JPS5848217B2 - Oil-degradable coating film - Google Patents

Oil-degradable coating film

Info

Publication number
JPS5848217B2
JPS5848217B2 JP53104176A JP10417678A JPS5848217B2 JP S5848217 B2 JPS5848217 B2 JP S5848217B2 JP 53104176 A JP53104176 A JP 53104176A JP 10417678 A JP10417678 A JP 10417678A JP S5848217 B2 JPS5848217 B2 JP S5848217B2
Authority
JP
Japan
Prior art keywords
coating film
oil
fats
oils
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53104176A
Other languages
Japanese (ja)
Other versions
JPS5531161A (en
Inventor
繁弥 華園
幸禧 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKEN TOSO KOGYO KK
Original Assignee
NITSUKEN TOSO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKEN TOSO KOGYO KK filed Critical NITSUKEN TOSO KOGYO KK
Priority to JP53104176A priority Critical patent/JPS5848217B2/en
Publication of JPS5531161A publication Critical patent/JPS5531161A/en
Publication of JPS5848217B2 publication Critical patent/JPS5848217B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Description

【発明の詳細な説明】 この発明は金属成形物例えば電子オーブン、電気オーブ
ン、ガスオーブンおよび電子一蒸気オーブンなどの内壁
面に適用して加熱調理に際し、油脂類から発生する油脂
性フユームによるオーブン内壁面の汚染を効果的に防止
し得る油脂分解性塗膜に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention is applied to the inner wall surface of a metal molded article, such as an electronic oven, an electric oven, a gas oven, and an electronic steam oven, to prevent the inside of the oven from being exposed to oily fumes generated from fats and oils during heating and cooking. The present invention relates to a fat-decomposable coating film that can effectively prevent wall contamination.

周知のように電子オーブン、電気オーブン、ガスオーブ
ンの類は、鳥肉、牛肉、豚肉その他油脂加工品などの調
理頻度が多ければ多い程加熱による前記油脂力旺品類か
ら発生する多量の油脂性フユームによってオーブン内壁
面の汚染されるのが常であるが、その汚染度はオーブン
の使用頻度に比例して激しく時にはこれが経時的に堆積
状に付着し、しかもこの堆積物が加熱によって再溶融す
ると、これがオーブンの内壁面を流れて壁面の汚染度を
一層不良ならしめる。
As is well known, the more frequently electronic ovens, electric ovens, and gas ovens cook poultry, beef, pork, and other oil-based products, the more oil-based fumes will be generated from the oil-rich products due to heating. The inner wall surface of the oven is usually contaminated by contamination, and the degree of contamination is proportional to the frequency of use of the oven, and sometimes this contamination builds up in the form of deposits over time.Moreover, when this deposit is remelted by heating, This flows along the inner wall surface of the oven, making the wall surface even more contaminated.

このことは従来しばしば経験されて来たところである。This has often been experienced in the past.

このためオーブンの内壁面に発生するか\る現象を防止
しようとする目的で、油脂類や炭化水素化合物を分解す
る機能をもつ触媒(以下分解能触媒という)として知ら
れるFe ,Co,Mn ,Crなどの金属酸化物粉体
をバインダー例えば(イ)ほうろう系物質例えばけい石
、長石、はう砂などの調合物、(ロ)アルミほうろう系
物質例えばリチウム、ほう素−けい酸などの調合物、(
ハ)水ガラス系物質例えばアルカリシリケート、アルキ
ルシリケートなどを主材とする調合物と\もに混練し、
この混線物を予め所望するオーブンの内壁面にコーティ
ングするという幾つかの方法が案出され知られている。
Therefore, in order to prevent this phenomenon from occurring on the inner wall surface of the oven, we introduced catalysts such as Fe, Co, Mn, and Cr, which are known as catalysts that have the function of decomposing oils and fats and hydrocarbon compounds (hereinafter referred to as decomposition catalysts). (a) Preparations of enamel-based materials such as silica, feldspar, silica, etc., (b) Preparations of aluminum-enamel materials such as lithium, boron-silicic acid, etc.; (
c) Kneading together with a preparation mainly containing a water glass-based substance such as alkali silicate, alkyl silicate, etc.
Several methods have been devised and known in which the desired inner wall surface of the oven is coated with this crosstalk in advance.

しかしながらこのような方法は、前記油脂加工品類の加
熱によって生ずる汚染は一応防止されはするもの\なお
次の点で各種の難点が指摘されている。
However, although such a method can prevent the contamination caused by heating of the oil and fat processed products, various drawbacks have been pointed out as follows.

