を低
くするために、できるだけ極間を狭くすると、しばしば
異常な浴電圧の上昇をきたす。その原因としてまず考え
られるのは、多孔a11IL極なるが故に電流分布の不
均一が起こるであろうことである。しかし、それを防ぐ
ために多孔性電極の孔部を小さくすると、第2図に示し
たようにかえって浴電圧が高くなってしまう楊仕がある
。これは発生したガスが多孔性1!極の孔部から背面に
円滑に抜けないためである。ガスの発生は、液の攪拌効
果は期待させるものの、それ自体は電気的に絶縁物であ
るため、液中にあっては電流を遮蔽し、特に膜や電極表
面近傍に滞留するとその遮蔽効果によってwLfIt分
布を者しく乱して異常な電圧降下の増大を招く原因とな
る。
Generally, when a diaphragm is placed between the cathode and the anode to cause an electrode reaction that involves gas generation at at least one of the cathode and anode, it is best to use a porous electrode for the gas generation electrode to lower the bath voltage. In order to achieve this, if the electrode gap is made as narrow as possible, this often results in an abnormal rise in bath voltage. The first possible cause is that the non-uniform current distribution occurs due to the porous a11IL pole. However, if the pores of the porous electrode are made smaller in order to prevent this, the bath voltage will actually increase as shown in FIG. This means that the generated gas is porous! This is because it does not come out smoothly from the hole in the pole to the back side. The generation of gas is expected to have the effect of stirring the liquid, but since it is an electrical insulator, it will shield the current in the liquid, and if it accumulates near the membrane or electrode surface, the shielding effect will cause This seriously disturbs the wLfIt distribution and causes an abnormal increase in voltage drop.

本発明者らの研究によれば、電極や膜の寸法的因子を適
正化し、さらに膜表面に低抵抗層を形成することKより
て、ガスの利を促進し、その害をある程匿抑制して、浴
電圧の低下が得られることは第3図に説明し友通りであ
る。しかしながら、これらの方法では、極間が極めて狭
くなった時かえって浴電圧が上昇したり(第5図曲線A
、およばAt)、上昇しないまでも極間を小さくするこ
とによる浴電圧の低下が鈍くなる(第3図曲線B、およ
びB、)現象を完全に克服するには至っていない。
According to the research of the present inventors, by optimizing the dimensional factors of the electrodes and membranes and further forming a low-resistance layer on the membrane surface, the benefits of gas can be promoted and the harms thereof can be suppressed to some extent. As explained in FIG. 3, the bath voltage can be lowered. However, with these methods, when the gap between the electrodes becomes extremely narrow, the bath voltage increases (as shown by curve A in Figure 5).
, and At), the phenomenon in which the decrease in bath voltage due to decreasing the electrode gap becomes slower, if not increased (curves B and B in FIG. 3), has not been completely overcome.

そこで本発明者らは、第1図に示すような多孔性電極な
るが故に電流分布が起こシ得る本のとするならば、#!
1図のL+Mlもつと小さくして、さらに同図のように
二次元的な多孔体に代えて、海綿状の三次元的多孔性電
極を用いたならば、電極構造に帰因する電流分布は無く
なるはずであると考えて、このものを用いて浴電圧の挙
動を調べ次。その結果、第3図の曲線Cのように極間距
離の極めて小さいところでの浴電圧の立上シが非常に激
しくなることが判明した。この敏しい立上りの原因は、
孔部をガスが容易に通過せず、背面に一ガスが抜けない
ためである。したがって、本発明者らは、多孔性電極か
ら発生するガス全陰陽極間の背面に速やかに排除するこ
とによって、さらに浴電圧の低下が達成されるものと確
信して、如何にしたら多孔性電極の孔部をガスが通過し
易くなるかという課題に挑戦し研究を続けた。
Therefore, the inventors of the present invention considered that the current distribution can occur due to the porous electrode as shown in FIG. 1, #!
If L + Ml in Figure 1 is made smaller, and if a three-dimensional porous electrode with a spongy shape is used instead of the two-dimensional porous body as shown in the same figure, the current distribution attributable to the electrode structure will be Thinking that it should disappear, I used this to investigate the behavior of the bath voltage. As a result, it was found that the bath voltage rises extremely sharply where the inter-electrode distance is extremely small, as shown by curve C in FIG. The reason for this rapid rise is
This is because gas does not easily pass through the holes and gas cannot escape to the back surface. Therefore, the present inventors believe that a further reduction in bath voltage can be achieved by quickly expelling all the gas generated from the porous electrode to the back surface between the cathode and the anode, and we have proposed a method to improve the bath voltage by using the porous electrode. We continued our research with the challenge of whether it would be easier for gas to pass through the pores.

すなわち、本発明者らは、多孔性電極に対する撥水性処
理による効果について鋭意研究した結果、例えば、さき
に紹介した三次元的多孔体セルメット電極において、極
間距離と浴電圧との関係が第5図の曲?IMOとなるよ
うなものを、これに撥水性処理を施すことによって同図
C′のように大巾な浴電圧の低下が達成され、また第3
図の曲線ム1およびム、のようなものも撥水性処理によ
って各々A′、およびA/、のように極間距離の極あて
小さいところでの浴電圧の立上りが殆んどなくなり、さ
らKは第5図の曲線B、およびB、のようなものも撥水
性処理によって曲線C′と略同様の挙動を示すことを見
出して本発明を完成したものである。
That is, as a result of intensive research into the effect of water repellent treatment on porous electrodes, the present inventors found that, for example, in the three-dimensional porous Celmet electrode introduced earlier, the relationship between the inter-electrode distance and the bath voltage was Picture song? By applying water-repellent treatment to something that would become an IMO, a large drop in bath voltage can be achieved as shown in C' in the same figure.
For the curves M1 and M in the figure, the rise of the bath voltage at the very small distances between the poles, such as A' and A/, respectively, is almost eliminated by water-repellent treatment, and furthermore, K The present invention was completed by discovering that curves B and B in FIG. 5 also exhibit substantially the same behavior as curve C' when subjected to water-repellent treatment.

本発明を以下にさらに峰細に説明する。The present invention will be explained in more detail below.

本発明における撥水性処理とは、多孔性電極の孔部内表
面の少なくとも一部に撥水性を賦与することである。
The water repellency treatment in the present invention refers to imparting water repellency to at least a portion of the inner surface of the pores of the porous electrode.

