JPS5848478A - Forming method of inp diode in which be is implanted - Google Patents

Forming method of inp diode in which be is implanted

Info

Publication number
JPS5848478A
JPS5848478A JP56145469A JP14546981A JPS5848478A JP S5848478 A JPS5848478 A JP S5848478A JP 56145469 A JP56145469 A JP 56145469A JP 14546981 A JP14546981 A JP 14546981A JP S5848478 A JPS5848478 A JP S5848478A
Authority
JP
Japan
Prior art keywords
guard ring
junction
light receiving
receiving part
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56145469A
Other languages
Japanese (ja)
Inventor
Yasuo Baba
馬場 靖男
Haruo Kawada
春雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56145469A priority Critical patent/JPS5848478A/en
Publication of JPS5848478A publication Critical patent/JPS5848478A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Abstract

PURPOSE:To form an avalanche photodiode (APD) guard ring having a high guard ring effect, by selectively implanting Be<+> into an N type InP layer, depositing a thin film of phosphorus silicate glass, thereafter performing heat treatment. CONSTITUTION:A light receiving part 4 is formed in an InP layer in a planar type diode by selective thermal diffusion or ion implantation. When a reverse voltage is applied to the diode, preferential breakdown occurs in the peripheral part of the interface of a P-N junction, and hampers the normal operation as an APD. In order to prevent said preferential breakdown in the peripheral part, an annular guard ring part 5 is provided on the outer part of the light receiving part. Said guard ring part 5 is the same P type region as the light receiving part 4. The P-N junction interface with the light receiving part 4 is made to be a steep one side junction (abrupt junction). Meanwhile, the P-N junction interface with the guard ring part 5 is made to be a slant junction. In this constitution, the APD device, which has no brekdown at the edge part of the light receiving part, but has the excellent guard ring effect, can be manufactured.

Description

【発明の詳細な説明】 本発明はダイオードを形成する方法、特にBe”注入を
使用してInP層にダイオードを形成する方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a diode, and more particularly to a method of forming a diode in an InP layer using Be'' implantation.

InP層にダイオードを形成して成る半導体装置は広い
用途を考えることができるが、光通信用受光素子はその
重要なものの一つである0例えば1μm帯光通信用受光
素子は、第1図を参照すると、InP基板1上に光吸収
層2をエピタキシャル成長し、その上にPN接合を形成
して構成される。光吸収層2は、IaP基板1に格子整
合した多元の半導体層であるが、1.5μm帯用ではI
nG1A1を、t 5 pm帯用ではInGmAsにI
NG畠AsP (この四元層はアンチメルFパック層の
役割を持つ)を加えたものを、それぞれ用いる。光吸収
層2内にPN接合を設けると暗電流が高くなるので、光
吸収層2の上にIfiP層Sを成長させた上でInP表
面層3KPN接合を形成する。
Semiconductor devices consisting of diodes formed in an InP layer can be used for a wide range of applications, and a light-receiving element for optical communication is one of the important ones. Referring to this, a light absorption layer 2 is epitaxially grown on an InP substrate 1, and a PN junction is formed thereon. The light absorption layer 2 is a multi-component semiconductor layer lattice-matched to the IaP substrate 1.
For the t 5 pm band, nG1A1 is used as InGmAs.
NG Hatake AsP (this quaternary layer plays the role of an antimel F pack layer) is used, respectively. Since providing a PN junction in the light absorption layer 2 increases dark current, an IfiP layer S is grown on the light absorption layer 2 and then a KPN junction is formed in the InP surface layer.

第1図では、単一に選択的な熱拡散又はイオン注入を行
なってIfiP層に受光部4を形成したプレーナ形ダイ
オードを示した。との構造セは、逆電圧印加時m、PN
接合面の周辺部で優先的な降伏が発生し、アバ2ンシ、
ホトダイオード(A′PD)としての正常動作が望めな
い、そとで周辺部での優先的壜降伏を防止するために、
受光部の外周部に環状のガードリング部5を設ける。こ
のガードリング部5は、受光部4と同じP影領域である
が、受光部4によるPN接合面を急峻な片側接合(階段
接合)とし、他方ガードリング部5によるPN接合面を
傾斜接合にすると、ガードリング効果が得られることを
ねらった一〇である。
FIG. 1 shows a planar diode in which a light receiving portion 4 is formed in the IfiP layer by single selective thermal diffusion or ion implantation. The structure of m, PN when reverse voltage is applied is
Preferential yielding occurs at the periphery of the joint surface, resulting in aberrations,
In order to prevent preferential breakdown in the peripheral area where normal operation as a photodiode (A'PD) cannot be expected,
An annular guard ring portion 5 is provided on the outer periphery of the light receiving portion. This guard ring part 5 has the same P shadow area as the light receiving part 4, but the PN junction surface by the light receiving part 4 is a steep junction on one side (staircase junction), and the PN junction surface by the guard ring part 5 on the other side is a slope junction. Then, it is 10 that aims to obtain the guard ring effect.