すなわち(イ)においては調合物塗膜の形成に当って8
00℃以上の高温処理を必要とすることから、基材金属
(以下基材という)の種類および厚さなどに制約があり
、またO)にあっては塗膜形成温度が540〜550℃
と前記(イ)より遥かに低温処理ですむことから実用上
有利ではあるが、基材としてアルミニウムまたはアルミ
ニウム合金類もしくはアルミニウムコーティングを施し
た鉄鋼板でなければならないという基材面での制約があ
る。
In other words, in (a), 8
Since high temperature treatment of 00°C or higher is required, there are restrictions on the type and thickness of the base metal (hereinafter referred to as base material), and in case of O), the coating film formation temperature is 540 to 550°C.
Although it is practically advantageous because it requires much lower temperature treatment than (a) above, there are restrictions in terms of the base material, such as the base material must be aluminum, aluminum alloys, or steel plate coated with aluminum. .

さらに(ハ)については、(イ),@の如く特に基材面
での選択性がなく260℃以下の低温処理で所望の塗膜
が得られるが、適用基材の表面処理条件の如何によって
は塗膜の付着が悪く、かつ塗膜にクラツクを生じて塗膜
が剥離する欠点があるほか吸水性が大きく塗膜が加水分
解されるという欠陥がある。
Furthermore, regarding (c), as in (a) and @, there is no particular selectivity in terms of the substrate, and the desired coating film can be obtained by low-temperature treatment below 260°C, but it depends on the surface treatment conditions of the applied substrate. It has the drawback that the coating film does not adhere well and cracks occur in the coating film, causing the coating film to peel off.In addition, it has a drawback that the coating film is hydrolyzed due to its high water absorption.

しかも塗膜硬度において前記二者(イ),(0)に劣る
という欠点をも併有している。
Moreover, it also has the disadvantage of being inferior to the above two methods (A) and (0) in terms of coating hardness.

また上記とは別に前記(イ),(ロ),(ハ)の方法は
、コーテイング加工時にいずれもコーティング材料が水
を分散剤としているため、この塗液を基材面にコーティ
ングすると、大気中の温、湿度変化により塗膜表面が均
整化された多孔状態となりにくく、このため均整化した
多孔塗膜を得るためには、常に大気中の温、湿度に対応
した最適のコーティング条件を選択しなければならない
という欠点を共有している。
In addition to the above, methods (a), (b), and (c) all use water as a dispersant in the coating material during the coating process. Changes in temperature and humidity in the atmosphere make it difficult for the coating surface to become porous and evenly distributed. Therefore, in order to obtain a porous coating with even pores, it is necessary to always select the optimal coating conditions that correspond to the temperature and humidity in the atmosphere. They share the shortcomings of having to be.

こ\において本発明者等は上記の点に立脚して前記の諸
点を改善すべく種々研究の結果、Al203の単独粉体
またはAl203とT + 0 2の2種あるいはAl
203とZrO2の2種もしくはAl203,TiO2
,ZrO2の3種の混合粉体のそれぞれにFe203,
Co304,MnO2,Cr203から選ばれる2種以
上の粉体を添加してなる混合物を基材金属表面に溶射す
ることによって所望する均整化した多孔状態としての塗
膜(多孔性塗膜)が得られ、油脂類や水を吸収し易くな
り、吸収された油脂分は分解能触媒の存在により分解さ
れ、しかも良好な塗膜硬度(モース)9〜12を有する
こと等を実験的に見出し本発明を完威した。
Based on the above-mentioned points, the inventors of the present invention have conducted various studies to improve the above-mentioned points.
203 and ZrO2 or Al203, TiO2
, Fe203, ZrO2 to each of the three mixed powders.
By spraying a mixture of two or more powders selected from Co304, MnO2, and Cr203 onto the base metal surface, a coating film (porous coating film) with a desired uniform porous state can be obtained. The present invention was completed by experimentally discovering that oils and fats and water are easily absorbed, the absorbed oils and fats are decomposed by the presence of a decomposition catalyst, and the coating film has a good hardness (Mohs) of 9 to 12. Intimidated.

