JPS5853867A - Semiconductor light sensitive element - Google Patents
Semiconductor light sensitive elementInfo
- Publication number
- JPS5853867A JPS5853867A JP56152610A JP15261081A JPS5853867A JP S5853867 A JPS5853867 A JP S5853867A JP 56152610 A JP56152610 A JP 56152610A JP 15261081 A JP15261081 A JP 15261081A JP S5853867 A JPS5853867 A JP S5853867A
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- light sensitive
- junction
- inp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 230000031700 light absorption Effects 0.000 claims description 6
- 229910052790 beryllium Inorganic materials 0.000 claims description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 5
- 240000002329 Inga feuillei Species 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 3
- 229910001423 beryllium ion Inorganic materials 0.000 abstract description 3
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 2
- 238000004544 sputter deposition Methods 0.000 abstract description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000012535 impurity Substances 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- NRDMFTSWEBBZFK-UHFFFAOYSA-N [P].[Cd] Chemical compound [P].[Cd] NRDMFTSWEBBZFK-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、1〔μ寓〕帯の波長を有する光を使用して通
信を行なうのに好適なInP /In GaAzP系の
受光素子に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an InP/In GaAzP light receiving element suitable for communication using light having a wavelength in the 1 μ band.
一般に、アバランシ・フォト・ダイオード(APD)は
、p−n8合にブレイク・ダウン近くの逆バイアスを印
加し、光に依って生じたキャリヤをなだれ増倍させるよ
うにしている。InP/I%GaAzP (若しくはI
%GaAz )系API)においては、受光用p−n接
合に逆バイアスを印加し大ときに生じる漏れ電流を小さ
くするために、p−’n接合をIルGaAaP (若し
くはInGaAz)光吸収層上に成長したInPウィン
ド層内に形成するのが普通fある。即ち、p−n接合か
らの空乏層を光吸収層内へ十分拡げて所要の受光波長に
対する感度を得る一方で、p−n接合逆バイアス特性は
1%2層で定める訳である。Generally, in an avalanche photodiode (APD), a reverse bias near the breakdown is applied to the p-n8 junction so that carriers generated by light are avalanche multiplied. InP/I%GaAzP (or I
%GaAz) based API), in order to reduce the leakage current that occurs when a reverse bias is applied to the light-receiving p-n junction, the p-'n junction is placed on the GaAaP (or InGaAz) light absorption layer. Usually, f is formed within the InP window layer grown during the process. That is, while the depletion layer from the p-n junction is sufficiently expanded into the light absorption layer to obtain sensitivity to the required light receiving wavelength, the p-n junction reverse bias characteristic is determined by 1%2 layers.
このよりなAPDでは1通常IMF基板上の光吸収層上
のs il InP層内flcpWi不純物拡散領域を
形成して前記p−5la合を得ている。そして、ブレイ
ク・ダウンはp−%接合の中央部分で生じることが望ま
しいのであるが、電界集中の関係でp−n接合の周辺部
分で生じ易いことが知られている。In this type of APD, a flcpWi impurity diffusion region is usually formed in a sil InP layer on a light absorption layer on an IMF substrate to obtain the p-5la combination. Although it is desirable for breakdown to occur at the center of the p-% junction, it is known that it is more likely to occur at the periphery of the p-n junction due to electric field concentration.
そこで、従来、p−偲接合周辺部分の耐圧を高める為に
ガード・リングを設けることが行なわれ、種々の構造の
ものが提案されている。次に、その若干を例示して説明
する。Therefore, a guard ring has been conventionally provided in order to increase the breakdown voltage around the p-junction, and various structures have been proposed. Next, some of them will be illustrated and explained.
第1図に於いて、1は舊−型I%Pウィンド層、2は%
型領域、3はp中型領域であって、領域2と領域5は二
重イオン注入に依って形成する。In Fig. 1, 1 is a hollow-type I%P wind layer, 2 is a %
The type region 3 is a p medium type region, and regions 2 and 5 are formed by double ion implantation.
