JP3710528B2 - Catalyst poison remover, factory exhaust gas treatment method and flow reactor using the same - Google Patents

Catalyst poison remover, factory exhaust gas treatment method and flow reactor using the same Download PDF

Info

Publication number
JP3710528B2
JP3710528B2 JP26649595A JP26649595A JP3710528B2 JP 3710528 B2 JP3710528 B2 JP 3710528B2 JP 26649595 A JP26649595 A JP 26649595A JP 26649595 A JP26649595 A JP 26649595A JP 3710528 B2 JP3710528 B2 JP 3710528B2
Authority
JP
Japan
Prior art keywords
catalyst poison
exhaust gas
remover
poison remover
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26649595A
Other languages
Japanese (ja)
Other versions
JPH0985087A (en
Inventor
美樹 中野
亮二 相川
秀雄 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Universal Co Ltd
Original Assignee
Nikki Universal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Universal Co Ltd filed Critical Nikki Universal Co Ltd
Priority to JP26649595A priority Critical patent/JP3710528B2/en
Publication of JPH0985087A publication Critical patent/JPH0985087A/en
Application granted granted Critical
Publication of JP3710528B2 publication Critical patent/JP3710528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は有機化合物および/またはタール状の重質分を含有する工場排ガス中に含まれる気体状の触媒毒を有機化合物および/またはタール状の重質分に阻害されることなく除去できる排ガス中の触媒毒除去剤およびそれを用いた工場排ガスの処理方法および流通式反応装置に関する。
【0002】
【従来の技術】
工場排ガス中の悪臭成分や可燃性有害物質はバーナーを用いる直燃方式や、触媒を用いて接触酸化処理する触媒式処理法で処理されている。直燃方式は、燃料を必要とし運転費用が多大になる。一方、これらの諸経費を節約できる触媒式処理法が従来より広く利用されている。
【0003】
印刷工場、塗装工場またはコーター工場等からの工場排ガスには、工場排ガス処理に用いられる触媒、特に白金等の貴金属触媒の触媒毒となる有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒が気体の状態で含有されている。
工場排ガスをフィルター、サイクロン、スクラッバー等により前処理して、ダストやタール等の固形分をを物理的に除去してから接触反応装置に導入することも、従来からしばしば行われている。ところが、工場排ガス中に気体の状態で含有されている有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒は、前述の前処理手段によって効果的に除去することは極めて困難である。しかも、これらの触媒毒は微量でも触媒の性能を著しく低下させるため、触媒を使用する接触的処理方法は、これらの気体状触媒毒を含む工場排ガスの処理には従来適さないと一般的に考えられていた。
【0004】
そこで、本出願人は、気体状触媒毒を含有する排ガスの処理における上記のような接触的処理方法の弱点を克服し、前記気体状触媒毒を効率よく除去する新規な排ガス前処理方法を提供することを目的として、排ガスに含まれる前記気体状触媒毒物質を除去する方法として、排ガスを150℃以上に加熱してアルミナ充填層に通すことにより気体状の有機金属化合物(有機ヒソ、有機すずなど)、有機シリコーンあるいは有機リン化合物等の触媒毒を除去する方法を特公昭61−20333号公報において提案した。
さらに、印刷工場、塗装工場またはコーター工場等からの工場排ガスには、有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質が、多量に含有されている。これらの付着性、粘着性の高い物質は、工場排ガスの温度が低いと前処理剤に付着し、堆積し、さらに熱変性する。この堆積物は、前処理剤の表面を覆い、前処理剤の有機金属化合物、有機シリコーン化合物、有機リン化合物等の気体状の触媒毒の処理能力を阻害し著しく低下させるのみならず、蓄積した堆積物は、発火点が比較的に低いため、処理工場排ガスの温度変化によって急激に発火燃焼し、発生する高熱によって後段の工場排ガス処理用触媒を毀損し著しく活性を低下させる。さらには、火災を起こす恐れがあり安全上からも好ましくない。
これらの付着性、粘着性の高い物質は、工場排ガスの温度を低下させ、前もって例えば、金網、活性炭等に析出させて除去することもできるが、再び工場排ガス温度を工場排ガス処理温度まで昇温する必要があり、別途の前処理設備や無駄なエネルギーが必要となる。また、工場排ガス温度を400℃以上に保てば、付着性、粘着性の高い物質の前処理剤や触媒への付着を低減することができるが、このためには別途のエネルギーを必要とし不経済である。このため、工場排ガスの温度を400℃を超えない運転条件で工場排ガスを処理しても、前記付着性、粘着性の高い物質の悪影響を前処理剤に与えない工場排ガス処理技術の開発が待望されている。
例えば、特公昭62−6843号公報には、室内空気を室外へ排出させる空気路に、下記化合物CaO、Na2O、K2O、MgO、TiO2、NiO、Fe23、Co23、Cr23、Ag2O、K2CO3、CaSiO3、CaAl24、MgSiO3、KAlO2、BaSiO3、BaTiO3、Li2SiO3、NaCO3,Ni−MgO、Ca(OH)2の群から選んだ1種以上の化合物を含む多孔層を位置させた換気装置が開示されており、ケイ酸カルシュウムとアルミン酸石灰をを主成分として含むアルミナセメントの造粒品からなるフィルター層に付着した、サラダ油(大豆油)を沸騰させて発生させた油煙が、フィルター層の温度を300℃に調整しすることによって分解処理すれば、付着した油分は分解蒸発されて、フィルターが完全に浄化されたと実施例に示し200〜300℃と低い温度で浄化が可能なセルフクリーニング装置が、教示されている。しかしながら、処理対象ガスは、家庭の台所等から発生する汚染ガス、ミスト、油煙等であり、その発明の詳細な説明中で、工業的な脱臭触媒であれば、600℃程度に加熱処理すればよいと記載されているのみで、工業規模の工場排ガス処理についての示唆はない。
【0005】
また、特開昭56−166925号公報には、アルミナ等の無機質担体に、アルカリ金属、アルカリ土類金属、希土類金属の群から選ばれる金属の1種又は2種以上を担体1リットル当り0.1モル〜5.0モルの範囲で担持したことを特徴とする内燃機関の排ガスフィルタが開示されている。しかしながら、対象排ガスは、内燃機関、特にディーゼルエンジンから排出されるものであり、その発明の詳細な説明中で、排出ガス気流中に含まれるカーボン、炭化水素、金属等から成る微粒子を390℃〜490℃の温度で加熱処理しフィルタに蓄積した炭素微粒子を燃焼除去する実施例が示されているのみで、粘稠で付着性の強い有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等を含む工場排ガス処理については、なんらの示唆も教示もない。
【0006】
一方、特公昭62−31971号公報には、シリコーン含有排ガスを処理するに際して、該排ガスを少なくとも250℃に保温してアルカリ金属およびアルカリ土類金属から選ばれた少なくとも1種の金属を含有するゼオライトで処理し、該排ガス中に含まれるシリコーンを実質的に除去することを特徴とするシリコーン含有排ガスの処理法が開示されているが、その発明の詳細な説明中では、シリコーン含有ガス用処理剤が排ガス中のシリコーンを吸着する機構については明確ではないが、一般にゼオライトは、多孔質であり、シリコーンがゼオライトの空洞中で、アルカリ金属もしくはアルカリ土類金属の影響を受け、比較的結合の弱いSi−C部が切れ、シリカ(SiO2)となって除去されると推定しているのみで、アルカリ金属もしくはアルカリ土類金属が、前処理剤に付着した粘稠で付着性の強い有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の分解除去に如何様に寄与するかについては、全く示唆も教示もするものでない。
【0007】
【発明が解決しようとする課題】
前述したように、工場排ガス中に気体の状態で含有されている有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒を除去できる前処理剤は、本出願前に提案されており、工場排ガスを150℃以上に加熱してアルミナ充填層に通すことにより気体状の有機金属化合物(有機ヒソ、有機すずなど)、有機シリコーンあるいは有機リン化合物等の触媒毒を除去する方法も本出願前に知られている。
しかしながら、有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質を、多量に含有する印刷工場、塗装工場、コーター工場等から排出される工場排ガス中に気体の状態で含有されている有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒を除去できる前処理剤は、開発されておらず、これらの悪条件に耐え、工場排ガスの温度を400℃を超えない経済的な運転条件で工場排ガスを処理しても、前記付着性、粘着性の高い物質が前処理剤に堆積し難く、さらには熱変性して工場排ガスの温度変化によって堆積物が急激に発火燃焼を起こすことのない排ガス中の触媒毒除去剤の開発が待望されている。
【0008】
【課題を解決するための手段】
本発明者らは、有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質の悪影響を受けず工場排ガス中に気体状態で含有されている有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒を効率よく除去できる高い前処理能力を有する触媒毒除去剤を開発すべく鋭意研究を重ねた結果、(1)多孔質活性アルミナと、(2)ナトリウムおよびカリウムよりなる群から選ばれた1種以上の金属からなることを特徴とする触媒毒除去剤が、前記付着性、粘着性の高い物質が堆積しがたく発火事故を起こし難いうえに、さらに前記気体状の触媒毒の高い前処理能力を有することを見いだし、付着性、粘着性の高い物質を含有する工場排ガスであっても、その悪影響を受けず150℃〜400℃の温度で工場排ガス中の前記気体の状態で含有されている触媒毒を除去できることを見いだした。