本発明において、Al203(粉体)とFe203,C
o304,MnO2,Cr203(いずれも粉体)から
選ばれる2種以上の粉体との混合物を溶射剤として使用
することは、(イ)Al203を単独使用してこれを基
材面に溶射(所定温度)すると、その塗膜は大気中の温
、湿度変化に殆んど無関係に均整化した良好硬度(モー
ス)11〜12を有する多孔性塗膜となって油脂類や水
を吸収し易くなることに基くもので、これに前記分解能
触媒を介在せしめたことにより油脂分の分解を効果的な
らしめるためであり、(口)上記(イ)において、Al
203単独に代えA l2 0 3 + T s 02
の両者を併用することは、TiO2を単独使用してこれ
を(イ)同様基材に溶射すると大気中の温、湿度変化に
殆んど無関係に多孔性塗膜として得られるが、Al20
3,ZrO2単用時に比べ硬度において若干劣るほか弾
性を有して多孔の生成が単位当り上記Al203,Zr
O2の場合に比べて少ないためAl203を混用して多
孔度の向上と塗膜硬度の上昇(モース:9〜10)を図
ると\もに、油脂分の分解を良好ならしめるよう配慮し
たことによる。
In the present invention, Al203 (powder) and Fe203,C
Using a mixture of two or more powders selected from o304, MnO2, and Cr203 (all powders) as a thermal spraying agent means (a) using Al203 alone and spraying it onto the base material surface (in a specified manner). temperature), the coating film becomes a porous coating film with a well-balanced hardness (Mohs) of 11 to 12, almost independent of changes in atmospheric temperature and humidity, and easily absorbs oils, fats, and water. The purpose is to effectively decompose fats and oils by interposing the decomposition catalyst therein.
Instead of 203 alone, A l2 0 3 + T s 02
If TiO2 is used alone and thermally sprayed onto the substrate in the same manner as in (a), a porous coating film can be obtained almost unrelated to atmospheric temperature and humidity changes, but Al20
3. In addition to being slightly inferior in hardness compared to when ZrO2 is used alone, it also has elasticity and pore formation per unit.
Since the amount is less than that of O2, Al203 is mixed to improve porosity and coating hardness (Mohs: 9 to 10). .

(ハ)上記0)において、TiO2に代えZrO2を用
いることは、ZrO2の単独での溶射使用による塗膜は
前記同様温、湿度変化に殆んど無関係に得られ、硬度上
特に問題はないが、溶射時に物性上不安定であるためA
l203を混用してその補完を図り、同時に油脂分の分
解を良好ならしめるようにしたことによる。
(c) In 0) above, using ZrO2 instead of TiO2 means that the coating film obtained by thermal spraying ZrO2 alone can be obtained almost unrelated to changes in temperature and humidity as described above, and there is no particular problem in terms of hardness. , A because it is unstable due to physical properties during thermal spraying.
This is due to the fact that 1203 is used in combination to supplement this and at the same time improve the decomposition of fats and oils.

(ニ)Al203,TiO2,ZrO23者の混合物を
使用することは、その溶射時においてそれら3者の単用
時における特失点を相互に補完し合って得られる塗膜に
前記同様温、湿度変化に殆んど無関係に所望する均整化
した多孔性と硬度とを保持させ、油脂類や水の吸収度を
良好ならしめ、しかも油脂類の分解を良好ならしめるよ
う配慮したXめのものである。
(d) The use of a mixture of Al203, TiO2, and ZrO2 means that during thermal spraying, the special points of these three when used alone are mutually complemented, and the resulting coating film is resistant to changes in temperature and humidity as described above. It is an X-grade material that is designed to maintain the desired uniform porosity and hardness almost independently, to improve the absorption of fats and oils, and to improve the decomposition of fats and oils.

また本発明に使用する分解能触媒として、,Fe203
rCo304,MnO2,Cr203から選ばれる2
種以上の混合粉体を用いることは、それら酸化物の油脂
分解能が、油脂の種類や分解温度および分解時間などの
点でそれぞれ差があるため、広範囲における油脂の種類
に対応できるよう2種以上を混用することによって被吸
収油脂類の分解を効果的ならしめるようにしたことによ
る。
In addition, as a resolution catalyst used in the present invention, ,Fe203
2 selected from rCo304, MnO2, Cr203
The reason for using a mixed powder of two or more kinds of oxides is that the ability of these oxides to decompose fats and oils differs in terms of the type of fats and oils, decomposition temperature, decomposition time, etc. This is because the decomposition of absorbed fats and oils is made more effective by mixing them.

このように本発明は、上記(イ), (0) ,(ハ)
,(ニ)のいずれの方法によっても所望する塗膜を容易
に得ることができる(実施例および別表参照)。
In this way, the present invention provides the above (a), (0), and (c).
A desired coating film can be easily obtained by any of the methods (d) (see examples and attached table).

本発明に使用する基材としては、公知の鉄鋼、ステンレ
ス、アルミニウムまたはアルミニウム合金類およびアル
ミニウムで表面コーティングした鉄鋼板などを任意に使
用して満足される。
As the base material used in the present invention, any known steel, stainless steel, aluminum or aluminum alloys, steel plate whose surface is coated with aluminum, etc. may be used.