このようなガードリングを形成するために、特別に低い
温度で熱拡散を行なうことによって拡散不純物の深度分
布をゆるやかな傾斜の本のとして形成する手法がある(
例えばCd拡散を450℃で実施し九例がある)、この
ように不純物の接散温度を変えることKよって不純物の
深度分布のプロフィールを変える手法は基本接衝である
けれども、ガードリング形成には極めて長時間の拡散工
程が必要であり(前記の450℃でのCd拡散は5日間
を要した)、シかも、不純物の深度分布を極めてゆゐや
かな傾斜のプロフィールに形成することは任意的ではな
いので、実際には、ガードリング部5の逆耐電圧受光部
4の逆耐電圧と殆んど差がなく、従って低温度拡散でガ
ードリングを形成しようとして亀十分表ガードリング効
果を発揮できないのが現状である。
In order to form such a guard ring, there is a method of forming the depth distribution of diffused impurities as a book with a gentle slope by performing thermal diffusion at a particularly low temperature (
For example, there are nine examples of Cd diffusion carried out at 450°C). Although the method of changing the depth distribution profile of impurities by changing the impurity diffusion temperature in this way is basic contact, it is difficult to form guard rings. This requires an extremely long diffusion process (the above-mentioned Cd diffusion at 450°C took 5 days), and it is optional to form the impurity depth distribution into a very gently sloped profile. Therefore, in reality, there is almost no difference between the reverse withstand voltage of the guard ring part 5 and the reverse withstand voltage of the light receiving part 4, and therefore, when trying to form a guard ring by low temperature diffusion, the guard ring effect is fully exerted. The current situation is that this is not possible.

本発明は、十分なガードリング効果を発揮するInP系
人PDのガードリングを形成する方法を提示することを
目的の一つとしている。
One of the objects of the present invention is to present a method for forming a guard ring of InP-based PD that exhibits a sufficient guard ring effect.

しかし、本発明は、さらに、InP層にゆるやかな傾斜
プロフィールの不純物分布を形成する方法を提供し、よ
ってその特徴を利用した様々のダイオードを提供するこ
と自体を目的としている。
However, a further object of the present invention is to provide a method for forming an impurity distribution with a gentle slope profile in an InP layer, and therefore to provide various diodes that utilize this feature.

本発明は、n形InP層に選択的Bt+注入を行ない、
そのInP層表面にP含有量が7重量ζ以下の沙ん珪酸
ガラス(PEG)薄膜を被着し、その後で熱処理するこ
とを含んでいる方法を提出することによって、上記の目
的を達成する。
The present invention performs selective Bt+ implantation into the n-type InP layer,
The above object is achieved by proposing a method comprising depositing a thin film of phosphosilicate glass (PEG) with a P content of 7 weight ζ or less on the surface of the InP layer, followed by heat treatment.

また、本発明においては、上記熱処理の効果を高めるた
めに、前記PsG薄膜上に別O1l電体薄膜を被着して
から熱処理を実施することができる。
Further, in the present invention, in order to enhance the effect of the heat treatment, the heat treatment can be performed after another O1l electric thin film is deposited on the PsG thin film.

本発明においては、Be+注入及びその後のアニール処
理によってInP層にダイオードを形成することを本質
的な特徴としており、これによって初めて不純物のゆる
やかな深度分布プロフィールを意図的に形成することが
可能となったのである。
The essential feature of the present invention is that a diode is formed in the InP layer by Be+ implantation and subsequent annealing treatment, and this makes it possible for the first time to intentionally form a gentle depth distribution profile of impurities. It was.