【0009】
本発明はこれらの知見に基づいてなされたもので、本発明は、(1)多孔質活性アルミナと(2)ナトリウムおよびカリウムよりなる群から選ばれた1種以上の金属からなることを特徴とする触媒毒除去剤を提供するものである。
【0010】
また、本発明は、工場排ガスを150℃〜400℃の温度で(1)多孔質活性アルミナと(2)ナトリウムおよびカリウムよりなる群から選ばれた1種以上の金属からなる触媒毒除去剤により前処理した後、工場排ガス中の可燃性物質を接触酸化処理することを特徴とする工場排ガスの処理方法を提供するものである。
【0011】
本発明は、工場排ガスの流れの上流側に請求項1〜3いずれか記載の触媒毒除去剤が、下流側に酸化触媒が充填されていることを特徴とする工場排ガスを処理するための流通式反応装置を提供するものである。
【0012】
本発明に使用される多孔質活性アルミナは、一般に使用されている表面積が大きなγ、δ、ηなどの活性アルミナ、とくにγ−アルミナが好ましく、比表面積が、10m/g以上、好ましくは、50〜300m/gの活性アルミナの使用が好適である。
【0013】
従来法、例えば油滴法、打錠法、丸め法、押し出し法、発泡成形法等適宜の成形法によって球形、その他任意の形状の粒体、錠剤、中空体、ラシヒリング、ハニカム等の一体成形体、三次元発泡体等に多孔質活性アルミナ自体を適宜所望の形状に成形加工することができる。
また、任意の形状の耐熱性無機質担体や、金属担体、金属繊維、ガラス繊維、セラミック繊維等の集合体に多孔質活性アルミナ層を例えばウォシュコート法などの従来法によって形成することもできる。例えば、特公昭59−15028号公報に提案されているようなセラミック繊維の集合体、すなわち、ケイ酸ゲルにより互いに結合されているセラミック繊維のシート状集合体をハニカム状に積層して構成されるハニカム構造体(商品名:ハニクル担体)が、圧力損失も少なく幾何学的表面積も大きく、さらにアルミナを多量に担持できることから特に好ましい。
【0014】
本発明の触媒毒除去剤のもう一つの成分は、工場排ガス中に含まれる有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質の優れた分解除去性能を付与しこれらの触媒毒除去剤への堆積を防止するナトリウムおよびカリウムよりなる群から選ばれた1種以上の金属である。これらの金属はその水酸化物、硝酸塩、炭酸塩などの形で使用する
【0015】
前記金属の多孔質活性アルミナへの担持は、従来用いられてきた含浸担持法をそのまま適用できる。また、慣用の押し出し成形法によって、多孔質活性アルミナに前記金属化合物を添加混合して軟塊(ドウ)を調製し、所望の形状に押し出し成形することもできる。さらに、慣用のウオッシュコート法によって、前記金属化合物と多孔質活性アルミナを別々に添加するか、前記金属を担持した多孔質活性アルミナを粉砕したものを添加して調製したスラリーを、上記の所望の耐熱担体に担持することもできる。
【0016】
前記金属の担持量は、触媒毒除去剤1リッター当たり金属換算で0.5〜30g、好ましくは2〜15g、さらに好ましくは3〜8gである。前記金属の担持量を増加すれば、前処理性能は増すものの30gを超えると多少湿潤性を生ずる傾向があり、前処理性能には影響がないものの取り扱い上好ましくはない。
【0017】
本発明の触媒毒除去剤は、種々の工場排ガスに適用することができる。例えば、有機溶剤やアルデヒド等を含有する塗装焼き付け乾燥炉排ガス、キシレン等を含有する金属印刷、カラー鋼板塗装乾燥炉排ガス、トルエン、酢酸エチル等を含有する接着剤塗布乾燥炉排ガス、ナフサ等を含有するオフセット印刷乾燥炉排ガス等、有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質が、多量に含有し、さらに気体の状態の有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒を含有する印刷工場、塗装工場、コーター工場等から排出される工場排ガスに適用できる。前記有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質は、多孔質活性アルミナからなる触媒毒除去剤に吸着もしくは付着し堆積して、その上でさらに熱変性する。熱変性した堆積物は、触媒毒除去剤の表面を覆い、触媒毒除去剤の有機金属化合物、有機シリコーン化合物、有機リン化合物等の気体状の触媒毒の処理能力を阻害し著しく低下させるのみ成らず、蓄積した堆積物は、発火点が比較的に低いため、触媒毒除去剤の2〜3%程度触媒毒除去剤に堆積した状態では、通常の運転温度でも急激に発火燃焼し触媒毒除去剤を毀損するのみ成らず装置全体をも損傷したり、火災を起こす恐れがあり安全上からも好ましくない。また、この触媒毒除去剤の堆積物の発火燃焼によって1000℃以上の高熱を発生する場合があり、発生する高熱によって後段の工場排ガス処理用触媒が焼損され著しくその活性を低下させる等の重大な悪影響を生ずる。
【0018】
本発明の別の態様は、上述したような、有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分状の付着性、粘着性の高い物質を含有し、気体の状態の有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒をも併せて含有する印刷工場、塗装工場、コーター工場等から排出される工場排ガスの前処理方法であって、前記工場排ガスを、150℃以上、触媒毒除去剤の変性温度650℃を超えない温度で、経済的に好ましくは、200℃〜400℃、さらに好ましくは300〜350℃の温度で多孔質活性アルミナとナトリウムおよびカリウムよりなる群から選ばれた1種以上の金属からなる触媒毒除去剤によって前処理すると、前記付着性、粘着性の高い物質の触媒毒除去剤への堆積も少なく、前記気体状触媒毒の高い処理能力を長期間達成できることが判明した。
【0019】
また、工場排ガス中の有害な可燃性物質を接触酸化処理するための酸化触媒としては、有害な可燃性物質を酸化除去できる触媒であればいずれの触媒であっても使用することができる。例えば、一般的に広く使用されているような接触酸化触媒、白金、パラジウム、ロジウム、イリジウム等の貴金属および/または鉄、マンガン、クロム、銅、ニッケル、コバルト、マグネシウム等の金属酸化物を触媒毒除去剤と同様に担持したものが好ましい。担体についても、特に制限はなく、触媒毒除去剤と同様に適宜決定することができる。
【0020】
【実施例】
以下、実施例、比較例および試験例により本発明を具体的に説明するが、本発明は、これだけに限定されるものではない。
【0021】
1.触媒毒除去剤の調製
比較例1
比表面積が185m/gの日揮ユニバーサル社製直径3mmの粒状γ−アルミナ(商品名:NA−3,Alとして97重量%含有)を触媒毒除去剤Uとした。
【0022】
比較例2
イオン交換水3870gに680gの比較例1の触媒毒除去剤Uと、440gのLAROCHE CHEMICALS社製ベーマイト(商品名:VERSAL−250,Alとして75重量%含有)と、10gの62重量%の濃硝酸とを加え、湿式ボールミルを使用して8時間混合粉砕して、20重量%のアルミナを含有するスラリー5Kgを調製した。セラミック繊維の集合体であるニチアス社製ハニクル担体(200セル/平方インチ、嵩比重=0.25g/cc、縦50mm×横50mm×長さ50mm)をこのスラリーに浸漬し取り出し、余分のスラリーを空気を吹き付けて除去した後、120℃の温度で3時間乾燥した。乾燥した触媒毒除去剤を、さらに500℃の温度で1時間焼成し、ハニクル担体1リットル当たり60gのアルミナを担持した触媒毒除去剤Vを作成した。
【0023】
参考例1
50.1gの硝酸リチュウム(Liとして5g含有)を449.9gのイオン交換水に溶解し1重量%のリチュウム水溶液500gを調製した。この水溶液に比較例2の触媒毒除去剤Vを10分間含浸した後、取り出し余分の水溶液を空気を吹き付けて除去した後120℃の温度で3時間乾燥した。乾燥した触媒毒除去剤を、さらに空気流通式の空気炉中で500℃の温度で1時間焼成し、触媒毒除去剤V1リットル当たりLiとして4.1gを担持した触媒毒除去剤Aを調製した。
【0024】
実施例1
参考例1においてリチュウム水溶液の替わりに、8.9gの炭酸カリウム(Kとして5g含有)を491.1gのイオン交換水に溶解し1重量%のカリウム水溶液500gを調製した他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりKとして5gを担持した触媒毒除去剤Bを調製した。
【0025】
実施例2
参考例1においてリチュウム水溶液の替わりに、11.6gの炭酸ナトリウム(Naとして5g含有)を488.4gのイオン交換水に溶解し1重量%のナトリウム水溶液500gを調製した他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりNaとして4.7gを担持した触媒毒除去剤Cを調製した。
【0026】
参考例2
参考例1においてリチュウム水溶液の替わりに、53.6gの硝酸マグネシウム6水和物(Mgとして5g含有)を446.4gのイオン交換水に溶解し1重量%のマグネシウム水溶液500gを調製した他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりMgとして4.7gを担持した触媒毒除去剤Dを調製した。
【0027】
参考例3
参考例1においてリチュウム水溶液の替わりに、29.8gの硝酸カルシウム4水和物(Caとして5g含有)を470.2gのイオン交換水に溶解し1重量%のカルシュウム水溶液500gを調製した他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりCaとして2.5gを担持した触媒毒除去剤Eを調製した。
【0028】
実施例3
5.1gの水酸化カリウム(Kとして3g含有)を294.9gのイオン交換水に溶解し1重量%のカリウム水溶液300gを調製した。この水溶液に100gの比較例1の触媒毒除去剤Uを10分間含浸した後、取り出し余分の水溶液を空気を吹き付けて除去した後120℃の温度で3時間乾燥した。乾燥した触媒毒除去剤を、さらに空気流通式の空気炉中で500℃の温度で1時間焼成し、触媒毒除去剤U1リットル当たりKとして9.1gを担持した触媒毒除去剤Fを調製した。
【0029】
実施例4
実施例3においてカリウム水溶液の替わりに、5.4gの水酸化ナトリウム(Naとして3g含有)を294.6gのイオン交換水に溶解し1重量%の水酸化ナトリウム水溶液300gを調製した他は、実施例3と同様にして、触媒毒除去剤U1リットル当たりNaとして9.3gを担持した触媒毒除去剤Gを調製した。
【0030】
実施例5
参考例1においてリチュウム水溶液の替わりに、0.36gの炭酸カリウム(Kとして0.2g含有)を499.6gのイオン交換水に溶解し0.04重量%のカリウム水溶液500gを調製した他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりKとして0.5gを担持した触媒毒除去剤Hを調製した。