しかして上記において前記金属酸化物の混合粉体をその
対応する金属面に溶射するには、公知のプラズマ方式ま
たはガス方式のいずれによってもよいが、高速溶射の可
能なプラズマ方式によることが能率上ガス方式によるよ
り遥かに有利である。
However, in order to thermally spray the mixed powder of the metal oxide onto the corresponding metal surface, any known plasma method or gas method may be used, but it is preferable to use the plasma method, which can perform high-speed thermal spraying, in terms of efficiency. It is far more advantageous than the gas method.

溶射条件としては適用する粉体粒度、溶射ガスの種類、
流速、流量および溶射距離などの諸要件の考慮されるこ
とはいうまでもないが、本発明は従来知られた前記方法
(分解能触媒とバインダーの混練物使用)と異なり、大
気中の温、湿度変化に全く影響されることがないので、
常に溶射条件に対応した一定の均整化した多孔質塗膜を
容易にかつ能率的に得ることができる。
Thermal spraying conditions include the particle size of the powder to be applied, the type of thermal spraying gas,
Needless to say, various requirements such as flow rate, flow rate and thermal spraying distance are taken into consideration, but unlike the previously known method (using a mixture of a decomposition catalyst and a binder), the present invention takes into consideration atmospheric temperature and humidity. Because it is completely unaffected by change,
It is possible to easily and efficiently obtain a uniform porous coating film that always corresponds to the thermal spraying conditions.

本発明によって得た塗膜が如何なる理由によって油脂類
や水を吸収し易くなるのかは理論的に定かでないが、本
発明者等の実験によれば、溶射剤としてある粒度(10
0〜200メツシ)の前記金属酸化物の混合粉体(実施
例参照)が基材面に溶射されると、温、湿度変化に影響
されることなく均整化した多孔質塗膜の生成される場合
溶射剤組成中のAl,Ti,Zrなどの金属酸化物によ
って活性化された塗膜の多孔性によって生起される吸収
能により油脂類や水を多孔質面に吸収し易くなると同時
に、溶射剤中に存在する分解能触媒によって油脂分が分
解されるために、油脂類の吸収と分解とが次々と効果的
に行われるものと思われる。
It is not theoretically clear why the coating film obtained by the present invention absorbs oils and fats and water easily, but according to the experiments of the present inventors, a certain particle size (10
When the mixed powder of the metal oxides (0 to 200 mesh) (see examples) is thermally sprayed onto the substrate surface, a uniform porous coating film is generated without being affected by changes in temperature and humidity. In this case, the absorption ability caused by the porosity of the coating film activated by metal oxides such as Al, Ti, and Zr in the thermal spray composition makes it easier to absorb oils, fats, and water onto the porous surface, and at the same time, the thermal spray agent It is thought that the fats and oils are effectively absorbed and decomposed one after another because the fats and oils are decomposed by the decomposition catalyst present therein.

このように本発明は、溶射剤としてAl203の単独粉
体またはAl203とTiO2の2種あるいはAl20
3とZrO2の2種もしくはA 11 2 03 t
T ] 02 tZrO2の3種の混合粉体のそれぞれ
にFe203,Co304,MnO2,Cr203から
選ばれる2種以上の粉体を添加してなる混合物を基材面
に溶射することにより、生成塗膜に油脂類や水を吸収し
易くするとともに、油脂分の分解を効果的ならしめ併せ
て塗膜強度の上昇を図ったところに特徴と意義がある。
In this way, the present invention uses a single powder of Al203, a combination of Al203 and TiO2, or a powder of Al203 as a thermal spray agent.
3 and ZrO2 or A 11 2 03 t
T ] 02 By spraying a mixture obtained by adding two or more powders selected from Fe203, Co304, MnO2, and Cr203 to each of the three mixed powders of tZrO2 onto the base material surface, the resulting coating film can be It is characterized and significant in that it makes it easier to absorb fats and oils and water, and also effectively decomposes fats and oils, thereby increasing the strength of the coating film.

以上の説明から判るように本発明は、前記する特性を有
して所望する効果を遺憾なく発揮するものであるから、
これを例えば電子オーブン、電気オーブン、ガスオーブ
ンおよび電子一蒸気オーブンなどの内壁面に予めコーテ
ィングする時は、該オーブンによって油脂加工品類の加
熱調理に当って発生する油脂性フユームや水を効果的に
吸収する一方吸収時に油脂分を分解して油脂性フユーム
によるオーブン内壁面の汚染を防止することができる。
As can be seen from the above description, the present invention has the above-mentioned characteristics and fully exhibits the desired effects.
For example, when pre-coating this on the inner wall surface of an electronic oven, electric oven, gas oven, or electronic steam oven, it can effectively remove oily fumes and water generated during cooking of oil and fat processed products in the oven. While absorbing the oil, it also decomposes the oil and fat content during absorption, thereby preventing contamination of the inner wall surface of the oven by oily fumes.