Be注入後にアニール処理したInP層におけるBe不
純物の深度分布は、従来、十分に調べられていないが、
数少なり報告を参照しながら本発明の特徴を以下に説明
する。
Although the depth distribution of Be impurities in an InP layer annealed after Be implantation has not been sufficiently investigated,
The features of the present invention will be explained below with reference to a few reports.

その数少ない報告の−っは、熱処理用保護膜としてプラ
ズマCV D = 81!IN4薄膜を用い死場合でI
nPKBe+注入を行ない、その打込みBe不純物の濃
度ピークが2 X 10” am−’より低い場合には
、熱処理後のBe j[子の深度分布は渫部側で急激に
減少すると述べている(W、J、 Deマ11n他、I
n5t、Phys、Conf、8er、 l645. 
London。
One of the few reports is that plasma CV D = 81! as a protective film for heat treatment. I in case of death using IN4 thin film
It is stated that when nPKBe+ implantation is performed and the concentration peak of the implanted Be impurity is lower than 2 x 10"am-', the depth distribution of Be , J. Dema11n et al., I
n5t, Phys, Conf, 8er, l645.
London.

The In5titute of Phys1c@、
1979.P、510参照)、シかし、本発明者らは、
P含有量が7重量ζ以下ocvn−pso薄膜をInP
表面層に被着して熱処理用保護膜とすると、Be十土性
IMF表面層をアニール処理した場合、打込み時の゛B
e不純物の濃度ピークが2 X 10” as−’よシ
低いときでも、Be不純物分布は深部側で顕著1(Be
拡散が行なわれ九分布となることを見出した。@5図に
% 加1[電圧150 k@VζB@”注入量I X唱
0131!!lIl″2でイオン注入し、7!SO℃で
アニール処理した場合(DB* g子濃度を、アニール
処理部イオン注入時の分布人及びアニール処理後の分布
Bとして示した。Be不純物のイオン注入時の濃度ピー
タは2 X 1018 =−5よ)低いのであるが、7
x−ルミ理後の分布曲線iはゆるヤかな傾斜プロフィー
ルとなっていることが見られる。参考のために、加速電
圧150keV、B・土性入量5×10” cs−”で
イオン注入し、注入B・+の濃度ピークを約1019国
−IS、−即ち2 X 10” m””よシ高い濃度ピ
ークとしくその分布曲線X)、アニール処理して得られ
たBe原原子一度の分布Yを同図に示し九が、これらO
分布曲線を比較すると、曲lsBが曲線Yと同様にゆる
やかな傾斜であることが明らかであろう0本発明は、前
記の報告と相違する本発明者らによるこの実験事実に基
づいてなされたも゛のである。
The In5titude of Phys1c@,
1979. P, 510), but the inventors
InP ocvn-pso thin film with P content of 7wt
When applied to the surface layer and used as a protective film for heat treatment, when the Be-rich IMF surface layer is annealed, the
Even when the concentration peak of the e impurity is as low as 2 × 10"as-', the Be impurity distribution is significantly 1 (Be
It was found that diffusion occurred and resulted in a nine-fold distribution. @5 Add % to figure 1 [Voltage 150 k@VζB@”Ion implantation amount I In the case of annealing at SO℃ (DB* G concentration is shown as the distribution at the time of ion implantation in the annealed part and the distribution B after the annealing treatment.The concentration peak at the time of ion implantation of Be impurity is 2 x 1018 = - 5) Although it is low, 7
It can be seen that the distribution curve i after the x-lumi process has a gentle slope profile. For reference, ions were implanted at an accelerating voltage of 150 keV and a B soil loading of 5 x 10"cs-", and the concentration peak of the implanted B. The distribution curve (X) of a very high concentration peak, and the distribution Y of one Be source atom obtained by annealing are shown in the same figure.
Comparing the distribution curves, it is clear that the curve lsB has a gentle slope similar to the curve Y. The present invention was made based on this experimental fact by the present inventors, which is different from the above report. It is ゛.

次に、別の一つ0報告は、l5P)CBe+lI人を行
なったウェーハに、約8重量%OPを含有するcvD−
pso’*xt表裏両面g被着して、又は片面に被着し
かつPHs  ガス雰囲気中で、保護膜アニール処理し
た場合、打込みBe不純物の濃度ピークが2X10”a
s→より低ければ、Be不純物の深度分布はL88分布
(Llndhard Bcharfおよび8ch1ot
tの分布)を維持すると電気化学的な測定の結果から主
張している(J、P、DonnellyおよびC,A、
Arm1ento、 人pp1.Phys、Lett。
Next, another report showed that cvD-
pso'
If lower than s→, the depth distribution of Be impurity is L88 distribution (Llndhard Bcharf and 8ch1ot
It is claimed from the results of electrochemical measurements that the distribution of t is maintained (J. P. Donnelly and C. A.
Arm1ento, people pp1. Phys, Lett.