【0031】
実施例6
実施例5において、カリウム水溶液の濃度を0.2重量%、0.4重量%および5重量%とした他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりKとして1.9g、3.0gおよび20.4gを担持した触媒毒除去剤I、触媒毒除去剤Jおよび触媒毒除去剤Kを調製した。
【0032】
実施例7
参考例1においてリチュウム水溶液の替わりに、0.46gの炭酸ナトリウム(Naとして0.2g含有)を499.5gのイオン交換水に溶解し0.04重量%のナトリウム水溶液500gを調製した他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりNaとして0.5gを担持した触媒毒除去剤Lを調製した。
【0033】
実施例8
実施例7において、ナトリウム水溶液の濃度を0.2重量%、0.4重量%および5重量%とした他は、参考例1と同様にして、触媒毒除去剤V1リットル当たりNaとして1.7g、2.8gおよび19.5gを担持した触媒毒除去剤M、触媒毒除去剤Nおよび触媒毒除去剤Pを調製した。
【0034】
実施例9
イオン交換水4049gに515gの比較例1の触媒毒除去剤Uと、333gのLAROCHE CHEMICALS社製ベーマイト(商品名:VERSAL−250,Alとして75重量%含有)と、5gの62重量%の濃硝酸と、98gの和光純薬社製特級硝酸カリウム(Kとして38.2重量%含有)を加え、湿式ボールミルを使用して8時間混合粉砕して、15重量%のアルミナと、アルミナの全量に対して5重量%のKを含有するスラリーを調製した。比較例2で使用したニチアス社製ハニクル担体(縦50mm×横50mm×長さ50mm)をこのスラリーに浸漬し取り出し、余分のスラリーを空気を吹き付けて除去した後、120℃の温度で3時間乾燥した。乾燥した触媒毒除去剤を、さらに500℃の温度で1時間焼成し、ハニクル担体1リットル当たり60gのアルミナと3gのKを担持した触媒毒除去剤Qを作成した。
【0035】
2.性能評価
試験例1
14.4リットル/分の空気流中にキシレンを0.087cc/分の割合で注入し試験ガスを調製し、試料触媒毒除去剤入り口温度が250℃、300℃および350℃になるようにこの試験ガスの温度を調整して、直径21mm×長さ50mmの容量に試料触媒毒除去剤を成形設置、もしくは充填した流通式反応装置に、空間速度50,000/hで通した。3時間流通試験を行った後、試料触媒毒除去剤を取り出し高周波加熱処理機により加熱処理し、試料触媒毒除去剤の堆積物を燃焼させ発生する二酸化炭素に赤外線を照射しその吸光度から堆積物の炭素量を非分散型赤外線分析法により計測し、試料触媒毒除去剤の堆積物の重量を試料触媒毒除去剤の全量に対する炭素の重量%として算出し、その結果を表1に示す。
【0036】
【表1】

Figure 0003710528
表1の結果から明らかなように、粒状アルミナからなる触媒毒除去剤Uおよびハニクル担体にアルミナを担持した触媒毒除去剤Vと比較してこれらの触媒毒除去剤にさらにカリウム、ナトリウムを担持した本発明の触媒毒除去剤B、C、F、およびGは、堆積物が少なく(炭素の重量%が小さい)、300℃以上の温度では、顕著に少なくなっている。さらに、カリウムまたはナトリウムを担持した触媒毒除去剤B、C、FおよびGは、250℃の温度においても極めて堆積物の付着量が少ない。担持量の多い触媒毒除去剤FおよびGにおいては、さらに堆積物の付着量が少ないことがわかる。すなわちカリウム、ナトリウムを活性アルミナに担持することによって、堆積物の付着量を低減することができることが証明された。
【0037】
試験例2
8gの大日本インキ化学工業社製水溶性のワニス(商品名:S−316)を、100gのイオン交換水で希釈して試験水溶液を調整した。この試験水溶液に縦20mm×横40mm×長さ10mmの試料触媒毒除去剤を1分間浸した後、余分の水溶液を吹き払い300℃の温度で1時間加熱処理した。加熱処理した試料触媒毒除去剤を高周波加熱処理機により加熱処理し、試料触媒毒除去剤に付着したワニスの熱変性物からなる堆積物を燃焼させ発生する二酸化炭素の量を非分散型赤外線分析計により計測し、堆積物の付着量を試料触媒毒除去剤の全量に対する炭素の重量%として算出した。触媒毒除去剤V、H、I、J、B、K、L、M、N、CおよびPについて試験を行いその結果を図1および図2に示す。
図1および図2より、カリウムもしくはナトリウムの担持量が増加するにつれて触媒毒除去剤への堆積物の付着量(炭素の付着量)が減少することがわかる。
【0038】
試験例3
添加剤に含まれる有機シリコーンからなる触媒毒と塗料から揮発するセロソルブ類および塗料の固形分(樹脂)が熱変性したタール状の重質分を含む製缶外面塗装乾燥炉から発生する排出温度が150℃の塗装排ガスを、300℃まで予熱して可搬式排気ガス浄化テスト機(日揮ユニバーサル社製モデル88)を用いて縦70mm×横70mm×長さ40mmの寸法の試料触媒毒除去剤を2段装着し空間速度76000/hで処理した。200時間経過後、試料触媒毒除去剤を取り出し、試料触媒毒除去剤に付着した堆積物を試験例1と同様にして高周波加熱処理機により加熱処理し、試料触媒毒除去剤に付着した堆積物を燃焼させ発生する二酸化炭素の量を非分散型赤外線分析法により計測し、前段の試料触媒毒除去剤の中央部分における堆積物の付着量を炭素の重量として算出し、触媒毒除去剤1リッター当たりの炭素の付着量(g)を表2に示す。
【0039】
【表2】
Figure 0003710528
表2の結果から明らかなように、ハニクル担体にアルミナを担持した従来の触媒毒除去剤Vと比較してこれらの触媒毒除去剤にさらにカリウムを担持した本発明の触媒毒除去剤Jおよび触媒毒除去剤Bならびにナトリウムを担持した触媒毒除去剤Nおよび触媒毒除去剤Cは、実際の工場排ガス処理試験においても堆積物の付着量(炭素の付着量)が少く、カリウムもしくはナトリウムの担持量を増すことによって堆積物の付着量をさらに少なくできることがわかる。すなわち、本発明の触媒毒除去剤は、付着性、粘着性の高い物質が堆積し難く堆積物によって覆われ難いことが塗装排ガスにおいて証明された。
【0040】
試験例4
近年塗装印刷のスピード化に伴い乾燥時間を短縮するために過酷な高温条件で運転されるオフセット印刷乾燥炉から排出される200〜250℃の温度の工場排ガス中には、触媒毒となる有機シリコーンおよび有機リンが含まれており、塗料からの揮発分が熱変性し触媒毒除去剤に付着し堆積する。このオフセット印刷乾燥炉排ガスを350℃の温度で従来の触媒毒除去剤Vを用いて前処理したところ、約1〜2ヶ月で、触媒毒除去剤に多量に堆積物が付着し運転の変動に伴う工場排ガス温度の変化によって、触媒毒除去剤の堆積物が発火する事故が生じた。一方、本発明の触媒毒除去剤Bおよび触媒毒除去剤Cを用いて同様の前処理を行なったが、6ヶ月経過後も、ほとんど堆積物は認められず、効果的な前処理を続行できた。
【0041】
試験例5
エナメル電線塗装焼付炉から排出される400〜500℃の温度の工場排ガス中には、触媒毒となる有機シリコーンおよび有機スズが含まれており、絶縁ワニスから揮発する有機化合物が熱変性し触媒毒除去剤に付着し堆積する。このエナメル電線塗装焼付炉排ガスを350℃の温度で従来の触媒毒除去剤Vを用いて前処理したところ、約2〜3ヶ月で、触媒毒除去剤に多量に堆積物が付着し運転の変動に伴う工場排ガス温度の変化によって、触媒毒除去剤の堆積物が発火する事故が生じた。一方、本発明の触媒毒除去剤Bおよび触媒毒除去剤C用いて同様の前処理を行なったが、6ヶ月経過後も、ほとんど堆積物は認められず、効果的な前処理を続行できた。
【0042】
試験例6
10リットル/分の空気流中に0.50gのジメチルシリコン油と50mlのメチルエチルケトンの混合液を0.021ml/分の割合で注入し、珪素として5ppmのジメチルシリコン油と500ppmのメチルエチルケトンを含有する試料ガスを調整した。この試料ガスを反応装置の入口温度が300℃となるように加熱して、上流側に直径21mm×厚さ40mmの試料触媒毒除去剤、下流側に直径21mm×厚さ22mmの白金を2g/リットル担持した酸化触媒を重ねて充填した流通式反応装置に10リットル/分の流速で60分間通し、反応装置の入口および出口におけるメチルエチルケトンの濃度をガスクロマトグラフィーで測定し反応率を算出した。本発明の触媒毒除去剤Bおよび触媒毒除去剤Cについて未使用品、試験例4および試験例5において6ヶ月後の前処理試験使用品を取り出したものについてそれぞれ有機シリコーンの前処理活性試験を行いその結果を表3に示す。
【0043】
【表3】
Figure 0003710528
【0044】
試験例7
試験例6において、試料ガスとして、10リットル/分の空気流中に10.56gのリン酸トリエチルと50mlのメチルエチルケトンの混合液を0.025ml/分の割合で注入し、リンとして50ppmのリン酸トリエチルと500ppmのメチルエチルケトンを含有する試料ガスを調整し用いたほかは試験例と同様にしてメチルエチルケトンの反応率を算出した。本発明の触媒毒除去剤Bおよび触媒毒除去剤Cについて未使用品、試験例4および試験例5において6ヶ月後の前処理試験使用品を取り出したものについてそれぞれ有機リンの前処理活性試験を行いその結果を表4に示す。
【0045】
【表4】
Figure 0003710528
上記試験例3、4、5、6および7の結果から明らかなように、付着性、粘着性の高い物質を含有する工場排ガスを300〜350℃の経済温度で前処理を行うと、ハニクル担体にアルミナを担持した従来の触媒毒除去剤Vでは、短期間で堆積物の発火事故が生じ高熱となるため後段の触媒を毀損してしまうのに比較して、これらの触媒毒除去剤にさらにカリウムもしくはナトリウムを担持した本発明の触媒毒除去剤を用いた場合には、6ヶ月経過後もほとんど堆積物が認められず優れた前処理性能を維持していることが証明された。
【0046】
【発明の効果】
1.工場排ガス中の有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質の悪影響を受けず工場排ガス中の気体の状態で含有されている有機金属化合物、有機シリコーン化合物、有機リン化合物等の触媒毒を効率よく経済的な温度で除去できる高い前処理能力を有し、工場排ガス処理の省エネルギー化が可能である。
2.工場排ガス中の有機溶剤、塗料ミスト等の有機化合物、塗料の固形分(樹脂)が熱変性したタール状の重質分等の付着性、粘着性の高い物質の優れた分解性能を有しこれらの物質の触媒毒除去剤へ吸着もしくは付着し堆積することを防止し、堆積物によって、触媒毒除去剤の表面が覆われ、触媒毒除去剤の有機金属化合物、有機シリコーン化合物、有機リン化合物等の気体状の触媒毒の処理能力が、低下が少なく長期安定性に優れている。
3.触媒毒除去剤に前記堆積物が蓄積しにくいため、堆積物の急激な発火燃焼事故がなく、触媒毒除去剤や装置全体をも損傷することもなく、火災を起こす恐れもなく安全である。さらに、この触媒毒除去剤の堆積物の発火燃焼によって発生する高熱によって後段の工場排ガス処理用触媒が焼損されることを防止できる。
【図面の簡単な説明】
【図1】 本発明の触媒毒除去剤のカリウムの担持量と触媒毒除去剤への堆積物の付着量(炭素の付着量)の関係を示すグラフである。