特にこのことは前記オーブンなどによる油脂加工品類の
調理頻度の多い場合において著効があり、従来の如く発
生する油脂性フユームに起因する堆積汚染物の発生が皆
無で、常時清浄なオーブンの内壁面を維持することがで
きる。
This is particularly effective in cases where oil-based processed products are frequently cooked in the oven, etc., and there is no accumulation of contaminants caused by oil-based fumes that occur in the past, and the inner wall surface of the oven is always clean. can be maintained.

従ってこの面からする実用上の効果は大きく、その適用
範囲もまた大きい。
Therefore, the practical effects from this aspect are large, and the scope of its application is also large.

以下実施例によって本発明をさらに具体的に説明する。The present invention will be explained in more detail below with reference to Examples.

実施例 1 ステンレス板( 1 0 0mmX 1 0 0mmX
1.J’2m)の表面を常法によって脱脂するとXも
に#60モランダム(商品名:昭和電工社製)によりブ
ラスト加工を施した後下記組戒からなる金属酸化物粉体
混合物をプラズマ溶射機(プラズマダイン社製)により
アルゴンーヘリウムガスを用いてプラスト加工面に膜厚
100ミクロンとなる如く溶射し、均一多孔性(平均孔
径約10ミクロン)塗膜を得る。
Example 1 Stainless steel plate (100mmX100mmX
1. The surface of the J'2m) was degreased by a conventional method, then blasted with #60 Morundum (product name: Showa Denko), and then a metal oxide powder mixture consisting of the following composition was applied using a plasma spraying machine ( Plasma Dyne Co., Ltd.) was used to thermally spray the plasted surface using argon-helium gas to a film thickness of 100 microns to obtain a uniformly porous coating (average pore diameter of approximately 10 microns).

次いでこのステンレス板を250℃に加熱保持し、その
平面適所に植物油(紅花油)の一滴を滴下したところ該
油滴は2分30秒で完全に多孔性塗膜に吸収され、かつ
経時的(1.5分後)には油滴吸収時に見られた油にじ
みがきれいに消失して非滴下部分と全く同様視され、区
別できず満足すべきものであった。
Next, this stainless steel plate was heated and held at 250°C, and a drop of vegetable oil (safflower oil) was dropped onto the appropriate place on the surface. After 1.5 minutes), the oil smudge that had appeared during the absorption of the oil droplets had completely disappeared, and the area looked exactly the same as the non-droplet area, which was satisfactory as it was indistinguishable.

(組成) Al203 (100メツシ)100部(重量MnO2
(120 〃 ) 60〃 Co304 (120 〃 ) 40ll実施例 2 30ミクロンアルミナイズド鋼板(100imX1 0
0milF’!m)の表面を常法によって脱脂し、レー
スバフにより研磨後該面に下記組成からなる金属酸化物
粉体混合物をプラズマ方式により膜厚120ミクロンと
なる如く溶射し所望する多孔性(平均孔径約8ミクロン
)塗膜を得る。
(Composition) Al203 (100 mesh) 100 parts (weight MnO2
(120〃) 60〃Co304 (120〃) 40ll Example 2 30 micron aluminized steel plate (100imX10
0milF'! After degreasing the surface of (m) using a conventional method and polishing it with a lace buff, a metal oxide powder mixture having the following composition was sprayed onto the surface using a plasma method to a film thickness of 120 microns to obtain the desired porosity (average pore diameter of approximately 8. micron) to obtain a coating film.

次いでこのアルミナイズド鋼板を実施例1と同じ条件下
において同様の試験に供した。
Next, this aluminized steel plate was subjected to the same test under the same conditions as in Example 1.

その結果は実施例1同様極めて満足すべきものであった
As in Example 1, the results were extremely satisfactory.

(組成) Al203 (150メツシ) 40部 Tt02 (120 ’t ) 40ttMn
02 (120 tt ) 70uCo 3
04 ( 1 2 0 tt ) 2 0
ttFe203 (120 〃 ) 10〃 実施例 3 ,2.テ7 レス板( 1 0 0mm×1 0 0m
m×i.J’!m)の表面を実施例1と同様に処理後該
面に、下記組成からなる金属酸化物粉体混合物を実施例
1と同様に溶射して70ミクロンの多孔性(平均孔径約
10ミクロン)塗膜を得る。
(Composition) Al203 (150 mesh) 40 parts Tt02 (120 't) 40ttMn
02 (120 tt) 70uCo 3
04 (1 2 0 tt) 2 0
ttFe203 (120〃) 10〃 Example 3, 2. Te7 Ress board (100mm x 100m
m×i. J'! After treating the surface of m) in the same manner as in Example 1, a metal oxide powder mixture having the following composition was thermally sprayed in the same manner as in Example 1 to coat the surface with 70 micron porosity (average pore diameter of approximately 10 microns). Obtain a membrane.