第2図に於いて、4はn−型I−ウィンド層、5は外型
I%P半導体層、6はp+型不純物拡散領域であって、
基板4上に半導体層5を形成してからその半導体層5を
メサ状にエツチングし、その後でp型不純物の拡散を行
なう。In FIG. 2, 4 is an n-type I-wind layer, 5 is an outer-type I%P semiconductor layer, and 6 is a p+-type impurity diffusion region,
After forming a semiconductor layer 5 on a substrate 4, the semiconductor layer 5 is etched into a mesa shape, and then p-type impurities are diffused.
これ等両従来例とも、中央部分ではp”−5−s−の構
成になっているのでなだれ増倍を起し易く、そして、周
辺部分ではp+−「の構成になっているのでブレイク・
ダウンを起し難いものであ−る。In both of these conventional examples, the central part has a p"-5-s- configuration, which tends to cause avalanche multiplication, and the peripheral part has a p+-" configuration, so it is easy to cause avalanche multiplication.
It is difficult to cause a knockdown.
しかしながら、第1図従来例では、通常、詔型領域2を
形成するのにシリコン(Si)をイオン注入しているが
、シリコンは原子量が大である為、受光部のしかも高電
界が加わる領域に多数の注入ダメージが残シ、特性に悪
影響を及はす可能性が大である。また、第2図従来例で
は、パッシベーションを行なって素子安定化をすること
が困難でおる。However, in the conventional example shown in FIG. 1, silicon (Si) ions are usually implanted to form the elongated region 2, but since silicon has a large atomic weight, it is a region of the light receiving section and a region where a high electric field is applied. There is a high possibility that a large amount of injection damage will remain and adversely affect the characteristics. Furthermore, in the conventional example shown in FIG. 2, it is difficult to stabilize the element by passivation.
また、前記各従来例とは逆の発想で、第3図に見られる
ように、基板側のI%Pウィンド層7を外型とし、その
上に「型I%P半導体層8を形成し、その半導体層8に
p型不純物拡散領域9を基板側1%1層7との界面に近
接させるか届くように形成したものも知られている。In addition, as shown in FIG. 3, the I%P wind layer 7 on the substrate side is used as an outer mold, and a "type I%P semiconductor layer 8 is formed on it", contrary to the idea of each of the conventional examples described above. It is also known that a p-type impurity diffusion region 9 is formed in the semiconductor layer 8 so as to be close to or reach the interface with the 1%1 layer 7 on the substrate side.
この従来例では、領域9を形成するのにはカドミウム(
cd)を拡散するのであるが、この場合、5−型半導体
層8が成る程度以上の厚さ、例えば2〜5〔μm3以上
でないと周辺部分での接合の曲率に基因する耐圧の低下
が大となシ、周辺部においてブレイク・ダウンしてしま
う。In this conventional example, region 9 is formed using cadmium (
cd), but in this case, unless the thickness is at least as thick as the 5-type semiconductor layer 8, for example 2 to 5 μm3 or more, the withstand voltage will drop significantly due to the curvature of the junction in the peripheral area. Tonanashi breaks down in the peripheral area.
InPAliJ元化合物系APDの増倍領域を形成する
為に第3図に示した構造をI%Pのウィンド層内に形成
する場合、四元化合物半導体層上のエピタキシャル成長
I%P半導体層の厚さは4〜5〔μ罵〕程度必要となる
。現在のLPII (Liq#Litl Phaza
Epitgzy)法では、四元化合物半導体層上に1%
2層を3〔μ寓〕以上成長させるとずスフイツト転位が
発生し易いので、この面からエピタキシャル成長層の厚
さを大にすることについては制限を受け、従って、前記
構造でガード・リング効果を得るのは困難である。When forming the structure shown in FIG. 3 in the I%P window layer to form the multiplication region of the InPAliJ elemental compound APD, the thickness of the epitaxially grown I%P semiconductor layer on the quaternary compound semiconductor layer Approximately 4 to 5 [μ expletives] are required. Current LPII (Liq#Litl Phaza
In the Epitgzy) method, 1%
If two layers are grown for more than 3 microns, swift dislocations are likely to occur, so from this point of view there is a limit to increasing the thickness of the epitaxially grown layer. It is difficult to obtain.