【図2】 本発明の触媒毒除去剤のナトリウムの担持量と触媒毒除去剤への堆積物の付着量(炭素の付着量)の関係を示すグラフである。[0001]
[Industrial application fields]
  INDUSTRIAL APPLICABILITY The present invention can remove a gaseous catalyst poison contained in a factory exhaust gas containing an organic compound and / or tar-like heavy component without being inhibited by the organic compound and / or tar-like heavy component.Catalyst poison remover in exhaust gasAnd factory exhaust gas treatment method using the same, andFlow reactorAbout.
[0002]
[Prior art]
Malodorous components and combustible harmful substances in factory exhaust gas are treated by a direct combustion method using a burner or a catalytic treatment method in which catalytic oxidation treatment is performed using a catalyst. The direct combustion method requires fuel and increases operating costs. On the other hand, catalytic processing methods that can save these various expenses have been widely used.
[0003]
Exhaust gases from printing factories, paint factories, coater factories, etc. include catalyst poisons such as organometallic compounds, organosilicon compounds, organophosphorus compounds, etc., which are catalyst poisons for precious metal catalysts such as platinum, especially precious metal catalysts. Is contained in a gaseous state.
Conventionally, it has often been carried out that a factory exhaust gas is pretreated with a filter, a cyclone, a scrubber or the like, and solids such as dust and tar are physically removed and then introduced into a contact reaction apparatus. However, it is very difficult to effectively remove catalyst poisons such as organometallic compounds, organosilicone compounds, and organophosphorus compounds contained in the factory exhaust gas in the gaseous state by the above-mentioned pretreatment means. Moreover, since these catalyst poisons significantly reduce the performance of the catalyst even in a trace amount, it is generally considered that the catalytic treatment method using a catalyst is not conventionally suitable for the treatment of factory exhaust gas containing these gaseous catalyst poisons. It was done.
[0004]
Accordingly, the present applicant provides a novel exhaust gas pretreatment method that overcomes the above-described weak points of the catalytic treatment method in the treatment of exhaust gas containing a gaseous catalyst poison and efficiently removes the gaseous catalyst poison. For the purpose of removing the gaseous catalyst poison contained in the exhaust gas, the exhaust gas is heated to 150 ° C. or higher and passed through an alumina packed bed so that a gaseous organometallic compound (organic strain, organic tin) is obtained. Proposed a method for removing catalyst poisons such as organic silicones or organophosphorus compounds in Japanese Patent Publication No. 61-20333.
In addition, the factory exhaust gas from printing factories, paint factories, coater factories, etc., adheres to organic compounds, organic compounds such as paint mist, and heavy tar-like components in which the solid content (resin) of the paint is thermally denatured, Highly sticky substances are contained in large quantities. These highly adherent and sticky substances adhere to the pretreatment agent when the temperature of the factory exhaust gas is low, deposit, and further thermally denature. This deposit covered not only the surface of the pretreatment agent, but also accumulated and not only significantly reduced the ability of the pretreatment agent to treat gaseous catalyst poisons such as organometallic compounds, organosilicone compounds, and organophosphorus compounds. Since the ignition point of the deposit is relatively low, the deposit is rapidly ignited and combusted due to the temperature change of the treatment plant exhaust gas, and the high heat generated damages the downstream plant exhaust gas treatment catalyst and significantly reduces the activity. Furthermore, it may cause a fire, which is not preferable for safety.
These highly adherent and sticky substances can reduce the temperature of the factory exhaust gas, and can be deposited and removed in advance, for example, on a wire mesh or activated carbon, but the factory exhaust gas temperature is raised again to the factory exhaust gas treatment temperature. Therefore, a separate pretreatment facility and useless energy are required. In addition, if the factory exhaust gas temperature is maintained at 400 ° C. or higher, the adhesion of highly adherent and sticky substances to the pretreatment agent and catalyst can be reduced, but this requires additional energy and is not required. It is an economy. For this reason, the development of a factory exhaust gas treatment technology that does not give the pretreatment agent the adverse effects of substances having high adhesion and stickiness even if the factory exhaust gas is treated under operating conditions where the temperature of the factory exhaust gas does not exceed 400 ° C. is awaited. Has been.