54 (1) 、January 1 、1979. 
P、 94  参照)、シかし、本発明者らは、この場
合に%、アニール処理後にB@不純物の深度分布はゆる
やかな傾斜Oプロフィールとなり、B・不純物分布は深
奥部までゆる中かな傾斜で延びて−ることを見い出した
54 (1), January 1, 1979.
However, in this case, the inventors found that after the annealing process, the depth distribution of B@ impurity becomes a gently sloped O profile, and the B impurity distribution has a gentle slope to the deep part. I found that it can be extended.

第4図に1注入エネルギー150key、Be注入量I
 X 1013as−’ (この場合の濃度ピークは約
2X10  as  であム)でイオン注入し、750
℃でアニール処理した場合の正孔濃度分布りを示した。
Figure 4 shows one implantation energy of 150 keys and Be implantation amount I.
Ion implantation was performed at X 1013as-' (the concentration peak in this case is approximately 2X10as),
The hole concentration distribution when annealing at ℃ is shown.

tた、Be十十人入量5X 1014ns−” (濃度
ピーク約1×10 al )の場合Vを比較のために併
記し九、同図から、濃度ピークが1051 よシ低い場
合も、10” ott−”よシ高い場合と同様に1アニ
ール処理後の正孔濃度分布はゆるやかな傾斜を持う九プ
四ツイールとなっていることが明らかである0本発明は
、第二の報告と相異する本発明者らの見い出したこのよ
うな事gAKも基づいているものである。
In addition, V is also shown for comparison when the amount of Be 10 is 5X 1014 ns-'' (concentration peak is about 1×10 al)9.From the same figure, even when the concentration peak is lower than 1051, it is 10'' It is clear that the hole concentration distribution after the 1st annealing process has a gentle slope, similar to the case where the temperature is higher than 0. gAK is also based on the findings of the present inventors.

こうして本発明の方法は、InP層におけるBeI+の
深度分布においてゆるやかな傾斜を有するプロフィール
を与えることが明らかとなった。
It has thus been revealed that the method of the present invention provides a profile with a gentle slope in the depth distribution of BeI+ in the InP layer.

本発明方法を用^て第2図に示したガードリング5を形
成したととろ、受光部4の端部における降伏のない曳好
なガードリング効果を有する人PD装置を製造すること
ができた。
By forming the guard ring 5 shown in FIG. 2 using the method of the present invention, it was possible to manufacture a human PD device having a good guard ring effect without breakdown at the end of the light receiving section 4.

まえ、本発明の方法は、上聞B・十分布プロフィールか
ら予想されるように1耐逆電圧、低リーク電流を示すダ
イオードを利用したInP−ICを製造すること、など
にも広く応用できることは当業者には明らかであろう。
First, the method of the present invention can be widely applied to manufacturing InP-ICs using diodes that exhibit reverse voltage resistance and low leakage current as expected from the above-mentioned profile. It will be clear to those skilled in the art.