本発明は、p−謡接合を単純な選択拡散で形成した場合
に周辺部分で起p易い電界集中を緩和するためのガード
・リングを形成した受光素子であって、結晶がダメージ
を受けたシ、層厚が制限を受けたシすることのない、特
性良好なものを提供できるようにする。以下これを詳細
に観明する。The present invention is a light-receiving element in which a guard ring is formed to alleviate electric field concentration that tends to occur in the peripheral part when a p-junction is formed by simple selective diffusion. To make it possible to provide a product with good characteristics without being subject to restrictions on layer thickness. This will be examined in detail below.
第4図は本発明一実施例の要部断面図である。FIG. 4 is a sectional view of essential parts of an embodiment of the present invention.
図に於いて、11はI昏P/I%GaAaP (若しく
はInGa+Az)基板でラシ、実際には5+型1nP
基根上にn型1nGaAzP (若しくはInGmAi
p )光吸収層をエピタキシャル成長させたものである
が、本発明の目的とするガードリング効果には関与しな
いので、図では省略しである。 12は外型In1層、
16は「型1nP層、15はpmガード・リング領域、
17はp中型不純物拡散領域(受光領域)、18は絶縁
膜、19はp側電極、20は%側電極をそれぞれ示して
いる。In the figure, 11 is an IcoP/I%GaAaP (or InGa+Az) substrate, which is actually a 5+ type 1nP
n-type 1nGaAzP (or InGmAi
p) This is a light absorption layer grown epitaxially, but it is omitted from the figure because it does not contribute to the guard ring effect that is the object of the present invention. 12 is the outer mold In1 layer;
16 is a type 1nP layer, 15 is a pm guard ring region,
Reference numeral 17 indicates a p-type medium impurity diffusion region (light-receiving region), 18 an insulating film, 19 a p-side electrode, and 20 a %-side electrode.
本実施例に於けるガード・リング領域15は、ベリリウ
ム(B−)をイオン注入することに依って形成する。Guard ring region 15 in this embodiment is formed by ion implantation of beryllium (B-).
本発明者の実験に依れけ、爲型ImP中にベリリウムを
イオン注入することに依って形成されfcp・詔接合は
、第5図に曲線1B、Cとして表わしであるように傾斜
形接合になる。Based on the experiments of the present inventor, the fcp-silicon junction formed by ion-implanting beryllium into a round-shaped ImpP is a sloped junction as shown by curves 1B and C in FIG. Become.
第5図では、縦軸に不純物濃度、横軸に表面からの深さ
をそれぞれ採夛、
Aは、
注入エネルギ: 1<OCxgr〕
ドーズ量: s、ox 10”(e講−2〕アニ一ル温
度=750〔℃〕
アニール時間=20〔分〕
アニール雰囲気二N諺
活性化率:6O(−)
xj : 2.4(μ稈i〕
Bは、
ドーズ量: 5.2 X 10”CIIJIB−”:]
アニール温度: 700[’C)
xj : 2.2[p貢1〕
その他:Aと同じ
Cは、
ドーズ量: 9.6 X 10” (#+@−”)アニ
ール温度: 6501:tl:)
Xj : 2.1(μり
その他二Aと同じ
の条件で得たものである。また、LSSで指示した曲線
はLSS理論で計算した不純物分布を表わしている。In Figure 5, the vertical axis represents the impurity concentration, and the horizontal axis represents the depth from the surface. Annealing temperature = 750 [℃] Annealing time = 20 [minutes] Annealing atmosphere 2N proverb Activation rate: 6O(-) xj: 2.4 (μculm i) B is Dose amount: 5.2 −”:]
Annealing temperature: 700 ['C) xj: 2.2 [ptribute 1] Others: Same as A, Dose amount: 9.6 Xj: 2.1 (μ) and other conditions were obtained under the same conditions as 2A. The curve indicated by LSS represents the impurity distribution calculated by LSS theory.
この第5図から明らかであるが、n−1%Pの中にベリ
リウムをイオン注入してアニールすると、理論上の分布
からかなシ移動することが判る−0さて、n−1%Pの
中にカドミウムを熱拡散した場合の不純物濃度プロファ
イルはベリリウムの場合と全く異なシ、第6図に見られ
るように階段形接合に近いものとなる。It is clear from Fig. 5 that when beryllium ions are implanted into n-1% P and annealed, there is a slight shift from the theoretical distribution. The impurity concentration profile when cadmium is thermally diffused is completely different from that of beryllium, and as seen in FIG. 6, it becomes close to a stepped junction.