すなわち、第4図に示すように、その面に液滴を滴下し
た時、気液の接触角θが鈍角(0〉9♂)となるような
物質にて処理することである。
That is, as shown in FIG. 4, when a droplet is dropped on the surface, the gas-liquid contact angle θ is an obtuse angle (0>9♂).

多孔性電極に撥水性を施こすための手段としては、ポリ
エチレンやポリテトラフat2エチレン(以下、PTF
Eと呼ぶ)τどハイドロカーボンやフロロカーボン系の
高分子材料を、後述する如き処理によって行なう。そし
て、塩化アルカリ金ll4t4水溶液の電解においては
、高温で陽極室は腐食性の強い塩素ガスが過飽和の状態
で、さらに塩素酸や次亜塩素酸なども存在するし、陰極
室は高[jアルカリであるので、これらの苛酷な環境の
中で耐食性および耐久性のある材質を選ぶ必要がある。
As a means for imparting water repellency to porous electrodes, polyethylene and polytetraph at2 ethylene (hereinafter referred to as PTF) are used.
A hydrocarbon or fluorocarbon-based polymer material such as τ (referred to as E) is treated as described below. In the electrolysis of alkali gold chloride ll4t4 aqueous solution, the anode chamber is supersaturated with highly corrosive chlorine gas at high temperatures, and chloric acid and hypochlorous acid are also present, and the cathode chamber is filled with high [j alkali gas]. Therefore, it is necessary to select materials that are corrosion resistant and durable in these harsh environments.

その意味ではPTF’liiが最も好ましい。FT P
Kは水に対する接触角が本発明者らの測定では、105
〜120°と大きく、かつ化学的安定性に優れている。
In that sense, PTF'lii is the most preferable. FTP
K has a contact angle with water of 105 as measured by the present inventors.
It has a large angle of ~120° and excellent chemical stability.

しかし、本発明の適用にあたってもつと環境の穏やかな
系においては、経済的見地からもつと安価な材料を選ぶ
ことも可能である。
However, when the present invention is applied to a system with a mild environment, it is possible to select materials that are inexpensive from an economical point of view.

本発明の最大の特徴の一つは、浴電圧の低下にある。そ
してこれまで開発されてきた浴電圧低下手段と組曾せる
ことによって、本発明の効果を何ら損なうことなく、む
しろ本発明と組合せる浴電圧低下手段の効果との相乗的
効果を発揮することは、第3図の説明により明らかであ
る。
One of the greatest features of the present invention is the reduction in bath voltage. By combining it with bath voltage reducing means that have been developed up to now, it is possible to achieve a synergistic effect with the effects of the bath voltage reducing means combined with the present invention without impairing the effects of the present invention in any way. , is clear from the explanation of FIG.

しかしながら、本発明を適用するにあたって、使用すべ
き多孔性電極に対応した撥水性処理の形感を選択するこ
とが好ましい。例えば、開口部最知径あるいは孔径が2
〜3閤以上ある通常の多孔最短径あるいは孔径の小さい
電極、特にそれがα1−以下のような多孔性′WL極に
本発8Aを適用する揚台は、すべての孔部内壁面を撥水
性処理する必要はない。その理由は明確ではないが、す
べての孔部内壁面を撥水性処理すると、孔部がすべてガ
スで充満し、電極反応に供する水浴液が電極反応部に充
分に供給され難いからである。このような多孔性電極の
揚台、孔部内全面ではなく部分的に撥水性処理するか、
あるいは別に2〜5■以上の孔を開けることによって本
発明の効果が発揮される。
However, in applying the present invention, it is preferable to select the texture of the water repellent treatment that corresponds to the porous electrode to be used. For example, if the opening best diameter or hole diameter is 2.
The lifting platform to which this 8A is applied to the electrode with the shortest diameter or small pore diameter of ~3 holes or more, especially the porous 'WL electrode with α1- or less, has all the inner wall surfaces of the pores treated with water repellent treatment. do not have to. The reason for this is not clear, but if all the inner wall surfaces of the holes are treated to be water repellent, all the holes will be filled with gas, making it difficult to sufficiently supply the water bath liquid used for the electrode reaction to the electrode reaction area. The platform for such porous electrodes should be partially water-repellent treated instead of the entire inside of the pores.
Alternatively, the effects of the present invention can be exerted by separately making holes of 2 to 5 cm or more.

本発明に使用される多孔性電極は、第1図に示したよう
なエキスバンドメタル、)くンチドメタル。
The porous electrode used in the present invention is an expanded metal or a) punched metal as shown in FIG.

金網状、ロッド状あるいはその他の二次元的形態のもの
でも、その他海綿状の三次元的形態、あるいは粉末をプ
レス成型または焼結などして作成した三次元的形態のも
のでも、その孔径に対応した撥水性処理を施こすこと罠
よって採用できる。特殊な形態としては、PTFKp紙
上に金tII4あるいはカーボン粉末などを析出させた
ような、多孔性撥水層と多孔性電極層との二層構造のも
のも採用される。
It corresponds to the pore size, whether it is a wire mesh, rod-like or other two-dimensional shape, a three-dimensional cavernous shape, or a three-dimensional shape made by press molding or sintering powder. It can be used by applying water repellent treatment. As a special form, a two-layer structure of a porous water-repellent layer and a porous electrode layer, such as gold tII4 or carbon powder deposited on PTFKp paper, is also adopted.

本発明における撥水性処理の方法は、特に限ずされない
。撥水材としてPTFKi用いる時は、PTFI懸濁液
中に浸漬後、熱処理してPTIIFEを被接するのが簡
便な方法である。
The method of water repellency treatment in the present invention is not particularly limited. When using PTFKi as a water repellent material, a simple method is to immerse it in a PTFI suspension, heat treat it, and then cover it with PTIIFE.

孔部内全面を被覆する時は上記方法を繰返すか、高濃鹿
の懸濁液を用いるとよい。また孔部内を部分的に被僅す
る時eま、低濃度の懸濁液を用いることもできるし、ま
た粒状あるいは粉状の電極材料とPTFEの粉末あるい
は懸濁液と混合して、プレス成型あるいは焼結する方法
も採用される。
When covering the entire inside of the hole, it is best to repeat the above method or use a suspension of Takano Shika. Furthermore, when partially injecting the inside of the hole, a low-concentration suspension can be used, or a granular or powdered electrode material and a PTFE powder or suspension can be mixed and press-molded. Alternatively, a method of sintering may also be adopted.

本発明による電極を使用する時、その浴電圧低下の効果
は、陰陽極間距離を極めて小さくした時に特徴的に発揮
される。すなわち、従来の多孔性電@!を用いて極間距
mを小さくした時、異常な浴電圧の上昇を来たす場合、
これに本発明による撥水性を賦与すると、その異常な浴
電圧の上昇を抑えることができる。
When using the electrode according to the present invention, the effect of reducing the bath voltage is characteristically exhibited when the distance between the cathode and the anode is made extremely small. In other words, conventional porous electricity @! If an abnormal rise in bath voltage occurs when the distance m between poles is reduced using
By imparting water repellency according to the present invention to this, the abnormal rise in bath voltage can be suppressed.

さらに、極間距離を一定限度以上小さくしても浴電圧の
それ以上の低下がないような電極に、本発明による撥水
性処理を施こすと極間距1lllをさらに小さくするに
したがって浴電圧はさらに低下し、極間距離を実質的に
零となる程、隔膜と陰極および陽極が近接あるいは密着
した時、最低の浴電圧が得られることは、第31に示し
た通りである、したがって本発明は、極間距離を実質的
に零にできる電極において、極間距離を実質的に零にし
た時、その効果が最大限に発揮されるのである。
Furthermore, if the water-repellent treatment according to the present invention is applied to an electrode for which the bath voltage does not decrease further even if the distance between the electrodes is reduced beyond a certain limit, the bath voltage will further decrease as the distance between the electrodes is further reduced. As shown in No. 31, the lowest bath voltage is obtained when the diaphragm, cathode, and anode are brought close or in close contact with each other to the extent that the distance between the electrodes becomes substantially zero. In electrodes that can make the inter-electrode distance substantially zero, the effect is maximized when the inter-electrode distance is made substantially zero.

一対の陰陽極の関に隔膜を配置した電解槽に、本発明に
よる多孔性電極を用いて、陰陽極間を極めて狭くして操
業する時、あるいは陰陽極間距離を実質的に零となる程
近接あるいは密着させて操業する時、隔膜と陰極および
、または陽極全近接あるいは密着する方法は特に限定さ
れな腟。
When the porous electrode according to the present invention is used in an electrolytic cell in which a diaphragm is placed between a pair of cathodes and anodes, the cathode and anodes are operated with a very narrow distance between them, or when the distance between the cathodes and the anodes becomes substantially zero. When operating the diaphragm and the cathode and/or the anode in close proximity or close contact with each other, there are no particular limitations on the method of bringing the diaphragm, cathode, and/or anode into close proximity or close contact with the vagina.

これまで知られている方法、輿Iえば陰陽他室間の液圧
差などにより、隔膜を陰陽極のいずれか一方に押付けて
密着してもよいし、あるいはバネなどの弾性力を利用し
て機械的に電極を押付ける手段も採用される。あるいは
、隔膜と本発明による多孔性電極を圧着などの方法で、
あらかじめ一体化したものを電解槽に装着することもで
きるし、そ0時、該隔膜と該多孔性電極の間に、水およ
びイオン透過性の層を介して一体化する方法も採用でき
る。
The diaphragm can be pressed against either the cathode or the anode to make a close contact using a method known so far, such as the difference in fluid pressure between the yin and yang chambers, or the mechanical Means for pressing the electrodes is also adopted. Alternatively, the diaphragm and the porous electrode according to the present invention are bonded together by a method such as pressure bonding.
A pre-integrated product can be attached to the electrolytic cell, or a method can be adopted in which the diaphragm and the porous electrode are integrated via a water- and ion-permeable layer.

本発QIJKより、例えばアルカリ金鵬ノ・ロゲン化物
水溶液の電解を実施する際の電解条件としては、既に公
知となっている各穫の条件を適宜採用することができる
。例えば、電解温度は室温ないし95℃で行なうことが
できる。また電流密&は10〜80A/血2で操業する
ことができるが、電流密度を30A/ム2以上で特に効
果が大きい。
From the present QIJK, for example, as the electrolytic conditions when electrolyzing an aqueous solution of an alkali metallogenide, various conditions already known can be appropriately adopted. For example, the electrolysis temperature can be from room temperature to 95°C. The current density can be operated at a current density of 10 to 80 A/mu2, but the effect is particularly great when the current density is 30 A/mu2 or more.

これらの条件は、浴電圧、電流効率などf#台的にみて
、経済的に有利になる条件を決めることが望ましい。
These conditions are desirably determined to be economically advantageous in terms of f#, such as bath voltage and current efficiency.

なお本発明は、アルカリ金鵬ノ・−ゲン化物水浴液の電
解のみに適用さ扛るのではなく、例えば、水電解や塩素
酸電解製造などにおいても各々の最適条件で本発明によ
る多孔性電極の使用、および本発明による多孔性電極を
用いて本発明による電解方法を適用することが可能であ
る。
The present invention is not only applicable to the electrolysis of alkali metal compound bath solutions, but also applies to water electrolysis, chloric acid electrolysis production, etc., using the porous electrode according to the present invention under the respective optimum conditions. It is possible to use and apply the electrolysis method according to the invention using the porous electrode according to the invention.

本発明による多孔性電極、および本発明による電解方法
は、ガス発生を伴なう′#IL極反応を利用した電気化
学セルにおいて、発生するガスによる様々な障害を抑制
し、かつガスによる攪拌効果を促進利用する極めて有効
な手段を提供するものであり、当該分野における真に技
術革新的意義は大きい。
The porous electrode according to the present invention and the electrolytic method according to the present invention suppress various troubles caused by the generated gas in an electrochemical cell that utilizes the IL electrode reaction accompanied by gas generation, and have a stirring effect due to the gas. It provides an extremely effective means to promote and utilize the technology, and has great significance as a true technological innovation in this field.

以下、本発明の実施例および比較例により、さらに具体
的に説明するが、本発明の範囲は、これら実施例のみに
限定されないのは云うまでもない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but it goes without saying that the scope of the present invention is not limited only to these Examples.

夾施十ンリ1 開口部最短径L=3■のエキスバンドメタル(第1図a
)のチタンに酸化ルデニウム被at L、yt耐陽極、
L−4■のパンチトメタル状(第1図b)の軟鋼製陰極
と、その間にイオン交換膜を配して電解槽を構成した。
Extended band metal with the shortest opening diameter L = 3■ (Fig. 1 a)
) titanium coated with rudenium oxide at L, yt anode resistant,
An electrolytic cell was constructed by disposing a mild steel cathode in the shape of a punched metal L-4 (FIG. 1b) and an ion exchange membrane between them.