For example, Japanese Examined Patent Publication No. 62-6843 discloses that the following compounds CaO, Na are provided in an air passage for exhausting indoor air to the outside.2O, K2O, MgO, TiO2, NiO, Fe2OThree, Co2OThree, Cr2OThree, Ag2O, K2COThree, CaSiOThree, CaAl2OFourMgSiOThree, KAlO2, BaSiOThree, BaTiOThree, Li2SiOThree, NaCOThree, Ni-MgO, Ca (OH)2A ventilation device is disclosed in which a porous layer containing one or more compounds selected from the group of is located, and a filter layer comprising a granulated product of alumina cement containing calcium silicate and lime aluminate as main components. If the smoke generated by boiling the attached salad oil (soybean oil) is decomposed by adjusting the temperature of the filter layer to 300 ° C, the attached oil will be decomposed and evaporated, and the filter will be completely purified. The self-cleaning apparatus which can be purified at a temperature as low as 200 to 300 ° C. shown in the embodiment is taught. However, the gas to be treated is polluted gas, mist, oily smoke, etc. generated from a household kitchen, etc. In the detailed description of the invention, if it is an industrial deodorizing catalyst, it is heated to about 600 ° C. It is only described as good, and there is no suggestion about industrial-scale factory exhaust gas treatment.
[0005]
JP-A-56-166925 discloses that one or more metals selected from the group consisting of alkali metals, alkaline earth metals, and rare earth metals are added to an inorganic carrier such as alumina in an amount of 0.00 per liter of the carrier. An exhaust gas filter for an internal combustion engine characterized by being supported in a range of 1 to 5.0 mol is disclosed. However, the target exhaust gas is exhausted from an internal combustion engine, particularly a diesel engine, and in the detailed description of the invention, fine particles composed of carbon, hydrocarbons, metals, etc. contained in the exhaust gas stream are changed from 390 ° C to Only an example of burning and removing carbon fine particles accumulated in a filter after being heat-treated at a temperature of 490 ° C. is shown. An organic solvent such as a viscous and highly adherent organic compound such as a paint mist, a solid content of a paint ( There is no suggestion or teaching regarding the treatment of industrial exhaust gas containing tar-like heavy components whose resin is thermally denatured.
[0006]
On the other hand, Japanese Patent Publication No. 62-31971 discloses a zeolite containing at least one metal selected from alkali metals and alkaline earth metals by treating the exhaust gas containing silicone at least at 250 ° C. In the detailed description of the invention, a treatment agent for a silicone-containing gas is disclosed, which is characterized in that the silicone contained in the exhaust gas is substantially removed. Although the mechanism of adsorption of silicone in exhaust gas is not clear, in general, zeolite is porous, and silicone is affected by alkali metal or alkaline earth metal in the cavity of the zeolite and is relatively weakly bonded. The Si-C part is cut and silica (SiO2)), It is estimated that the alkali metal or alkaline earth metal is adhered to the pretreatment agent, and the organic solvent such as a viscous and highly adherent organic solvent, paint mist, or the like is solid. There is no suggestion or teaching as to how the component (resin) contributes to the decomposition and removal of the heat-modified tar-like heavy component.
[0007]
[Problems to be solved by the invention]
  As described above, pretreatment agents capable of removing catalyst poisons such as organometallic compounds, organosilicon compounds, and organophosphorus compounds contained in the factory exhaust gas in a gaseous state have been proposed before this application, A method for removing catalyst poisons such as gaseous organometallic compounds (such as organic velvet or organic tin), organosilicone, or organophosphorus compounds by heating the exhaust gas to 150 ° C. or higher and passing it through an alumina packed bed is also possible before this application. Are known.
  However, printing and coating plants that contain a large amount of organic compounds such as organic solvents, paint mist, and heavy, sticky and sticky substances such as tar-like heavy components whose paint solids (resin) are heat-denatured. Pretreatment agents that can remove catalyst poisons such as organometallic compounds, organosilicone compounds, and organophosphorus compounds contained in the state of gas in factory exhaust gas discharged from coater factories have not been developed. Even if the factory exhaust gas is treated under economical operating conditions that can withstand the adverse conditions of the factory and the temperature of the factory exhaust gas does not exceed 400 ° C., the adhesive and sticky substances are not easily deposited on the pretreatment agent, Thermal degeneration and deposits do not ignite or burn suddenly due to temperature change of factory exhaust gasCatalyst poison remover in exhaust gasThe development of is awaited.
[0008]
[Means for Solving the Problems]
  The inventors of the present invention are not affected by the adverse effects of organic compounds such as organic solvents, paint mist, and the like, and the sticky and highly sticky substances such as tar-like heavy components in which the solid content (resin) of the paint is heat-denatured. Has high pretreatment ability to efficiently remove catalyst poisons such as organometallic compounds, organosilicone compounds, and organophosphorus compounds contained in the gaseous stateCatalyst poison removerAs a result of earnest research to develop the (1) A catalyst poison remover comprising porous activated alumina and (2) one or more metals selected from the group consisting of sodium and potassiumHowever, it has been found that the highly adherent and sticky substance is difficult to accumulate and does not cause a fire accident, and further has a high pretreatment ability of the gaseous catalyst poison, and has a high adherent and sticky substance. It was found that the catalyst poison contained in the state of the gas in the factory exhaust gas can be removed at a temperature of 150 ° C. to 400 ° C. without being adversely affected even by the factory exhaust gas containing NO.
[0009]
  The present invention was made based on these findings, the present invention,(1)With porous activated alumina(2) Sodium and potassiumIt consists of one or more metals selected from the group consisting ofCatalyst poison removerIs to provide.
[0010]
  The present invention also provides:The factory exhaust gas is pretreated at a temperature of 150 ° C. to 400 ° C. with a catalyst poison remover composed of one or more metals selected from the group consisting of (1) porous activated alumina and (2) sodium and potassium. A method for treating factory exhaust gas, comprising subjecting a combustible substance in exhaust gas to catalytic oxidation treatmentIs to provide.
[0011]
  The present inventionA flow reactor for treating factory exhaust gas, wherein the catalyst poison removing agent according to any one of claims 1 to 3 is filled upstream of a flow of factory exhaust gas, and an oxidation catalyst is filled downstream.Is to provide.
[0012]
  The porous activated alumina used in the present invention is preferably activated alumina having a large surface area such as γ, δ and η, particularly γ-alumina, and has a specific surface area of 10 m.2/ G or more, preferably 50 to 300 m2The use of activated alumina / g is preferred.
[0013]
  Integral molded bodies such as granules, tablets, hollow bodies, Raschig rings, honeycombs, etc., by conventional molding methods such as oil droplet method, tableting method, rounding method, extrusion method, foam molding method, etc. The porous activated alumina itself can be appropriately molded into a desired shape into a three-dimensional foam or the like.
  Further, a porous activated alumina layer can be formed on a heat-resistant inorganic carrier having an arbitrary shape or an aggregate of metal carrier, metal fiber, glass fiber, ceramic fiber, etc. by a conventional method such as a wash coat method. For example, an assembly of ceramic fibers as proposed in Japanese Patent Publication No. 59-15028, that is, a sheet-like assembly of ceramic fibers bonded to each other by silicate gel is laminated in a honeycomb shape. A honeycomb structure (trade name: honeycle carrier) is particularly preferable because it has a small pressure loss and a large geometric surface area, and can carry a large amount of alumina.
[0014]
  Of the present inventionCatalyst poison removerAnother component of this is an organic solvent contained in factory exhaust gas, organic compounds such as paint mist, and heavy and sticky substances such as tar-like heavy components in which the solid content (resin) of the paint is heat-denatured. Which gives excellent decomposition and removal performance of theseCatalyst poison removerPrevents deposition onSodium and potassiumOne or more metals selected from the group consisting of:These metals areHydroxide, nitrate, carbonateUse in the form of.
[0015]
For supporting the metal on the porous activated alumina, a conventionally used impregnation supporting method can be applied as it is. In addition, a soft mass (dough) can be prepared by adding and mixing the above-mentioned metal compound to porous activated alumina by a conventional extrusion molding method, and extrusion molding into a desired shape can be performed. Further, a slurry prepared by adding the metal compound and the porous activated alumina separately by a conventional washcoat method or adding the pulverized porous activated alumina supporting the metal to the above desired slurry is prepared. It can also be supported on a heat-resistant carrier.
[0016]
  The amount of the metal supported isCatalyst poison removerIt is 0.5 to 30 g, preferably 2 to 15 g, more preferably 3 to 8 g in terms of metal per liter. If the loading amount of the metal is increased, the pretreatment performance is increased, but if it exceeds 30 g, there is a tendency to slightly wettability, and the pretreatment performance is not affected, but it is not preferable in handling.