第6図に見られるデータは、カドミウム・燐(CtlP
l)を拡散源として閉管法によって熱拡散を550℃、
5時間行った場合におゆるカドミウムの濃度プロファイ
ルを表わしている。The data shown in Figure 6 is based on cadmium phosphorus (CtlP).
l) as a diffusion source using the closed tube method to conduct thermal diffusion at 550°C.
It shows the concentration profile of all cadmium when the test was carried out for 5 hours.
一般に、傾斜形接合と階段形接合の場合とではp型領域
への空乏層の広がシの差に依ってブレイク・ダウン電圧
V、にも差を生ずる。従って、VIIが大でおる傾斜形
の接合でガード・リングを形成すれば周辺部分のブレイ
ク・ダウンを防ぐことができる。In general, there is a difference in breakdown voltage V between a sloped junction and a stepped junction, depending on the difference in the spread of the depletion layer into the p-type region. Therefore, if the guard ring is formed by an inclined joint with a large VII, breakdown of the peripheral portion can be prevented.
ところで、イオン注入で不純物領域を形成した場合、横
方向の接合は、イオン注入方向のような傾斜形接合には
ならず、むしろ階段形に近いものであると考えられる。By the way, when an impurity region is formed by ion implantation, the lateral junction is not an inclined junction as in the ion implantation direction, but rather is considered to be close to a stepped junction.
従って横方向の耐圧が小さくなシ更に接合の曲シの効果
も加わるので受光領域との耐圧差を得ることが困難であ
る。本発明では、この点の問題を解消する為、%−fJ
Id’層13を設けることに依シ、横方向の耐圧差を
不純物濃度差で生成させているものである。Therefore, since the lateral breakdown voltage is small and the effect of the bending of the bond is added, it is difficult to obtain a breakdown voltage difference with the light receiving area. In the present invention, in order to solve this problem, %-fJ
Depending on the provision of the Id' layer 13, a lateral breakdown voltage difference is generated by a difference in impurity concentration.
次に、第7図乃至第11図を参照しつつ第4図実施例を
製造する場合について説明する。Next, the case of manufacturing the embodiment shown in FIG. 4 will be explained with reference to FIGS. 7 to 11.
第7図参照
(1) %+型hゲIw&GmAaP (・若しくは
Inl;aAz )基板11上に液相エピタキシャル成
長法にてs !I!l ISP層12、詐″″WI%P
層16をそれぞれ厚さ1〔μ旭〕、2〔μl〕程度に成
長させる。伺、この場合、s=I X IQ” 〔e+
s−’)、%″″=1〜5 X 10” 〔ewr″″
1〕である。これらのエピタキシャル成長層はバッファ
層や光吸収層と共に全てを連続成長させるのが実際的で
ある。Refer to FIG. 7 (1) %+ type hge Iw&GmAaP (or Inl;aAz) is grown on the substrate 11 by liquid phase epitaxial growth. I! l ISP layer 12, fraud ""WI%P
The layers 16 are grown to a thickness of about 1 μl and 2 μl, respectively. In this case, s=I
s-'), %""=1~5 X 10"[ewr""
1]. It is practical to grow all of these epitaxially grown layers continuously together with the buffer layer and the light absorption layer.
第8図参照
(2) スパッタ法に依シ二酸化シリコン膜14を厚さ
例えば5000 (:、2)程度形成する。Refer to FIG. 8 (2) A silicon dioxide film 14 is formed to a thickness of, for example, about 5000 mm (:, 2) by sputtering.
(3) フォト・レジスト膜14′を厚さ例えば2〔
μm〕程度に形成する。(3) The photoresist film 14' has a thickness of, for example, 2 [
μm].
(4)フォト・レジスト膜14′及び二酸化シリコン膜
14をパターニングしてガード・リング領域形成用窓1
4,4を設ける。(4) Patterning the photoresist film 14' and the silicon dioxide film 14 to form the guard ring region window 1
4,4 will be provided.