友だし、陰極には下記の撥水性処理を施こした。The following water repellent treatment was applied to the negative electrode.

すなわち、ポリテトラフルオロエチレン、ダイキン工業
社製、ポリフロンディスパージランD −1(ポリフロ
ン平均粒径約α3μ、ポリフロン粒子含有!Ik60%
)を純水にて10優の績kに希釈した液に上記陰極を浸
漬し、乾燥後、350℃で熱処理した。この操作を5回
繰返した後、片面をサンドペーパーで磨いてテフロン被
覆を剥離した。
That is, polytetrafluoroethylene, manufactured by Daikin Industries, Ltd., Polyflon Dispergylan D-1 (Polyflon average particle size approximately α3 μ, contains Polyflon particles! Ik 60%)
) was diluted with pure water to a strength of 10%. After repeating this operation five times, one side was polished with sandpaper to remove the Teflon coating.

その剥離面がイオン交換膜に対面するよう電解槽に装置
した。膜が陰陽極間でその位置が定まらず、運転中の少
しの圧力変動などで動くような状態、あるいはシワが一
発生すると安定な浴電圧を示さず、かつ再現性のあるデ
ータが採れないのみならず、電流効率にも悪影愉を及ぼ
すので、膜を充分延ばした状態で装着し、50簡の液圧
差で膜1r陽極側へ押付けて膜の位置を固足した。
The device was placed in an electrolytic cell so that the peeled surface faced the ion exchange membrane. If the membrane is not in a fixed position between the cathode and anode and moves due to slight pressure fluctuations during operation, or if wrinkles occur, the bath voltage will not be stable and reproducible data will not be obtained. However, since this would have a negative impact on the current efficiency, the membrane was installed in a sufficiently stretched state, and the membrane was fixed in position by pressing it against the anode side of the membrane 1r with a hydraulic pressure difference of 50 cm.

極間距離を種々変えて、第2表に示した′tj/L解条
件で運転した。その結果を第1表に示した第1表 極間距111d(m)   1   1.5  2  
3  4浴電圧 (V)    Δ48  五45  
A46  五49  A51第1表に見られるように、
極間距離d=l〜4■の広い範囲で浴電圧はあまり変化
なく、dを1■と狭くしても浴電圧の立上りが給められ
ない。
Operation was carried out under the 'tj/L solution conditions shown in Table 2 with various distances between poles. The results are shown in Table 1. First front pole distance 111d (m) 1 1.5 2
3 4 bath voltage (V) Δ48 545
A46 549 As seen in Table 1 of A51,
The bath voltage does not change much over a wide range of inter-electrode distance d=1 to 4 square meters, and even if d is narrowed to 1 square inch, the rise of the bath voltage cannot be provided.

このことは、実際のプラントで極間距離に多少の分布が
あっても、浴電圧のバラツキの原因にはならず、安定な
運転が保障され、実プラントの操業上極めて有利である
This means that even if there is some distribution in the distance between the poles in an actual plant, it will not cause variations in the bath voltage and stable operation will be ensured, which is extremely advantageous for the operation of the actual plant.

これに対して撥水性処理を施こしていない陰+*に用い
た場合、後述の比較レリ1に示すように、極間距離dが
3〜4簡の範囲では五46〜五49(v)と本実施例と
略同程度の浴電圧であるが、d−2簡のFPf五58に
)、d=1.5篩の時五68代)というように、dを小
さくするにしたがって浴電圧の上昇現象が顕著である。
On the other hand, when used in a shade +* that has not been subjected to water repellent treatment, as shown in Comparison 1 below, when the distance d between the electrodes is in the range of 3 to 4, it is 546 to 549 (v). The bath voltage is approximately the same as that in this example, but as d is decreased, the bath voltage becomes The phenomenon of increasing is remarkable.

なお、d−3〜4−の時、比較ガ1よりも本実施例の方
が浴電圧が若干高めの値を示しているが、電極の通電面
積が小さいためであろうと考えられる。しかし、上述の
ように、本実施例において極間を極めて狭くしても浴電
圧の立上シは無く、極間距離の広い範囲で安定な浴電圧
を示す利点は、いささかも減じられるものではない。
Note that at times d-3 to d-4-, the bath voltage of this example shows a slightly higher value than that of Comparative Ga 1, but it is thought that this is because the current-carrying area of the electrode is small. However, as mentioned above, in this example, even if the distance between the electrodes is extremely narrow, there is no rise in the bath voltage, and the advantage that the bath voltage is stable over a wide range of distance between the electrodes is not diminished in the slightest. do not have.

第2表 陽極室Nactp度 280〜285%陰極室NaOH
濃度  27〜29vrt%浴温[79〜81℃ 電流密1[:     50 A ltM’比較例1 陰極に撥水性処理を施こしていないこと以外はすべて実
施例1と同じ条件で電解した結果を第5表に示した。
2nd table anode chamber Nactp degree 280-285% cathode chamber NaOH
Concentration 27-29vrt% Bath temperature [79-81°C Current density 1[: 50 AltM' Comparative Example 1 The results of electrolysis under the same conditions as Example 1 except that the cathode was not subjected to water repellent treatment are shown below. It is shown in Table 5.

第3表 極間距離d(w)1.5  2  3   A5  4
浴電圧 (V)     五68 358  五46 
 五49  A48実施例2 実施例1で用いた陽極に、下記の方θ、で候水性処理金
施こし71以外はすべて実施例1と同じ条件で電解した
。 − すなわち、実施汐り1で用いた60%ボリア0ンテイス
バージヨンit刷毛でエキスパントメタル陽極の片面お
よび孔部内面に塗布し、乾J/に、後550℃で熱処理
した。被後処理をしていなり面を対極側に向けて電解し
た。結果を第4表に示した。
Distance between third surface poles d(w) 1.5 2 3 A5 4
Bath voltage (V) 568 358 546
549 A48 Example 2 The anode used in Example 1 was electrolyzed under the same conditions as in Example 1 except for water-resistant treated gold at the following method θ. - That is, it was coated on one side of the expanded metal anode and the inner surface of the hole using the 60% borea 0 ntais version it brush used in Experiment 1, dried and then heat treated at 550°C. After post-treatment, electrolysis was performed with the curved surface facing the opposite electrode. The results are shown in Table 4.

第4表 極間距離d(m)   1  1.5  2  3  
4浴電圧 (7)    五39  !L4G  五3
8 五4〇 五43実施例1と同様に極間距IIAdの
広い範囲で浴電圧は安定で、(1−1■と狭くしても低
い浴電圧を維持している。さらに、陽極も撥水性処理す
ることによりて、実施例1よりも浴電圧が11 (V)
弱低下している。
Distance between fourth surface poles d (m) 1 1.5 2 3
4 bath voltage (7) 539! L4G 53
8 540 543 As in Example 1, the bath voltage is stable over a wide range of inter-electrode distance IIAd, and a low bath voltage is maintained even if it is narrowed to (1-1■).Furthermore, the anode is also water repellent. By treatment, the bath voltage was 11 (V) higher than in Example 1.
It is slightly decreasing.

実施f1445 陽極には、第1図(d)の開口部最知径L−1■。Implementation f1445 The anode is provided with an opening having the best diameter L-1■ as shown in FIG. 1(d).

電極部の巾M−1■のロッド状のチタンに酸化ルテニウ
ムを被覆した電&を縦に使i、陰極には第1図(a)の
開口部最短径L=α9m1ll極部の巾M=CL7−の
エキスバンドメタル電極を用いて、陰陽極間に厚さ10
ミル(約125■)の陽イオン交゛換@を配置して電解
槽を構成し友。次だし、陽極はロッドの片側反面を塗布
法(実施ガ2と同様の方法)によって撥水性処理を施こ
し、そして陰極は実施例1と同様に浸漬法により撥水性
処理を施こし、各撥水性処理されていない曲が対向する
ように装着した。約100■の液圧によって膜を陽極側
へ押付けて、第6表に示した電解条件で電解した。
A rod-shaped titanium electrode coated with ruthenium oxide with a width of M-1 is used vertically for the cathode, and the shortest diameter of the opening shown in Fig. 1 (a) is L = α9m1ll; the width of the pole part is M = Using CL7- expanded metal electrodes, there is a thickness of 10 mm between the cathode and anode.
An electrolytic cell is constructed by arranging a cation exchanger (approximately 125cm). Next, the anode was treated with a water repellent coating method (the same method as in Example 2) on one side of the rod, and the cathode was treated with a water repellent treatment using the dipping method as in Example 1. I installed it so that the songs that had not been treated with water were facing each other. The membrane was pressed against the anode side with a liquid pressure of about 100 cm, and electrolysis was carried out under the electrolytic conditions shown in Table 6.

極間距離を変えて浴電圧を測定した結果を第5表に示し
た。
Table 5 shows the results of measuring the bath voltage while changing the distance between the electrodes.

第5表 極間距#d(m)    C512 浴電圧 1’V)     A13   五19   
五52撥水性処理を施こしていない電極全便った時の浴
電圧を比較例2に示し九が、極間距離が2■の時は、比
較I+l12と本実施例とで浴電圧は各々五54(V)
、五32(V)と殆んど差がなし。
5th surface pole distance #d (m) C512 Bath voltage 1'V) A13 519
Comparative Example 2 shows the bath voltage when all the electrodes without water repellent treatment are used. When the distance between the electrodes is 2■, the bath voltage is 5 for comparison I+l12 and this example. 54(V)
, There is almost no difference from 532 (V).

しかし、本実施例においては、極間距離と共に略直線的
に浴電圧が低下し、極間距@i1簡の時、比較9′11
2における五5O(V)に対して、本実施例ではA19
Cv)とCLl(至)以上の浴電圧の低下が紹められ、
さらに1極間距#ll!をα5■にすると!L13(’
V)という低い浴電圧が達成された。
However, in this example, the bath voltage decreases approximately linearly with the distance between the electrodes, and when the distance between the electrodes is @i1, Comparison 9'11
55O(V) in 2, in this example A19
A decrease in bath voltage above Cv) and CLl (to) is introduced,
Furthermore, the distance between one pole is #ll! If you change it to α5■! L13('
Bath voltages as low as V) were achieved.

つまり、撥水性処理をすると、極間を極め−て−狭くす
ると相応して浴電圧が低下し、撥水性処理をしない場合
よりもC1(v)以上の浴電圧の低下が達成された。
In other words, when the water repellent treatment was applied, the bath voltage decreased correspondingly when the gap between the electrodes was extremely narrowed, and a decrease in the bath voltage of C1(v) or more was achieved compared to the case without the water repellent treatment.

第6表 陽極室NaC1濃度  260〜270%陰極室NaO
H1f度    26〜29wt%浴温1i:    
79〜81℃ 電流密度      50A/dI? 比較例2 陰陽極ともに撥水性処理を施こしていないこと以外はす
べて実施例5と同一条件で電解した結果を第7表に示し
た。
Table 6 Anode chamber NaC1 concentration 260-270% Cathode chamber NaO
H1f degree 26-29wt% Bath temperature 1i:
79-81℃ Current density 50A/dI? Comparative Example 2 Table 7 shows the results of electrolysis performed under the same conditions as in Example 5, except that neither the cathode nor the anode was subjected to water repellent treatment.

第7表 極間距離dC■)12 浴電圧 (V)      330   工34実札例
4 CF2++eC;F、とOF、 =cP−o−ay、 
−CF −0−(ay、)t −80,?OF。
Table 7 Distance between poles dC■) 12 Bath voltage (V) 330 34 Actual bill example 4 CF2++eC;F, and OF, =cP-o-ay,
-CF -0-(ay,)t -80,? OF.

との共重合体1rlll状に成型したのち、加水分解し
た(膜厚7ミル、交換容綾(185mθq/f)。該膜
11NHcjで処理したのち、乾燥を十分に行ない、五
塩化リン/オキシ塩化リン(重鎗比1/1)混合糸で1
20℃、6日間反応させ、So、 Hをso、 ctに
転化せしめ、次いで片面のみを加水分解した。次いセ5
7tlbヨウ化水素酸で処理し、加水分解することによ
ってスルホン酸基層が4ミル。
After forming the copolymer into a 1rllll shape, it was hydrolyzed (film thickness: 7 mil, exchange capacity: 185 mθq/f). After treating the film with 11NHcj, it was thoroughly dried, and phosphorus pentachloride/oxychloride was formed. 1 with phosphorus (Juyari ratio 1/1) mixed yarn
The reaction was carried out at 20°C for 6 days to convert So and H into so and ct, and then only one side was hydrolyzed. Next section 5
4 mils of sulfonic acid base layer by treatment with 7tlb hydroiodic acid and hydrolysis.

カルボン酸基層が3ミルである陽イオン交換膜を侍た。A cation exchange membrane with a 3 mil carboxylic acid base layer was used.

一方、透水性かつイオン透過性の低電気抵抗性フィルム
ケ下記の方法によって得た。
On the other hand, a water permeable, ion permeable, low electrical resistance film was obtained by the following method.

CF、 =CF、とCF、 =C)lI−0−CF、 
−CF −0−(CF、)、 −80,F傷 OF。
CF, =CF, and CF, =C)lI-0-CF,
-CF -0- (CF, ), -80,F wound OF.

との共重合体を膜状に成型したのち、加水分解した(膜
厚2ミル、交換膜−1,1meq/r)。鉄膜をメタノ
ール中60℃で1時間処理したのち、水中に浸漬した。
After forming a copolymer with the above into a membrane, it was hydrolyzed (film thickness: 2 mil, exchange membrane -1.1 meq/r). The iron membrane was treated in methanol at 60° C. for 1 hour and then immersed in water.

陽極には、第1図の開ロ部最短径し=1mm、電極部の
巾M−1簡のロッド状のチタンに酸化ルテニウ五を被覆
した電極を縦に使い、陰極にはL=(17■、M−[1
9目のエキスバンドメタルヲ使用し次。陰陽極ともに実
施51j3と同じ方法で撥水性処理を施こした。
For the anode, a rod-shaped titanium electrode coated with ruthenium oxide (L = (17 ■, M-[1
Next, use the 9th extract band metal. Both the cathode and the anode were subjected to water repellent treatment in the same manner as in Example 51j3.

陽イオン交換膜と陰極との間に低電気抵抗性フィルムを
配置して、陽極室より約200−〇液圧をかけ、該陰極
、該フィルムおよび該陽イオン交換gl!を密着させて
電解槽を構成した。
A low electrical resistance film is disposed between the cation exchange membrane and the cathode, and about 200-000 fluid pressure is applied from the anode chamber to the cathode, the film, and the cation exchange GL! An electrolytic cell was constructed by bringing them into close contact with each other.

#I9表に示した電解条件で、極間距mを変えて浴電圧
を測定した結果ケ第8表に示し友。
#Table 8 shows the results of measuring the bath voltage under the electrolytic conditions shown in Table I9 and varying the distance m between the poles.

第8表 極間距離d(調)  0  1  2 浴電圧 (V)     s、oz   五〇9   
五25なお、同表中d=00時でも実際には陰陽極間の
陽イオン交換膜および低電気抵抗性フィルムの厚さ分は
存在するが、こξでは陰極、低電気抵抗性フィルム、陽
イオン交換膜および陽極の4者が各々密着した時1d=
0と表現しており、d−1−および2■の時も真の陰陽
極間距離は、膜およびフィルムの厚さ分を加算しなけれ
ばならない。
8th surface electrode distance d (key) 0 1 2 Bath voltage (V) s, oz 509
525 Note that even when d=00 in the same table, the thickness of the cation exchange membrane and low electrical resistance film between the cathode and anode actually exists, but in this ξ, the thickness of the cathode, the low electrical resistance film, and the anode When the ion exchange membrane and anode are in close contact with each other, 1d=
0, and in the case of d-1- and 2-2, the true distance between the cathode and the anode must be obtained by adding the thickness of the membrane and the film.

陰陽極ともに撥水性処理を施こしてiない場合を後述の
比較例5に示したが、比較例3と比べてd=2■の時は
本実施例と比較例5で浴電圧に有意差は認められないが
、dt−1+o+、Osmと小さくするにしたがって比
較的5と本実施例との差は大きくなり、(1−0111
1で比較例3の五10(ト)に対して本実施例では五0
2(V)と11(v)弱低い浴電圧を示す。
Comparative Example 5 below shows a case where both the cathode and the anode are not water-repellent treated, but compared to Comparative Example 3, when d=2■, there is a significant difference in bath voltage between this example and Comparative Example 5. However, as dt-1+o+ and Osm are made smaller, the difference between 5 and this example becomes relatively large, and (1-0111
1 and 510 (g) in Comparative Example 3, this example has 50
2 (V) and 11 (V) indicating a slightly lower bath voltage.

第9表 陽極室Na044度  210±5% 陰極室NaOH濃度   25±iwt%浴温度   
85±1℃ 電流密度     30A/d/ 比較例5 陰陽極ともに撥水性処理ケしていないことの他はすべて
実施例4と同じ条件で電解した結果を第10表に示し次
Table 9 Anode chamber Na0 44 degrees 210±5% Cathode chamber NaOH concentration 25±iwt% Bath temperature
85±1° C. Current density 30 A/d/ Comparative Example 5 Table 10 shows the results of electrolysis conducted under the same conditions as in Example 4, except that neither the cathode nor the anode was subjected to water repellent treatment.

第40表 極間距*d(■)  0  1  2 浴電圧 (V)     3.10   五14  五
23実施例5 CTP、mcF、とCF、 −cFLo−cF、−aF
−o−(ay、)、 −coocF。
40th surface pole distance *d (■) 0 1 2 Bath voltage (V) 3.10 514 523 Example 5 CTP, mcF, and CF, -cFLo-cF, -aF
-o-(ay,), -coocF.

CF。C.F.

との共重合体を膜状に成型し、次いで加水分解すること
によって陽イオン交換膜を得た(膜JIL7ミル、交換
膜111−2 meq/’) e一方、低電気抵抗性フ
ィルム、陰極および陽極には実施例4で用いたと甲じも
のt使用し、低電気抵抗性フィルムを陽極と陽イオン交
換膜との間に配して、陰極より約200箇の液圧をかけ
て該陽極、該フィルムおよび該陽イオン交換膜を密着さ
せて電解槽を構成した。
A cation exchange membrane was obtained by molding a copolymer with a membrane and then hydrolyzing it (membrane JIL 7 mil, exchange membrane 111-2 meq/'). The same material used in Example 4 was used for the anode, a low electrical resistance film was placed between the anode and the cation exchange membrane, and approximately 200 liquid pressure was applied to the anode from the cathode. The film and the cation exchange membrane were brought into close contact to form an electrolytic cell.

陰極室NaOH濃度t−35wt−とし次以外は実施例
4と同じ電解条件で電解し、その結果を第11表に示し
た。
Electrolysis was carried out under the same electrolytic conditions as in Example 4 except for the following, with the NaOH concentration in the cathode chamber set to t-35 wt-, and the results are shown in Table 11.