[0017]
  Of the present inventionCatalyst poison removerCan be applied to various factory exhaust gases. For example, paint baking and drying furnace exhaust gas containing organic solvents and aldehydes, metal printing containing xylene, etc., color steel plate coating drying furnace exhaust gas, adhesive coating drying furnace exhaust gas containing toluene, ethyl acetate, naphtha, etc. Contains a large amount of highly sticky and sticky substances such as organic solvents such as offset printing drying furnace exhaust gas, organic compounds such as organic solvents and paint mist, and heavy tar-like components whose paint solids (resin) are heat-denatured Furthermore, it can be applied to factory exhaust gas discharged from printing factories, coating factories, coater factories, etc. containing catalyst poisons such as gaseous organometallic compounds, organosilicone compounds, and organophosphorus compounds. The organic solvent, the organic compound such as paint mist, and the adhesive and sticky substance such as the tar-like heavy component in which the solid content (resin) of the paint is heat-modified is made of porous activated alumina.Catalyst poison removerIt adsorbs or adheres to and deposits on it, and is further thermally denatured thereon. Thermally denatured depositsCatalyst poison removerCovering the surface ofCatalyst poison removerIn addition to hindering and significantly reducing the processing capacity of gaseous catalyst poisons such as organometallic compounds, organosilicon compounds, and organophosphorus compounds, the accumulated deposits have a relatively low ignition point,Catalyst poison removerAbout 2-3% ofCatalyst poison removerIn the state where it is deposited on theCatalyst poison removerThis is not preferable from the viewpoint of safety because it may damage the entire device or cause a fire. Also thisCatalyst poison removerIn some cases, high-temperature heat of 1000 ° C. or more may be generated by the ignition and combustion of the deposit, and the high-temperature heat generated causes serious adverse effects such as burning down the exhaust gas treatment catalyst in the subsequent stage and significantly reducing its activity.
[0018]
  Another aspect of the present invention is the above-mentioned organic compound such as an organic solvent, paint mist, and the like, a tar-like heavy-part adhesive, highly adhesive substance in which the solid content (resin) of the paint is heat-denatured Is a pretreatment method for factory exhaust gas discharged from printing plants, painting plants, coater factories, etc. that also contain catalyst poisons such as organometallic compounds, organosilicon compounds, and organophosphorus compounds in the gaseous state. The factory exhaust gas at 150 ° C. or higher,Catalyst poison remover1 type selected from the group consisting of porous activated alumina, sodium and potassium at a temperature not exceeding 650 ° C., preferably from 200 ° C. to 400 ° C., more preferably from 300 to 350 ° C. Made of more metalsCatalyst poison removerWhen pre-treated withCatalyst poison removerIt has been found that a high treatment capacity of the gaseous catalyst poison can be achieved for a long time.
[0019]
  Further, any catalyst that can oxidize and remove harmful combustible substances can be used as an oxidation catalyst for catalytic oxidation treatment of harmful combustible substances in factory exhaust gas. For example, generally used catalytic oxidation catalysts such as platinum, palladium, rhodium, iridium and / or metal oxides such as iron, manganese, chromium, copper, nickel, cobalt, magnesium, etc.Catalyst poison removerThe one supported in the same manner as is preferred. There are no particular restrictions on the carrier,Catalyst poison removerIt can be determined as appropriate in the same manner.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example, a comparative example, and a test example demonstrate this invention concretely, this invention is not limited only to this.
[0021]
1.Catalyst poison removerPreparation of
Comparative Example 1
  Specific surface area is 185m2/ G granular γ-alumina (trade name: NA-3, Al) manufactured by JGC Universal2O3As 97% by weight)Catalyst poison removerU.
[0022]
Comparative Example 2
  680 g of Comparative Example 1 in 3870 g of ion-exchanged waterCatalyst poison removerU and 440 g of boehmite manufactured by LAROCHE CHEMICALS (trade name: VERSAL-250, Al2O310 g of 62% by weight of concentrated nitric acid, and mixed and pulverized for 8 hours using a wet ball mill to prepare 5 kg of a slurry containing 20% by weight of alumina. A niticle carrier (200 cells / square inch, bulk specific gravity = 0.25 g / cc, length 50 mm × width 50 mm × length 50 mm), which is an assembly of ceramic fibers, is dipped in this slurry and removed. After removing by blowing air, it was dried at a temperature of 120 ° C. for 3 hours. DriedCatalyst poison removerWas further calcined at a temperature of 500 ° C. for 1 hour to carry 60 g of alumina per liter of the carrier carrier.Catalyst poison removerV was created.
[0023]
Reference example 1
  50.1 g of lithium nitrate (containing 5 g as Li) was dissolved in 449.9 g of ion-exchanged water to prepare 500 g of a 1 wt% aqueous lithium solution. In this aqueous solution, Comparative Example 2Catalyst poison removerAfter impregnating V for 10 minutes, the excess aqueous solution was removed by blowing air and dried at a temperature of 120 ° C. for 3 hours. DriedCatalyst poison removerIs further baked at a temperature of 500 ° C. for 1 hour in an air flow type air furnace,Catalyst poison remover4.1 g of Li was supported per liter of VCatalyst poison removerA was prepared.
[0024]
Example 1
  Reference example 1Except that 8.9 g of potassium carbonate (containing 5 g as K) was dissolved in 491.1 g of ion-exchanged water to prepare 500 g of a 1 wt% aqueous potassium solution instead of the lithium aqueous solution.Reference example 1LikeCatalyst poison removerCarried 5g as K per liter of VCatalyst poison removerB was prepared.
[0025]
Example 2
  Reference example 1Except that 11.6 g of sodium carbonate (containing 5 g of Na) was dissolved in 488.4 g of ion-exchanged water instead of the lithium aqueous solution to prepare 500 g of a 1 wt% sodium aqueous solution.Reference example 1LikeCatalyst poison remover4.7 g of Na was loaded per liter of VCatalyst poison removerC was prepared.
[0026]
Reference example 2
  Reference example 1Except that 53.6 g of magnesium nitrate hexahydrate (containing 5 g as Mg) was dissolved in 446.4 g of ion-exchanged water instead of the lithium aqueous solution to prepare 500 g of a 1 wt% magnesium aqueous solution.Reference example 1LikeCatalyst poison remover4.7 g of Mg was loaded per liter of VCatalyst poison removerD was prepared.
[0027]
Reference example 3
  Reference example 1Except that 29.8 g of calcium nitrate tetrahydrate (containing 5 g of Ca) was dissolved in 470.2 g of ion-exchanged water to prepare 500 g of a 1 wt% aqueous solution of calcium instead of the lithium aqueous solution.Reference example 1LikeCatalyst poison remover2.5g of Ca was supported per liter of VCatalyst poison removerE was prepared.
[0028]
Example 3
  5.1 g of potassium hydroxide (containing 3 g as K) was dissolved in 294.9 g of ion-exchanged water to prepare 300 g of a 1 wt% aqueous potassium solution. 100 g of Comparative Example 1 was added to this aqueous solution.Catalyst poison removerAfter impregnating U for 10 minutes, the excess aqueous solution was removed by blowing air and dried at 120 ° C. for 3 hours. DriedCatalyst poison removerIs further baked at a temperature of 500 ° C. for 1 hour in an air flow type air furnace,Catalyst poison remover9.1 g was supported as K per liter of UCatalyst poison removerF was prepared.
[0029]
Example 4
  Example3 except that 5.4 g of sodium hydroxide (containing 3 g of Na) was dissolved in 294.6 g of ion-exchanged water instead of the potassium aqueous solution to prepare 300 g of a 1% by weight sodium hydroxide aqueous solution.Example 3LikeCatalyst poison remover9.3 g of Na was loaded per liter of UCatalyst poison removerG was prepared.
[0030]
Example 5
  Reference example 1Except that 0.36 g of potassium carbonate (containing 0.2 g as K) was dissolved in 499.6 g of ion-exchanged water to prepare 500 g of a 0.04 wt% potassium aqueous solution instead of the lithium aqueous solution.Reference example 1LikeCatalyst poison remover0.5g was supported as K per liter of VCatalyst poison removerH was prepared.
[0031]
Example 6
  Example 5Except that the concentration of the aqueous potassium solution is 0.2 wt%, 0.4 wt% and 5 wt%,Reference example 1LikeCatalyst poison remover1.9 g, 3.0 g and 20.4 g were carried as K per liter of VCatalyst poison removerI,Catalyst poison removerJ andCatalyst poison removerK was prepared.
[0032]
Example 7
  Reference example 1Except that 0.46 g of sodium carbonate (containing 0.2 g of Na) was dissolved in 499.5 g of ion-exchanged water to prepare 500 g of a 0.04% by weight sodium aqueous solution instead of the lithium aqueous solution.Reference example 1LikeCatalyst poison remover0.5 g of Na was loaded per liter of VCatalyst poison removerL was prepared.
[0033]
Example 8
  Example 7Except that the concentration of the aqueous sodium solution was 0.2 wt%, 0.4 wt% and 5 wt%,Reference example 1LikeCatalyst poison remover1.7 g, 2.8 g and 19.5 g of Na were loaded per liter of V.Catalyst poison removerM,Catalyst poison removerN andCatalyst poison removerP was prepared.