(5) フォト・レジスト膜14′等をマスクとして
ベリリウムをイオン注入し、p型ガード・リング領域1
5を形成する。この際の注入エネルギは150 〔Kg
す、ドーズ量は1 x 10” (am−”)である。(5) Using the photoresist film 14' as a mask, beryllium ions are implanted to form the p-type guard ring region 1.
form 5. The implantation energy at this time was 150 [Kg
The dose is 1 x 10"(am-").
第9図参照
(6)フォト・レジスト膜14′及び二酸化シリコン膜
14を除去してから化学気相成長法にて燐硅酸ガラスの
キャップ層16′を形成し、温度750〔℃〕で20〔
分〕 のアニールを行なう。(6) After removing the photoresist film 14' and the silicon dioxide film 14, a cap layer 16' of phosphosilicate glass is formed by chemical vapor deposition at a temperature of 750 [°C] for 20 minutes. [
Annealing is performed for 1 minute.
第10図参照
(7)燐硅酸ガラスのキャップ層16′を除去してから
化学気相成長法にて窒化シリコン膜16を形成し、それ
をパターニングしてから受光領域形成用窓16Aを形成
する。See FIG. 10. (7) After removing the phosphosilicate glass cap layer 16', a silicon nitride film 16 is formed by chemical vapor deposition, and after patterning, a window 16A for forming a light receiving area is formed. do.
(8) カドミウムを熱拡散し、p+型型光光領域1
7形成する。このときの拡散条件は550[C]、1時
間である。(8) Thermal diffusion of cadmium and p+ type optical region 1
7 form. The diffusion conditions at this time were 550 [C] and 1 hour.
第11図参照
(9) この稜窒化シリコン膜16を除去してから、
通常の技法を適用して無反射コーティング或いはパッシ
ベーション用の絶縁l[18や電極を形成して第4図に
見られる受光素子を完成する。See FIG. 11 (9) After removing this edge silicon nitride film 16,
Applying conventional techniques, an anti-reflection coating or passivation insulation 18 and electrodes are formed to complete the light-receiving element shown in FIG. 4.
以上の説明で判るように、本発明に依れば、ベリリウム
をI%P中にイオン注入すると注入方向に傾斜形接合が
得られること、また、横方向に対しては階段形接合にな
って耐圧が低下するが、これは欝−型I%P層を設ける
ことに依ル周辺部の耐圧を大きくすること等を利用し、
特性曳好なガード・リング構造を有する半導体受光素子
を得ることができ、骸素子はイオン注入に依る結晶損傷
が受光領域に残ることもなく、結晶層の厚さに制約を受
けることもないので、特性良好であるとともに設計・製
造が容易である。As can be seen from the above description, according to the present invention, when beryllium is ion-implanted into I%P, an inclined junction can be obtained in the implantation direction, and a stepped junction can be obtained in the lateral direction. The breakdown voltage decreases, but this can be done by increasing the breakdown voltage in the peripheral area by providing a depressed-type I%P layer, etc.
It is possible to obtain a semiconductor light-receiving device having a guard ring structure with good characteristics, and since crystal damage caused by ion implantation does not remain in the light-receiving region of the skeleton element, and there is no restriction on the thickness of the crystal layer. It has good characteristics and is easy to design and manufacture.
第1図乃至第3図は従来例の要部断面図、第4図は本発
明一実施例の要部断面図、第5図及び第6図は不純物濃
度分布を表わす線図、第7図乃至第11図は第4図実施
例を製造する場合を説明する為の工程要所に於ける素子
の要部断面図である。
図に於いて、11は基板、12はsW1%P層、13は
n″″型InP層、15はガード・リング領域、17は
受光領域、18は絶縁膜である。
特許出願人 富士通株式会社
代理人 弁理士玉蟲久五部(外3名)
第5図
0 0.4 0.8
+、2 1.6!1面からの深さ Cp
m)
第6図
1m面からの深さ しml
第10面
第11 図1 to 3 are sectional views of main parts of a conventional example, FIG. 4 is a sectional view of main parts of an embodiment of the present invention, FIGS. 5 and 6 are diagrams showing impurity concentration distribution, and FIG. 7 is a sectional view of main parts of a conventional example. FIGS. 11 to 11 are sectional views of essential parts of the device at key points in the process for explaining the manufacturing of the embodiment shown in FIG. In the figure, 11 is a substrate, 12 is an sW1% P layer, 13 is an n'' type InP layer, 15 is a guard ring region, 17 is a light receiving region, and 18 is an insulating film. Patent applicant Fujitsu Ltd. agent Patent attorney Gobe Tamamushi (3 others) Figure 5 0 0.4 0.8
+, 2 1.6!Depth from 1st surface Cp
m) Figure 6 Depth from 1m plane (ml) Figure 10 Figure 11
Claims (1)
Az光吸収層、その上に形成された%WIf&P半導体
層、さらにその上に形成され九%−fJI%P半導体層
、該「型1nP半導体層に形成されたp+型型光光領域
囲むようにベリリウムをイオン注入して形成されたp型
ガード・リング領域を備えてなることを特徴とする半導
体受光素子。n-type 1nGaAaP or InGa formed on the substrate
Az light absorption layer, a %WIf&P semiconductor layer formed thereon, and a 9%-fJI%P semiconductor layer formed thereon, so as to surround the p+ type light region formed on the "type 1nP semiconductor layer". A semiconductor light-receiving device comprising a p-type guard ring region formed by ion-implanting beryllium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56152610A JPS5853867A (en) | 1981-09-26 | 1981-09-26 | Semiconductor light sensitive element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56152610A JPS5853867A (en) | 1981-09-26 | 1981-09-26 | Semiconductor light sensitive element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5853867A true JPS5853867A (en) | 1983-03-30 |
JPS6244869B2 JPS6244869B2 (en) | 1987-09-22 |
Family
ID=15544156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56152610A Granted JPS5853867A (en) | 1981-09-26 | 1981-09-26 | Semiconductor light sensitive element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5853867A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4949144A (en) * | 1985-09-24 | 1990-08-14 | Kabushiki Kaisha Toshiba | Semiconductor photo-detector having a two-stepped impurity profile |
-
1981
- 1981-09-26 JP JP56152610A patent/JPS5853867A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4949144A (en) * | 1985-09-24 | 1990-08-14 | Kabushiki Kaisha Toshiba | Semiconductor photo-detector having a two-stepped impurity profile |
Also Published As
Publication number | Publication date |
---|---|
JPS6244869B2 (en) | 1987-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4442444A (en) | Avalanche photodiodes | |
JPH02159775A (en) | Semiconductor photodetector and manufacture thereof | |
JP3996699B2 (en) | Semiconductor photodetector | |
JPH03293780A (en) | Semiconductor photodetector | |
US5001335A (en) | Semiconductor photodetector device and method of manufacturing the same | |
JPS5853867A (en) | Semiconductor light sensitive element | |
EP0026629B1 (en) | Methods of manufacturing semiconductor devices, for example photodiodes, and devices so manufactured | |
JP4401036B2 (en) | Photodiode manufacturing method | |
JPH02248081A (en) | Avalanche photodiode and manufacture thereof | |
JPS61144077A (en) | Manufacture of semiconductor light-receiving element | |
JPS59106165A (en) | Manufacture of semiconductor light receiving device | |
JPS61144076A (en) | Semiconductor light-receiving element | |
JP3055030B2 (en) | Manufacturing method of avalanche photodiode | |
JPS60173882A (en) | Semiconductor device | |
JP2798927B2 (en) | Semiconductor light receiving device and method of manufacturing the same | |
JPS6259905B2 (en) | ||
JPS6259907B2 (en) | ||
JPH0241185B2 (en) | ||
JP2657480B2 (en) | Semiconductor light receiving device | |
JPS616820A (en) | Manufacture of compound semiconductor device | |
RU2377697C1 (en) | Method of making photoelectric converter based on germanium | |
JPS5934673A (en) | Formation of guard ring for photo detector | |
JPS5891687A (en) | Manufacture of light-receiving element | |
JPS5848478A (en) | Forming method of inp diode in which be is implanted | |
JPS6222475B2 (en) |