第11表 極間距&d(■)  0  1  2 浴電圧 (V)     五12  五21・ 五29
これに対して後述の比較例4に示したように、撥水性処
理を施こしていない陰陽極を用いた場合、d=2■では
本実施例と有意差はないが、dが小さくなるにつれて比
較例4の場合よりも本実施例の方が浴電圧の低下が大き
く、d=OWにおいて比較的4の!L20代)に対して
本実施的では五12CV)と[Ll(V)弱低い浴電圧
を示した。
11th surface pole distance &d(■) 0 1 2 Bath voltage (V) 512 521・529
On the other hand, as shown in Comparative Example 4 described later, when a cathode and anode without water repellent treatment are used, there is no significant difference from this example at d=2■, but as d becomes smaller, The decrease in bath voltage is larger in this example than in comparative example 4, and is relatively 4! at d=OW. Compared to L20s), the present example showed a slightly lower bath voltage of 512CV).

比軟しjl’4 隙−極ともに撥水性処理を施こしていないことの他はす
べて実施例5と同じ条件で電解した結果を第12表に示
した。
Table 12 shows the results of electrolysis under the same conditions as in Example 5, except that neither the gap nor the electrode was subjected to water repellent treatment.

第12表 極間距離d(■)  0  1  2 浴電圧 (V)     五2〇   五25   五
30実施?IJ6 陽極には実施例4で用いたと同じものを使用し、陽イオ
ン交換膜には実施例5で用いたと同じものを使用した。
12th surface electrode distance d (■) 0 1 2 Bath voltage (V) 520 525 530 implementation? The same IJ6 anode as used in Example 4 was used, and the same cation exchange membrane as used in Example 5 was used.

一方、住友電工社製の海綿状ニッケルセルメット品査φ
4(セル数26〜35ケ/1nch、厚さt5■)f:
ホIJフロンデイスノ(−ジ冒ン10 *grci漬し
乾燥後、350℃で熱処理し、この操作を3回繰返し友
後、片面をサンドペー/く−で磨いて被榎したテフロン
を剥離し次。剥離面を対極側に向けて、これを陽極とし
て用い友。
On the other hand, the spongy nickel celmet product manufactured by Sumitomo Electric Co., Ltd.
4 (26-35 cells/1nch, thickness t5) f:
After soaking in grci and drying, heat-treat at 350°C, repeat this process three times, and then polish one side with sandpaper to remove the soaked Teflon. With the side facing the opposite pole, use this as an anode.

約200−の液圧で陽イオン交換膜を陽極匈へ押付けて
、実施例5と同じ電解条件で電解した結果を第13表に
示した。
Table 13 shows the results of electrolysis performed under the same electrolytic conditions as in Example 5 by pressing the cation exchange membrane against the anode with a liquid pressure of about 200 -.

(51) 第13表 極間距−d(■)0125 浴電圧 (V)      五11  五22  五3
4  五44これに対して陰極に撥水性処理を施こして
いないJJi!1@rの結果を比較例5に示したが、d
が5■の時ti五55(Vlと本実施例に比べて約a1
(ロ)程高い浴電圧であるが、dが21al+より小さ
くなると浴電圧の上昇が激しく、d7−1鱈で五82(
V)という商い浴電圧を示した。dが2箇以下における
撥水性処理の効果は極めて大きい。
(51) Distance between 13th front pole - d (■) 0125 Bath voltage (V) 511 522 53
4 544 On the other hand, JJi does not have water repellent treatment applied to the cathode! The results of 1@r are shown in Comparative Example 5, but d
When is 5■, ti555 (approximately a1 compared to Vl and this example)
(b) Although the bath voltage is moderately high, when d becomes smaller than 21al+, the bath voltage rises rapidly, and 582 (
It showed a commercial bath voltage of V). The effect of water repellency treatment when d is 2 or less is extremely large.

比較例5 陰極に撥水性処理をしていない以外は実施例6と同じ条
件で電解した結果を第14表に示した。
Comparative Example 5 Table 14 shows the results of electrolysis under the same conditions as Example 6 except that the cathode was not subjected to water repellent treatment.

第14表 極間距離d(wm)12  5  4 浴電圧 (V)      五82  五59  五5
4  五55?!間昭58−48685(9) 実施例7 スポンジチタンを粉砕して、ふるI/−nKて100メ
ツシュ以下350メツシユ以上に整粒した。このものを
三塩化ルテニウムのインプロパツール溶液中に浸漬して
、乾燥後400〜450℃で熱処理して酸化ルテニウム
被覆処理を行なった。酸化ルテニウム被覆したチタン粉
末をメタノール中に分散し、これにポリフロンディスバ
ージ曹ン液を加えて混合スラリーとして、ダイキン工業
社製ポリフロンペーパーPA−5L(平均空孔率375
%。
14th surface electrode distance d (wm) 12 5 4 Bath voltage (V) 582 559 55
4 555? ! 58-48685 (9) Example 7 Titanium sponge was pulverized and sized to 100 meshes or less and 350 meshes or more using sieve I/-nK. This material was immersed in an impropatul solution of ruthenium trichloride, dried, and then heat-treated at 400 to 450° C. to coat it with ruthenium oxide. Titanium powder coated with ruthenium oxide was dispersed in methanol, and Polyflon disbarge carbon solution was added thereto to form a mixed slurry.Polyflon Paper PA-5L (average porosity 375
%.

鍛大気孔径45μ)上に吸引濾過によって約a5−の厚
さに析出させた。乾燥後このものの上に、酸化ルテニウ
ム被接した開口S最短桂(L9■のエキスバンドメタル
チタンをのせて、100 K4/eat”で加圧後30
0℃で熱処理してこれを陽極とした。
It was precipitated to a thickness of about a5-mm by suction filtration on a forged steel with a pore diameter of 45 μm. After drying, place the extended band metal titanium with the shortest opening S (L9) covered with ruthenium oxide on top of this, and pressurize it at 100 K4/eat for 30 minutes.
This was heat treated at 0°C and used as an anode.

上記陽&を用いた以外はすべて実施例6と同一の条件で
電解した結果を第15表に示した。
Table 15 shows the results of electrolysis under the same conditions as in Example 6 except that the positive & was used.