次いでこのステンレス板を実施例1と同条件下において
同様の試験に供したところ、極めて満足すべき前例同様
の結果を得た。
This stainless steel plate was then subjected to the same test under the same conditions as in Example 1, and very satisfactory results similar to those of the previous example were obtained.

(組成) Al203 T i0 2 Z r 0 2 MnO2 Co304 以下同じ) 100部 2〃 1 5 tt 1 0 0 u 50 〃 (180メツシ) (180 tt ) (180 u ) (100 n ) (100 u ) 実施例 4 30ミクロンFルミナイズド鋼板(100mix 1
0 0mm×1. mm)の表面を実施例2と同様に
処理した該面に下記組成からなる金属酸化物粉体混合物
をプラズマ方式により膜厚140ミクロンとなる如く溶
射し所望する多孔性(平均孔径約10ミクロン)塗膜を
得る。
(Composition) Al203 T i0 2 Z r 0 2 MnO2 Co304 Same below) 100 parts 2 1 5 tt 1 0 0 u 50 (180 mesh) (180 tt ) (180 u) (100 n) (100 u) Implementation Example 4 30 micron F luminized steel plate (100 mix 1
0 0mm x 1. mm) was treated in the same manner as in Example 2, and a metal oxide powder mixture having the following composition was thermally sprayed using a plasma method to a film thickness of 140 microns to obtain the desired porosity (average pore diameter of approximately 10 microns). Obtain a coating.

次いでこのアルミナイズド鋼板を実施例1と同条件下に
同様の試験に供したところ、該油滴は1分50秒で完全
に多孔性塗膜に吸収され、54秒後には油滴吸収時に見
られた油にじみが全く消失し非滴下部分と同様視され満
足すべき結果を示した。
Next, this aluminized steel sheet was subjected to the same test under the same conditions as in Example 1, and the oil droplets were completely absorbed into the porous coating film in 1 minute and 50 seconds, and after 54 seconds, the oil droplets were completely absorbed into the porous coating. The oil smear completely disappeared and was seen as the same as the non-dropped area, indicating a satisfactory result.

(組成) Al203 (150メツシ) 100部Mn02
(120 tt ) 70ttCr203 (
150 〃 ) 70〃ZrO2 (150 〃
) 35〃上記は本発明の代表実施例として掲げたも
のであって本実施例に限定されるものではない。
(Composition) Al203 (150 mesh) 100 parts Mn02
(120 tt) 70ttCr203 (
150 〃 ) 70〃ZrO2 (150 〃
) 35 The above description is given as a representative embodiment of the present invention, and the present invention is not limited to this embodiment.

以下本発明品と従来品との各塗膜効果を対比するため、
それら両者を下記同一条件の下に所要試験に供した。
Below, in order to compare the coating film effects of the present invention product and conventional product,
Both of them were subjected to the required tests under the same conditions below.

(1)供試片として本発明になる実施例l(基材ステン
レス、膜厚100,am)、同2(基材アルミナイズド
鋼板、膜厚120μm)および同3(基材ステンレス、
膜厚70μm)、同4(基材アルミナイズド鋼板、膜厚
140μrrL)の各5個と、対応する従来品として別
表■(基材ステンレス、膜厚100μm)、同■(基材
アルミナイズド鋼板、膜厚120μm)および同■(基
材低炭素鋼、膜厚70μm)の各5個(寸法は対応する
前記実施例の場合に準ずる)を使用した。
(1) Example 1 (base material stainless steel, film thickness 100, am), Example 2 (base material aluminized steel plate, film thickness 120 μm) and Example 3 (base material stainless steel, film thickness 120 μm) according to the present invention as test pieces
5 each of 4 (base material aluminized steel plate, film thickness 140 μrrL), and the corresponding conventional products listed in Appendix ■ (base material stainless steel, film thickness 100 μm), same ■ (base material aluminized steel plate, Five pieces each (dimensions are the same as in the corresponding example) were used.

(2)試験は本発明品、従来品の各供試片を所定温度(
250℃)に加熱保持した後塗膜面に紅花油の一滴を滴
下(ピペット使用)シ、これが塗膜に吸収し終るまでの
滴下時からの所要時間、吸収後に残る紅花油跡の大きさ
(φ)および吸収後における紅花油の分解(分解能触媒
による)に?って発生するフユーム(淡紫煙)の発生か
ら終るまでの時間並にその後の塗膜面の状態と塗膜硬度
とを測定、確認することをもって要旨とした。
(2) In the test, each specimen of the present invention product and the conventional product was heated to a predetermined temperature (
After heating and holding at 250℃, add a drop of safflower oil (using a pipette) to the coating surface, and check the time required from the time of dropping until it is fully absorbed into the coating, and the size of the safflower oil mark that remains after absorption ( φ) and decomposition of safflower oil after absorption (by decomposition catalyst)? The main purpose of this study was to measure and confirm the time from the generation of fume (pale purple smoke) until its end, as well as the subsequent state of the coating surface and coating hardness.

本試験結果によれば、終局的に本発明になる各供試片塗
膜は、該面に紅花油滴下後の油分解後においてその跡を
全く残すことがなく、シかもか\る試験を同一供試片の
同一場所に繰返し16回行っても跡が全く認められず、
また良好な塗膜硬度(モース)9〜12を示すのに対し
、別表掲示の従来品の,■では本発明品と同様に同一供
試片の同一場所に紅花油の滴下を繰返し16回行ったと
ころ、■では毎回カーボンの膜状物が認めらへまた■で
は目視可能な膜秋物は認められなかったが、毎回油の滴
下跡がしみ状となって残るのが確認された。
According to the results of this test, the coating film of each test piece that ultimately became the present invention did not leave any traces after oil decomposition after dropping safflower oil on the surface, and it was possible to pass the test. No trace was observed even when the same spot on the same specimen was repeatedly tested 16 times.
In addition, while it shows a good coating hardness (Mohs) of 9 to 12, in the case of the conventional product (■) listed separately, drops of safflower oil were repeatedly applied to the same place on the same specimen 16 times in the same way as the inventive product. As a result, a carbon film was observed every time in ■.Although no visible film fall was observed in ■, it was confirmed that oil drip marks remained in the form of stains every time.

さらに■にあっては上記同様の繰返し試験において、5
回の繰返しでもはや油の吸収力が全くなく油滴として塗
膜面に残留することが明瞭となった\め、6回以降の油
の滴下はこれを中止せざるを得なかった。
Furthermore, in the case of ■, in the same repeated test as above, 5
After repeating this process, it became clear that the oil had no absorption capacity at all and remained on the coating surface as oil droplets, so we had no choice but to stop dropping the oil after the 6th time.

しかも塗膜硬度(モース)は3〜7で本発明品の34〜
58饅に過ぎないことが確認された(別表「吸収跡有無
および塗膜硬度」参照)。
Moreover, the coating film hardness (Mohs) is 3 to 7, and the inventive product is 34 to 7.
It was confirmed that the amount was only 58% (see attached table "Presence or absence of absorption marks and coating film hardness").

ちなみに上記従来品■〜■の製法(大要)、戒分につい
て述べると、■は鉄鋼表面に、SiO2,K20,B2
03,Al203,CaO,NaSiF,BaO,T
i02などを戊分とするフリットとFe203,MnO
2などの混合物を塗布し750〜800℃で焼或したも
のであり、■はアルミニウムまたはその合金表面に、S
iO,B203,Na20,Al203,L i2 0
t K2 0 s C a Oなどを成分とするフリ
ットとFe203,MnO2などの混合物を塗布し53
0〜570℃で焼或したものであり、■はアルカリシリ
ケートを主成分とする粘稠液に、該アルカリシリケート
の硬化剤のZnO,CaOなどFe203,MnOなど
の混合粉末を加え攪拌後との液をスプレーガンを介して
金属板に塗布し260〜300℃で焼成したものである
By the way, if we talk about the manufacturing method (outline) and precepts of the conventional products ■~■ above, ■■ is made of SiO2, K20, B2 on the steel surface.
03, Al203, CaO, NaSiF, BaO, T
Frit containing i02 etc. and Fe203, MnO
2 and other mixtures were applied and annealed at 750 to 800°C.
iO, B203, Na20, Al203, L i2 0
A mixture of a frit containing tK20sC a O, etc., and Fe203, MnO2, etc. is applied53.
It was calcined at 0 to 570℃, and () is a viscous liquid mainly composed of alkali silicate, mixed powder of ZnO, CaO, Fe203, MnO, etc., which is a curing agent for the alkali silicate, is added and stirred. The liquid was applied to a metal plate via a spray gun and fired at 260 to 300°C.

上表から明らかなように、本発明品は従来品の欠点を解
消したすぐれた効果を発揮するものであるから、これが
関連産業に及ぼす実益は特に高く評価される。
As is clear from the above table, the product of the present invention exhibits excellent effects that eliminate the drawbacks of conventional products, and therefore, the practical benefits it brings to related industries are particularly highly evaluated.

Claims (1)

【特許請求の範囲】[Claims] 1 人l203の単独粉体またはAl203とT t
0 2の2種あるいはAl203とZrO2の2種もし
くはAl203,TiO2,ZrO2の3種の混合粉体
のそれぞれにF e2 o3) Co3 04 t M
n021 C r203から選ばれる2種以上の粉体を
添加してなる混合物を基材金属表面に溶射したことを特
徴とする油脂分解性塗膜。
1 person l203 single powder or Al203 and T t
F e2 o3) Co3 04 t M
An oil/fat decomposable coating film characterized in that a mixture of two or more powders selected from n021 C r203 is thermally sprayed onto the surface of a base metal.
JP53104176A 1978-08-26 1978-08-26 Oil-degradable coating film Expired JPS5848217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53104176A JPS5848217B2 (en) 1978-08-26 1978-08-26 Oil-degradable coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53104176A JPS5848217B2 (en) 1978-08-26 1978-08-26 Oil-degradable coating film

Publications (2)

Publication Number Publication Date
JPS5531161A JPS5531161A (en) 1980-03-05
JPS5848217B2 true JPS5848217B2 (en) 1983-10-27

Family

ID=14373702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53104176A Expired JPS5848217B2 (en) 1978-08-26 1978-08-26 Oil-degradable coating film

Country Status (1)

Country Link
JP (1) JPS5848217B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833031A (en) * 1981-08-20 1983-02-26 Hitachi Heating Appliance Co Ltd Steam oven
US20030039856A1 (en) 2001-08-15 2003-02-27 Gillispie Bryan A. Product and method of brazing using kinetic sprayed coatings
US6685988B2 (en) 2001-10-09 2004-02-03 Delphi Technologies, Inc. Kinetic sprayed electrical contacts on conductive substrates
US6896933B2 (en) 2002-04-05 2005-05-24 Delphi Technologies, Inc. Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
US7108893B2 (en) 2002-09-23 2006-09-19 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
US6924249B2 (en) * 2002-10-02 2005-08-02 Delphi Technologies, Inc. Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
US6872427B2 (en) 2003-02-07 2005-03-29 Delphi Technologies, Inc. Method for producing electrical contacts using selective melting and a low pressure kinetic spray process
US7351450B2 (en) 2003-10-02 2008-04-01 Delphi Technologies, Inc. Correcting defective kinetically sprayed surfaces
US7335341B2 (en) 2003-10-30 2008-02-26 Delphi Technologies, Inc. Method for securing ceramic structures and forming electrical connections on the same
US7024946B2 (en) 2004-01-23 2006-04-11 Delphi Technologies, Inc. Assembly for measuring movement of and a torque applied to a shaft
US7674076B2 (en) 2006-07-14 2010-03-09 F. W. Gartner Thermal Spraying, Ltd. Feeder apparatus for controlled supply of feedstock

Also Published As

Publication number Publication date
JPS5531161A (en) 1980-03-05

Similar Documents

Publication Publication Date Title
JPS5848217B2 (en) Oil-degradable coating film
US7696128B2 (en) Catalytic coating for the self-cleaning of ovens and stoves
CA1042414A (en) Catalytic coating composition for cooking devices
GB1592118A (en) Self-cleaning coating
JPS5919052B2 (en) frit composition
US3718498A (en) Catalytic composition
GB2037271A (en) Surface coatings capable of decomposing oil
US20100028551A1 (en) Method for forming an inorganic coated layer having high hardness
US3829326A (en) Glasslined product and a process for glasslining
CN1962056A (en) Catalyst for removing oil fume and preparation method thereof
US3549419A (en) Catalytic method for cleaning soiled oven surfaces
JPH0985087A (en) Poisoning-resistant pretreatment agent and treatment of exhaust gas of factory
JPH0338254A (en) Heat-resisting film
JPS5854613B2 (en) Film with oxidation catalytic action
JPS5915016B2 (en) Coating material with catalytic action
KR100820264B1 (en) Coating film for oil recovery and coating composition for forming the coating film
CN115305464B (en) Surface treatment method of aluminum alloy cooker and aluminum alloy cooker
JPS61133145A (en) Coating composition having catalytic action
JPS6212265B2 (en)
JP2758032B2 (en) Coating material and cooking device equipped with coating material
JPS5915017B2 (en) Coated surface with catalytic action
JPS60102940A (en) Self-purifying coated body
JPH0813334B2 (en) Self-cleaning coated surface
JPS60102941A (en) Self-purifying coated body
JPS5898171A (en) Method for forming self-purifying coating layer