[0034]
Example 9
  515 g of the ion exchange water 4049 g of Comparative Example 1Catalyst poison removerU and 333 g of boehmite manufactured by LAROCHE CHEMICALS (trade name: VERSAL-250, Al2O3As an additional 75 wt.%), 5 g of 62 wt.% Concentrated nitric acid, and 98 g of Wako Pure Chemicals special grade potassium nitrate (containing 38.2 wt.% As K). Thus, a slurry containing 15% by weight of alumina and 5% by weight of K with respect to the total amount of alumina was prepared. The NICHIAS carrier (50 mm long x 50 mm wide x 50 mm long) used in Comparative Example 2 was dipped in this slurry and removed by blowing air, and then dried at 120 ° C. for 3 hours. did. DriedCatalyst poison removerWas further calcined at a temperature of 500 ° C. for 1 hour to carry 60 g of alumina and 3 g of K per liter of the carrier carrier.Catalyst poison removerQ was created.
[0035]
2. Performance evaluation
Test example 1
  Prepare a test gas by injecting xylene at a rate of 0.087 cc / min into an air flow of 14.4 liters / min.Catalyst poison removerAdjust the temperature of this test gas so that the inlet temperature is 250 ° C, 300 ° C and 350 ° C, and the sample has a capacity of 21 mm in diameter and 50 mm in length.Catalyst poison removerWas passed at a space velocity of 50,000 / h. After conducting a 3-hour flow test, the sampleCatalyst poison removerTake out the sample and heat it with a high-frequency heat treatment machine.Catalyst poison removerThe carbon dioxide generated by burning the deposit is irradiated with infrared rays, and the carbon content of the deposit is measured from the absorbance by non-dispersive infrared analysis.Catalyst poison removerSample the weight of the depositCatalyst poison removerTable 1 shows the result.
[0036]
[Table 1]
Figure 0003710528
  As is apparent from the results in Table 1, it consists of granular alumina.Catalyst poison removerU and a carrier carrier with aluminaCatalyst poison removerThese compared to VCatalyst poison removerIn addition toPotassium, sodiumOf the present invention carryingCatalyst poison removerB, C, F, and G have few deposits (the weight percentage of carbon is small), and are remarkably reduced at a temperature of 300 ° C. or higher. In addition, it carries potassium or sodiumCatalyst poison removerB, C, F and G have a very small amount of deposits even at a temperature of 250 ° C. High loadCatalyst poison removerIn F and G, the amount of deposit attachedFewI understand that. IePotassium, sodiumIt was proved that the amount of deposits can be reduced by supporting the activated carbon on activated alumina.
[0037]
Test example 2
  8 g of Dainippon Ink & Chemicals, Inc. water-soluble varnish (trade name: S-316) was diluted with 100 g of ion-exchanged water to prepare a test aqueous solution. A sample 20 mm long x 40 mm wide x 10 mm long in this test aqueous solutionCatalyst poison removerAfter soaking for 1 minute, the excess aqueous solution was blown off and heat-treated at a temperature of 300 ° C. for 1 hour. Heat-treated sampleCatalyst poison removerThe sample is heated using a high-frequency heat treatment machine.Catalyst poison removerThe amount of carbon dioxide generated by burning the deposit made of thermally denatured varnish adhering to the sample is measured with a non-dispersive infrared analyzer, and the amount of deposit adhering to the sample is measured.Catalyst poison removerIt was calculated as the weight percent of carbon with respect to the total amount.Catalyst poison removerTests were conducted for V, H, I, J, B, K, L, M, N, C, and P, and the results are shown in FIGS.
  From FIG. 1 and FIG. 2, as the loading amount of potassium or sodium increasesCatalyst poison removerIt can be seen that the amount of deposits deposited on the surface (the amount of carbon deposited) decreases.
[0038]
Test example 3
  Exhaust temperature generated from the outer oven of the outer surface of cans containing the catalyst poison consisting of organic silicone contained in the additive, the cellosolve that volatilizes from the paint, and the tar-like heavy component in which the solid content (resin) of the paint is thermally denatured. Pre-heated 150 ° C paint exhaust gas to 300 ° C and using a portable exhaust gas purification tester (Model 88 manufactured by JGC Universal Co., Ltd.) measuring 70 mm long x 70 mm wide x 40 mm longCatalyst poison removerWas installed in two stages and processed at a space velocity of 76000 / h. After 200 hours, the sampleCatalyst poison removerTake out the sampleCatalyst poison removerThe deposit adhering to the sample was heat-treated with a high-frequency heat treatment machine in the same manner as in Test Example 1, and the sample wasCatalyst poison removerThe amount of carbon dioxide generated by burning deposits adhering to the sample is measured by non-dispersive infrared analysis,Catalyst poison removerCalculate the amount of deposit on the central part of the carbon as the weight of carbon,Catalyst poison removerTable 2 shows the amount of carbon deposited per liter (g).
[0039]
[Table 2]
Figure 0003710528
  As is apparent from the results in Table 2, the conventional carrier in which alumina is supported on a honey-cle carrier.Catalyst poison removerThese compared to VCatalyst poison removerOf the present invention further supporting potassium.Catalyst poison removerJ andCatalyst poison removerB and sodium supportedCatalyst poison removerN andCatalyst poison removerC shows that the amount of deposit adhering (carbon adhering amount) is small even in an actual factory exhaust gas treatment test, and the amount of deposit adhering can be further reduced by increasing the amount of potassium or sodium supported. That is, the present inventionCatalyst poison removerIt was proved in coating exhaust gas that substances with high adhesiveness and adhesiveness are difficult to deposit and difficult to cover with deposits.
[0040]
Test example 4
  In recent years, in the exhaust gas of 200 to 250 ° C discharged from an offset printing drying furnace operated under severe high temperature conditions in order to shorten the drying time with the speed of paint printing, organosilicon which becomes catalyst poison And organic phosphorus, the volatile matter from the paint is thermally denatured.Catalyst poison removerAdhere to and deposit. This offset printing drying furnace exhaust gas at a temperature of 350 ° C.Catalyst poison removerWhen pre-treated with V, about 1-2 months,Catalyst poison removerDue to changes in factory exhaust gas temperature due to operational fluctuations,Catalyst poison removerAn accident occurred in which the deposits of the fire ignited. On the other hand, the present inventionCatalyst poison removerB andCatalyst poison removerThe same pretreatment was performed using C, but after 6 months, almost no deposits were observed, and the effective pretreatment could be continued.
[0041]
Test Example 5
  The factory exhaust gas at a temperature of 400-500 ° C discharged from the enamel wire coating baking furnace contains organic silicone and organic tin, which are catalyst poisons, and the organic compounds that volatilize from the insulating varnish are thermally denatured.Catalyst poison removerAdhere to and deposit. This enamel wire painting baking furnace exhaust gas is heated at a temperature of 350 ° C.Catalyst poison removerWhen pre-treated with V, about 2-3 months,Catalyst poison removerDue to changes in factory exhaust gas temperature due to operational fluctuations,Catalyst poison removerAn accident occurred in which the deposits of the fire ignited. On the other hand, the present inventionCatalyst poison removerB andCatalyst poison removerThe same pretreatment was performed using C, but after 6 months, almost no deposits were observed, and the effective pretreatment could be continued.
[0042]
Test Example 6
  A sample containing 5 ppm dimethylsilicone oil and 500 ppm methylethylketone as silicon by injecting a mixture of 0.50 g dimethylsilicone oil and 50 ml methylethylketone at a rate of 0.021 ml / min into an air flow of 10 liters / minute The gas was adjusted. This sample gas is heated so that the inlet temperature of the reactor becomes 300 ° C., and a sample having a diameter of 21 mm and a thickness of 40 mm is formed upstream.Catalyst poison removerAnd passing through a flow-type reactor packed with an oxidation catalyst carrying 2 g / liter of platinum having a diameter of 21 mm × thickness of 22 mm on the downstream side for 60 minutes at a flow rate of 10 liters / minute. The concentration was measured by gas chromatography and the reaction rate was calculated. Of the present inventionCatalyst poison removerB andCatalyst poison removerTable 3 shows the results of the pretreatment activity of organosilicone for C, which were unused, and the pretreatment test products after 6 months in Test Example 4 and Test Example 5 were taken out.
[0043]
[Table 3]
Figure 0003710528
[0044]
Test Example 7
  In Test Example 6, as a sample gas, a mixture of 10.56 g of triethyl phosphate and 50 ml of methyl ethyl ketone was injected at a rate of 0.025 ml / min into an air flow of 10 liter / min, and 50 ppm of phosphoric acid as phosphorus. Test example except that sample gas containing triethyl and 500 ppm methyl ethyl ketone was used after adjustment6In the same manner, the reaction rate of methyl ethyl ketone was calculated. Of the present inventionCatalyst poison removerB andCatalyst poison removerTable 4 shows the results of the pretreatment activity of organophosphorus for C, which were unused, and the pretreatment test products after 6 months in Test Example 4 and Test Example 5 were taken out.