第15表 極間距離a(sm)    o   12   s浴電
圧 (V)      !98  五12  五22 
 ム35実施例6と比べて、各極間で平行移動的に約1
1(V)の浴電圧の低下が昭められ、d−=0+wにお
いて2.98(V)という従来にない低い浴電圧が達成
された。
15th surface electrode distance a (sm) o 12 s bath voltage (V)! 98 512 522
35 Compared to Example 6, the parallel displacement between each pole is approximately 1
The drop in bath voltage of 1 (V) was reduced, and an unprecedentedly low bath voltage of 2.98 (V) was achieved at d-=0+w.

なお、本実施例に用いた陽極を、水銀圧入法によってそ
の孔径を測定したところ、平均孔径約85μであった。
The pore size of the anode used in this example was measured by mercury porosimetry, and the average pore size was about 85 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、種々の多孔性電極の開口部液短径りと電極部
の巾Mを規定したものである。 第2図は、従来使われていたMの大きい多孔性電極を剛
−た時のLと極間距離とが浴電圧にどのように影響する
かを示したものである。 第5図は、本発明による撥水性を具備した多孔性電極を
用いた時の浴電圧への効果を示したもので、本発明の現
象論的根拠を示したものである。 第4図は、本発明における撥水性の意味を規定したもの
である、 第  1 (α) (b) (() (dン 第2図 LI       L2          .11開
1]部最a、ノ径            l[(V) 第4図 ケ 固 θ〉9σ 第  3  図 極間距離 (d)
FIG. 1 defines the width M of the opening liquid and the width M of the electrode portion of various porous electrodes. FIG. 2 shows how the bath voltage is affected by L and the inter-electrode distance when a conventionally used porous electrode with a large M is rigid. FIG. 5 shows the effect on bath voltage when using a porous electrode with water repellency according to the present invention, and shows the phenomenological basis of the present invention. Figure 4 defines the meaning of water repellency in the present invention. [(V) Fig. 4 Ket θ〉9σ Fig. 3 Distance between poles (d)

Claims (1)

【特許請求の範囲】 t 多孔体内表面の少なくとも一部を撥水性を有する物
質で処理した、ガス発生を伴なう電気化学反応用多孔性
電極。 2 ガス発生を伴なう電気化学反応がアルカリ金輌塩水
済液の電解反応である特許請求の範囲第1項記載の多孔
性電極。 五 一対の陰陽極のうち少なくとも一方に多孔性電極を
用い、かつ陰陽極間に隔膜を配置して構成される電解槽
において、多孔体内表面の少なくとも一部を撥水性を有
する物質で処理した多孔性電極を用い、かつ該多孔性電
極と該隔膜との距離が実質的に零となるように近接ある
いは密着させて電解することを%徴とするアルカリ金属
塩水溶液の電解方法。
[Scope of Claims] t. A porous electrode for electrochemical reactions accompanied by gas generation, in which at least a portion of the surface of the porous body is treated with a water-repellent substance. 2. The porous electrode according to claim 1, wherein the electrochemical reaction accompanied by gas generation is an electrolytic reaction of an aqueous alkali metal salt solution. (5) In an electrolytic cell configured by using a porous electrode for at least one of a pair of cathodes and anodes and arranging a diaphragm between the cathodes and anodes, a porous cell in which at least a part of the surface of the porous body is treated with a water-repellent substance. 1. A method for electrolyzing an aqueous alkali metal salt solution, which comprises electrolyzing a porous electrode and the diaphragm in close proximity or close contact so that the distance between the porous electrode and the diaphragm is substantially zero.
JP14552781A 1981-09-17 1981-09-17 Porous electrode for electrochemical reaction accompanied by generation of gas and electrolytic process using it Pending JPS5848685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14552781A JPS5848685A (en) 1981-09-17 1981-09-17 Porous electrode for electrochemical reaction accompanied by generation of gas and electrolytic process using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14552781A JPS5848685A (en) 1981-09-17 1981-09-17 Porous electrode for electrochemical reaction accompanied by generation of gas and electrolytic process using it

Publications (1)

Publication Number Publication Date
JPS5848685A true JPS5848685A (en) 1983-03-22

Family

ID=15387276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14552781A Pending JPS5848685A (en) 1981-09-17 1981-09-17 Porous electrode for electrochemical reaction accompanied by generation of gas and electrolytic process using it

Country Status (1)

Country Link
JP (1) JPS5848685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038144A (en) * 2009-08-10 2011-02-24 Yokogawa Electric Corp Electrolytic electrode, electrolytic apparatus and electrolytic method
WO2017017977A1 (en) * 2015-07-29 2017-02-02 株式会社 東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038144A (en) * 2009-08-10 2011-02-24 Yokogawa Electric Corp Electrolytic electrode, electrolytic apparatus and electrolytic method
WO2017017977A1 (en) * 2015-07-29 2017-02-02 株式会社 東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus
JPWO2017017977A1 (en) * 2015-07-29 2017-08-03 株式会社東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus

Similar Documents

Publication Publication Date Title
US5618392A (en) Gas diffusion electrode
CN101634035B (en) Electrochemical method and electrochemical device for synergistically generating ozone and hydrogen peroxide in neutral medium
CN105821436B (en) A kind of double electrolytic cell two-step method chloric alkali electrolysis method and devices based on three-electrode system
JPH01139785A (en) Electrode catalyst and production thereof
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
Liu et al. Influence of different morphology of three-dimensional CuxO with mixed facets modified air–cathodes on microbial fuel cell
JPH0125836B2 (en)
Chen et al. Synthesis and application of lead dioxide nanowires for a PEM ozone generator
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
US5676808A (en) Electrolytic cell using gas diffusion electrode
CN106745538B (en) Method for recovering elemental phosphorus from hypophosphite wastewater
CN114990603B (en) Ion exchange membrane electrolyzer
JPH06330367A (en) Production of gas electrode
US5733430A (en) Gas diffusion electrode and electrolytic method using it
JPS5848685A (en) Porous electrode for electrochemical reaction accompanied by generation of gas and electrolytic process using it
WO2017047129A1 (en) Electrode, electrode unit, and electrolysis device
CN103276438B (en) The method of nanometer porous rete is formed at surface of pure aluminum
WO2005044738A1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP3420400B2 (en) Gas diffusion electrode for electrolysis and method for producing the same
JP3625520B2 (en) Gas diffusion electrode
JP3257831B2 (en) Lead dioxide electrode and method for producing the same
CN109148895A (en) A kind of method of the electrochemistry roughening treatment of anode current collector of lithium ion battery
Zhao et al. Affordable PbO2 anode on conductive polymer‑carbon composite substrates for non-heavy duty use
JPS5871382A (en) Electrolytic cell