なお、B・土性入機、PEG被着法及び熱処理(アニー
ル処理)法は、慣用のいずれの方法によるとと−できる
こと社当業者にとって拡明らかであろう。
It will be obvious to those skilled in the art that any conventional method can be used for B. Soil pouring, PEG deposition, and heat treatment (annealing).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガードリング無し人FDの断面構造概略図であ
り1 第2図はガードリング付きAPDの断面構造概略図であ
シ、 第S図はP8G保穫膜を用い九B@+注入InPO熱処
理の前後のBe不純物濃度分布を示す図であり、 第4図はPSG保護膜を用い九B@+注入InPO熱処
理の前後の正孔の濃度分布を示す図である。 1:n十−InP基板、  2:n−光吸収層、5:n
−InPウィンド層、  4:p+−受光部、5:p−
ガードリング部、  ’ : fi −I n pバッ
ファ一層; 曲線人、X、C,U:熱処理前、曲線B、
Y、D、V:熱処履後。 以下余白 第1図 集2図 1JpJ3覆 Oi        2      3      4
表面からの距離(μm) flJ、40 表面からの距1Ii(μm)
Figure 1 is a schematic diagram of the cross-sectional structure of a human FD without a guard ring. Figure 2 is a schematic diagram of the cross-sectional structure of an APD with a guard ring. Figure S is a schematic diagram of the cross-sectional structure of an APD with a guard ring. FIG. 4 is a diagram showing the Be impurity concentration distribution before and after the heat treatment, and FIG. 4 is a diagram showing the hole concentration distribution before and after the 9B@+ injection InPO heat treatment using the PSG protective film. 1: n-InP substrate, 2: n-light absorption layer, 5: n
-InP wind layer, 4: p+- light receiving section, 5: p-
Guard ring part, ': fi-I n p buffer layer; curved line, X, C, U: before heat treatment, curved line B,
Y, D, V: After heat treatment. Below is the margin Figure 1 Collection 2 Figure 1 JpJ3 Overview Oi 2 3 4
Distance from surface (μm) flJ, 40 Distance from surface 1Ii (μm)

Claims (1)

【特許請求の範囲】 1、  n形InP層に選択的Be注入を行ない、該I
nP層表面にシん、含!量が7重量パーセント以下のり
ん珪酸ガラス薄膜を被着し、そしてそれを熱処理する工
程を含んでいることを特徴とするInP層にダイオード
を形成する方法。 2 前記熱処理を、前配りん珪酸ガラス薄膜上に他の誘
電体薄膜を被着して、から実施する、特許請求の範囲第
1項記載0方法・
[Claims] 1. Selective Be implantation is performed into the n-type InP layer, and the I
Contains a thin layer on the surface of the nP layer! A method of forming a diode in an InP layer comprising the steps of depositing a thin film of phosphosilicate glass in an amount of 7 weight percent or less and heat treating the same. 2. The method described in claim 1, wherein the heat treatment is performed after another dielectric thin film is deposited on the pre-distributed phosphosilicate glass thin film.
JP56145469A 1981-09-17 1981-09-17 Forming method of inp diode in which be is implanted Pending JPS5848478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145469A JPS5848478A (en) 1981-09-17 1981-09-17 Forming method of inp diode in which be is implanted

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145469A JPS5848478A (en) 1981-09-17 1981-09-17 Forming method of inp diode in which be is implanted

Publications (1)

Publication Number Publication Date
JPS5848478A true JPS5848478A (en) 1983-03-22

Family

ID=15385956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145469A Pending JPS5848478A (en) 1981-09-17 1981-09-17 Forming method of inp diode in which be is implanted

Country Status (1)

Country Link
JP (1) JPS5848478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538367B2 (en) 2005-09-12 2009-05-26 Mitsubishi Electric Corporation Avalanche photodiode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538367B2 (en) 2005-09-12 2009-05-26 Mitsubishi Electric Corporation Avalanche photodiode

Similar Documents

Publication Publication Date Title
US4717631A (en) Silicon oxynitride passivated semiconductor body and method of making same
CA1199097A (en) Preparation of photodiodes
US5233209A (en) Guard ring structure with graded be implantation
JPH02202071A (en) Semiconductor photodetector and manufacture thereof
JPH0287579A (en) Manufacture of semiconductor device
JPH077173A (en) Preparation of photodetector sensitive within range of short wavelength light
JPS5848478A (en) Forming method of inp diode in which be is implanted
US4415370A (en) Method of beryllium implantation in germanium substrate
JPH02248081A (en) Avalanche photodiode and manufacture thereof
JPS63215084A (en) Semiconductor photodetector
JP4401036B2 (en) Photodiode manufacturing method
US10566416B2 (en) Semiconductor device with improved field layer
JPS59106165A (en) Manufacture of semiconductor light receiving device
JP2736089B2 (en) Semiconductor device and manufacturing method thereof
JPS633448B2 (en)
JPS6259898B2 (en)
JPS61220481A (en) Manufacture of semiconductor light receiving device
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JPS58122721A (en) Impurity diffusion to compound semiconductor
JPS61144077A (en) Manufacture of semiconductor light-receiving element
JPS5853867A (en) Semiconductor light sensitive element
JPS6259907B2 (en)
JPS60178674A (en) Manufacture of avalanche photo diode
JPS6244870B2 (en)
JPS58151074A (en) Manufacture of semiconductor device