[0045]
[Table 4]
Figure 0003710528
  As is clear from the results of Test Examples 3, 4, 5, 6 and 7, when a factory exhaust gas containing a substance having high adhesion and adhesion is pretreated at an economic temperature of 300 to 350 ° C. Conventional alumina loaded onCatalyst poison removerIn V, the ignition of the deposit occurs in a short period of time, resulting in high heat, and the subsequent catalyst is damaged.Catalyst poison removerOf the present invention further supporting potassium or sodium.Catalyst poison removerIt was proved that the pretreatment performance was maintained with almost no deposits observed after 6 months.
[0046]
【The invention's effect】
1. Organic solvents such as organic solvents, paint mist, etc. in factory exhaust gases, tar-like heavy components whose paint solids (resin) are heat-denatured, etc. It has a high pretreatment capacity that can efficiently remove catalyst poisons such as organometallic compounds, organosilicone compounds, and organophosphorus compounds contained in the gaseous state at an economical temperature, enabling energy saving in factory exhaust gas treatment. is there.
2. Organic solvents such as organic solvents in industrial exhaust gas, paint mist, etc., solid adhesion (resin) of paint, heat-modified tar-like heavy components, etc. Of substanceCatalyst poison removerPrevents adsorbing or adhering to the deposits,Catalyst poison removerThe surface of theCatalyst poison removerThe ability to treat gaseous catalyst poisons, such as organometallic compounds, organosilicon compounds, and organophosphorus compounds, is excellent in long-term stability with little decrease.
3.Catalyst poison removerIn order to prevent the deposit from accumulating, there is no sudden ignition combustion accident of the deposit,Catalyst poison removerAnd it is safe without damaging the entire device or causing a fire. In addition, thisCatalyst poison removerIt is possible to prevent the subsequent factory exhaust gas treatment catalyst from being burned out by high heat generated by the ignition and combustion of the deposits.
[Brief description of the drawings]
FIG. 1 of the present inventionCatalyst poison removerOf potassium loadingCatalyst poison removerIt is a graph which shows the relationship of the adhesion amount (carbon adhesion amount) of the deposit to the.
FIG. 2 of the present inventionCatalyst poison removerSodium loading ofCatalyst poison removerIt is a graph which shows the relationship of the adhesion amount (carbon adhesion amount) of the deposit to the.

Claims (8)

(1)多孔質活性アルミナと(2)ナトリウムおよびカリウムよりなる群から選ばれた1種以上の金属からなることを特徴とする触媒毒除去剤A catalyst poison remover comprising (1) porous activated alumina and (2) one or more metals selected from the group consisting of sodium and potassium . 前記(1)多孔質活性アルミナがγ−アルミナである請求項1記載の触媒毒除去剤2. The catalyst poison remover according to claim 1, wherein the porous activated alumina is γ-alumina. 前記金属が前記触媒毒除去剤1リッター当たり金属換算で0.5〜30g含有されている請求項1または2記載の触媒毒除去剤 The catalyst poison remover according to claim 1 or 2, wherein the metal is contained in an amount of 0.5 to 30 g in terms of metal per liter of the catalyst poison remover . 工場排ガスを150℃〜400℃の温度で(1)多孔質活性アルミナと(2)ナトリウムおよびカリウムよりなる群から選ばれた1種以上の金属からなる触媒毒除去剤により前処理した後、工場排ガス中の可燃性物質を接触酸化処理することを特徴とする工場排ガスの処理方法 The factory exhaust gas is pretreated at a temperature of 150 ° C. to 400 ° C. with a catalyst poison remover composed of one or more metals selected from the group consisting of (1) porous activated alumina and (2) sodium and potassium. A method for treating factory exhaust gas, which comprises subjecting a combustible substance in exhaust gas to contact oxidation treatment . 前記(1)多孔質活性アルミナがγ−アルミナである請求項4記載の工場排ガスの処理方法 The method of treating factory exhaust gas according to claim 4, wherein the porous activated alumina (1) is γ-alumina . 前記金属が前記触媒毒除去剤1リッター当たり金属換算で0.5〜30g含有されている請求項4または5記載の工場排ガスの処理方法。 The method for treating factory exhaust gas according to claim 4 or 5, wherein the metal is contained in an amount of 0.5 to 30 g in terms of metal per liter of the catalyst poison remover . 前記工場排ガスが気体状の触媒毒に加えて、有機化合物および/またはタール状の重質分を含有することを特徴とする請求項4、5または6記載の工場排ガスの処理方法。7. The method for treating factory exhaust gas according to claim 4, wherein the factory exhaust gas contains an organic compound and / or a tar-like heavy component in addition to the gaseous catalyst poison . 工場排ガスの流れの上流側に請求項1〜3いずれか記載の触媒毒除去剤が、下流側に酸化触媒が充填されていることを特徴とする工場排ガスを処理するための流通式反応装置 A flow reactor for treating factory exhaust gas, wherein the catalyst poison removing agent according to any one of claims 1 to 3 is filled upstream of a flow of factory exhaust gas and an oxidation catalyst is filled downstream .
JP26649595A 1995-09-20 1995-09-20 Catalyst poison remover, factory exhaust gas treatment method and flow reactor using the same Expired - Fee Related JP3710528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26649595A JP3710528B2 (en) 1995-09-20 1995-09-20 Catalyst poison remover, factory exhaust gas treatment method and flow reactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26649595A JP3710528B2 (en) 1995-09-20 1995-09-20 Catalyst poison remover, factory exhaust gas treatment method and flow reactor using the same

Publications (2)

Publication Number Publication Date
JPH0985087A JPH0985087A (en) 1997-03-31
JP3710528B2 true JP3710528B2 (en) 2005-10-26

Family

ID=17431726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26649595A Expired - Fee Related JP3710528B2 (en) 1995-09-20 1995-09-20 Catalyst poison remover, factory exhaust gas treatment method and flow reactor using the same

Country Status (1)

Country Link
JP (1) JP3710528B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766388B1 (en) * 1997-07-24 2000-01-14 Rhodia Chimie Sa PROCESS FOR REMOVAL OF ORGANOPHOSPHORUS COMPOUNDS CONTAINED IN A GAS OR LIQUID
JP4617620B2 (en) * 2001-08-03 2011-01-26 マツダ株式会社 Catalyst for oxidizing exhaust gas containing phosphorus, and exhaust gas oxidizer
CN1938089B (en) 2004-03-30 2010-12-08 日挥通用株式会社 Catalyst for discharge gas purification and method of purifying discharge gas
JP4711731B2 (en) * 2005-05-10 2011-06-29 日揮ユニバーサル株式会社 Exhaust gas purification catalyst composition
FR2907348B1 (en) * 2006-10-18 2008-12-12 Inst Francais Du Petrole USE OF ALUMINS AS A MASS OF CAPTATION OF ORGANOMETALLIC COMPLEXES OF SILICON
CN114100669B (en) * 2021-11-25 2024-03-08 青岛华世洁环保科技有限公司 Pretreatment agent for silicon-containing VOCs, and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0985087A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP5576023B2 (en) Ammonia oxidation catalyst for coal burning public facilities
US4303552A (en) Diesel exhaust catalyst
JPWO2005094991A1 (en) Exhaust gas purification catalyst and exhaust gas purification method
CA2506468C (en) Exhaust gas purifying catalyst and method for purifying exhaust gas
WO2017111350A1 (en) Catalyst-coated filter in which activity of catalyst is increased by adding lithium cocatalyst
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
JP3710528B2 (en) Catalyst poison remover, factory exhaust gas treatment method and flow reactor using the same
US5102634A (en) Method for purifying exhaust gas and apparatus
US4980137A (en) Process for NOx and CO control
EP3285913B1 (en) A process for the removal of soot from a sulfurous gas stream
CS276090B6 (en) Catalytic mixture
JPH10238741A (en) Catalytic combustion type thermal storage exhaust gas treating apparatus
JP3457917B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2013180286A (en) Denitration catalyst for treating exhaust gas and method for treating exhaust gas
JP2003328734A (en) Exhaust pipe and exhaust gas denitration device preventing adhesion of urea
JP2004066009A (en) Carbon material and equipment for treating flue gas
JP2000024500A (en) Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus
EP0437901B1 (en) Method for purifying exhaust gas and apparatus therefor
JP3596107B2 (en) Heat-resistant exhaust gas purifying catalyst, method for producing the same, and exhaust gas purifying apparatus using the same
JP2000015100A (en) Exhaust gas treatment catalyst, exhaust gas treatment method and apparatus
JPH05245343A (en) Treatment of exhaust gas
JPH0663359A (en) Nitrogen oxides purifying method and waste gas treating device
WO2010016250A1 (en) Catalyst for removing nitrogen oxide, system for removing nitrogen oxide using same and method for removing nitrogen oxide using same
WO1995024258A1 (en) Method for removing nitrous oxide
EP0993857B1 (en) Method for the catalytic oxidation of VOC/CO in the presence of organosilicate compounds

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees