JPS5846547B2 - Method for forming insulation coating on grain-oriented silicon steel sheet - Google Patents

Method for forming insulation coating on grain-oriented silicon steel sheet

Info

Publication number
JPS5846547B2
JPS5846547B2 JP54035341A JP3534179A JPS5846547B2 JP S5846547 B2 JPS5846547 B2 JP S5846547B2 JP 54035341 A JP54035341 A JP 54035341A JP 3534179 A JP3534179 A JP 3534179A JP S5846547 B2 JPS5846547 B2 JP S5846547B2
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
grain
steel sheet
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54035341A
Other languages
Japanese (ja)
Other versions
JPS55128543A (en
Inventor
靖雄 横山
成 吉田
宏 根本
延行 森戸
宏威 石飛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP54035341A priority Critical patent/JPS5846547B2/en
Publication of JPS55128543A publication Critical patent/JPS55128543A/en
Publication of JPS5846547B2 publication Critical patent/JPS5846547B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は、方向性珪素鋼板の絶縁被膜形成方法に関し、
特に本発明は、MgO−8iO2系よりなり密着性、均
一性ならびに平滑性に優れた方向性珪素鋼板の絶縁被膜
形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an insulating film on a grain-oriented silicon steel plate,
In particular, the present invention relates to a method for forming an insulating coating on a grain-oriented silicon steel sheet made of MgO-8iO2 and having excellent adhesion, uniformity, and smoothness.

方向性珪素鋼板は変圧器の積層鉄心あるいは巻鉄心とし
てこれを用いる場合に、層間の絶縁性が保たれるように
、表面が電気絶縁性の被膜で被覆される。
When a grain-oriented silicon steel plate is used as a laminated or wound core of a transformer, its surface is coated with an electrically insulating film so that insulation between layers is maintained.

この被膜は電気絶縁性に加え、素地との密着性、均一性
、耐熱性、平滑性、占積率など、多くの要件において、
良好な特性が要求される。
In addition to electrical insulation, this coating meets many requirements such as adhesion to the substrate, uniformity, heat resistance, smoothness, and space factor.
Good characteristics are required.

通常、一方向性珪素鋼板はSi、4.0%以下を含有す
る珪素鋼素材を熱延し、中間焼鈍をはさむ一回または二
回の冷延工程により、最終厚みの冷延板を得、つぎに脱
炭を兼ねた一次再結晶焼鈍を施し、さらに(i’to)
(ooi)方位の二次・再結晶粒を発達させるとともに
、鋼中の有害不純物を除去する高温仕上げ焼鈍を施す一
連の工程を経て製造される。
Normally, unidirectional silicon steel sheets are produced by hot rolling a silicon steel material containing 4.0% or less of Si, and performing one or two cold rolling processes with intermediate annealing to obtain a cold rolled sheet with the final thickness. Next, primary recrystallization annealing is performed which also serves as decarburization, and further (i'to)
It is manufactured through a series of processes including high-temperature finish annealing to develop secondary and recrystallized grains with (ooi) orientation and to remove harmful impurities in the steel.

前記MgO5i02系絶縁被膜をこの一連の工程で同時
に形成させる方法としては、上記−次再結晶焼鈍をH,
20とH2を含む雰囲気において700〜900℃の温
度で数分間連続的に行なうことにより、脱炭と同時に鋼
中の珪素を酸化してシリカ(Sin9)を含む酸化膜を
表面に生じさせたのち、マグネシア(MgO)を主体と
して含む物質を焼鈍分離剤として塗布し、コイル状に巻
き取って1100〜1300℃の高温仕上げ焼鈍を行な
うことによって上記SiO2とMgOを反応せしめ、主
としてフォルステライト(2Mgo−8iO2)からな
るガラス状の絶縁被膜(以下、これをガラス被膜と称す
る)を形成させる方法が公知となっている。
As a method for simultaneously forming the MgO5i02-based insulating film in this series of steps, the above-mentioned recrystallization annealing is performed using H,
By continuously performing the process for several minutes at a temperature of 700 to 900°C in an atmosphere containing 20 and H2, the silicon in the steel is oxidized at the same time as decarburization, and an oxide film containing silica (Sin9) is formed on the surface. , a substance mainly containing magnesia (MgO) is applied as an annealing separator, wound into a coil, and subjected to high-temperature finishing annealing at 1100 to 1300°C, thereby causing the SiO2 and MgO to react, and forming mainly forsterite (2Mgo- A method of forming a glass-like insulating film (hereinafter referred to as a glass film) made of 8iO2) is known.

この方法においてガラス被膜の品質を決定づける第一に
重要な要因は前記の脱炭を兼ねた連続焼鈍(以下、脱炭
焼鈍と称する)時に形成する酸化膜の組成と量である。
In this method, the first important factor that determines the quality of the glass coating is the composition and amount of the oxide film formed during the continuous annealing that also serves as decarburization (hereinafter referred to as decarburization annealing).

酸化膜の組成としては、シリカ(5102) 、ファヤ
ライト(F12SiO4)。
The composition of the oxide film is silica (5102) and fayalite (F12SiO4).

酸化鉄(FeO−Fe304)の各相がこれに関与し、
その比率は、焼鈍雰囲気、温度、時間によって影響され
るが、雰囲気の酸化性がもつとも支配的で、酸化性が高
いほどファヤライト、さらには酸化鉄(以下単にFeO
で示す)の比率が増加する。
Each phase of iron oxide (FeO-Fe304) is involved in this,
The ratio is influenced by the annealing atmosphere, temperature, and time, but it is dominated by the oxidizing nature of the atmosphere;
) increases.

本発明者等の経験によると、FeOの生成領域で焼鈍し
た場合、得られたガラス被膜は部分的に点状の被膜欠除
が生じて電気絶縁性が劣るもの、全体に表面の凹凸が激
しく、占積率の劣るものなどが生じやすく、均一で平滑
なガラス被膜を得るにはきわめて不利であることがわか
った。
According to the experience of the present inventors, when annealing is performed in the FeO generation region, the resulting glass coating has some point-like defects in some parts, resulting in poor electrical insulation, and the overall surface is severely uneven. It was found that this method tends to cause problems such as poor space factor, and is extremely disadvantageous in obtaining a uniform and smooth glass coating.

すなわち、酸化膜の構成成分としては、シリカとファヤ
ライトを主成分とし、かつ、そのトータル量(被膜中酸
素目付量で評価される)が、ある範囲に管理されている
ことが良好なガラス被膜を得るための必要条件となるの
である。
In other words, the main components of the oxide film are silica and fayalite, and the total amount (evaluated by the amount of oxygen in the film) must be controlled within a certain range to ensure a good glass film. This is a necessary condition for obtaining it.

しかるに、FeOが生成しない領域まで脱炭焼鈍雰囲気
の酸化性(H2O分圧とH2分圧の比で決定される)を
低下させると、鋼中Siの拡散速度が小さいために、酸
化膜形成速度が大巾に低下し、必要な酸素目付量が得ら
れない。
However, when the oxidizing property of the decarburization annealing atmosphere (determined by the ratio of H2O partial pressure to H2 partial pressure) is reduced to a region where FeO is not produced, the rate of oxide film formation decreases due to the low diffusion rate of Si in the steel. The amount of oxygen decreases significantly, making it impossible to obtain the required amount of oxygen.

その結果、ガラス被膜は薄弱となり、密着性の低下がも
たらされる。
As a result, the glass coating becomes thin and weak, resulting in a decrease in adhesion.

その対策として脱炭焼鈍時間を延長することは、たゾち
に生産性低下につながるので、工業的には非常に不利で
ある。
Extending the decarburization annealing time as a countermeasure to this problem immediately leads to a decrease in productivity, which is extremely disadvantageous from an industrial perspective.

また、一方では脱炭焼鈍後に塗布する焼鈍分離剤中に8
102または珪酸塩化合物を添加することにより、ガラ
ス被膜形成に与えるSiO2成分を補おうとする考え方
も、数多く提案されたが、この場合でも、脱炭焼鈍時の
酸素目付量が少ないとガラス被膜の均一性、密着性改善
にほとんど効果が認められず、酸素目付量が多い場合に
は均一性向上に効果が認められる場合もあるが、必要以
上に表面層が厚くなり、占積率低下が避けられない。
On the other hand, in the annealing separator applied after decarburization annealing, 8
Many ideas have been proposed to supplement the SiO2 component that contributes to the formation of the glass film by adding 102 or silicate compounds, but even in this case, if the oxygen basis weight during decarburization annealing is small, the uniformity of the glass film will be reduced. However, if the oxygen basis weight is large, it may be effective in improving uniformity, but the surface layer becomes thicker than necessary and a decrease in space factor is avoided. do not have.

このように従来の技術によれば、良好なガラス被膜形成
条件を工業的設備で充分に満足することが困難であり、
両者の妥協点としてFeO生成と抑制の境界付近の脱炭
焼鈍条件が採用されることが多くそのため、ガラス被膜
形成とその品質はかなり不安定なものとならざるをえな
かった。
As described above, according to the conventional technology, it is difficult to fully satisfy the favorable glass coating formation conditions with industrial equipment.
As a compromise between the two, decarburization annealing conditions near the boundary between FeO generation and suppression are often adopted, and as a result, the formation of a glass coating and its quality have become quite unstable.

本発明は、従来技術による方向性珪素鋼板の絶縁被膜の
有する欠点を除去、改善した方向性珪素鋼板の絶縁被膜
形成方法を提供することを目的とするものであり、所望
の最終厚みに冷間圧延した珪素鋼帯の表面に本質的にS
i、O,Hを含有する珪素化合物あるいは本質的にSi
、0を含有する珪素化合物の倒れか1種をSi重量で鋼
板片面in当り0.5〜70即付着せしめた後、脱炭焼
鈍を施し、次いで焼鈍分離剤を塗布し、さらに高温仕上
焼鈍を施すことによって、前記目的を達成することがで
きる。
An object of the present invention is to provide a method for forming an insulating film on a grain-oriented silicon steel sheet, which eliminates and improves the drawbacks of the insulation film on a grain-oriented silicon steel sheet according to the prior art. Essentially S on the surface of rolled silicon steel strip
Silicon compounds containing i, O, H or essentially Si
After immediately adhering one type of silicon compound containing 0.0 to 0.5 to 70 Si per inch on one side of the steel plate, decarburization annealing was performed, then an annealing separator was applied, and high-temperature finishing annealing was performed. By applying this, the above objective can be achieved.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明者等は、過剰FeOの生成をもたらすことなく、
必要十分な量の酸化膜を形成させることを目的に、脱炭
焼鈍の雰囲気、温度についてはもとより、その焼鈍前の
表面状態についても広く研究した結果、脱炭焼鈍前に一
定量のSi化合物を付着させることにより、FeOの生
成が抑制されること、およびFeOの生成しない領域の
脱炭焼鈍雰囲気においてもシリカ、7アヤライトの形で
の酸化物の形成速度を著しく高めうること、そしてそれ
により、均一で密着性のよい平滑なガラス被膜が安定し
て得られることを新却に見出し、本発明を完成した。
The inventors have determined that, without resulting in the production of excess FeO,
In order to form a necessary and sufficient amount of oxide film, we have extensively researched not only the atmosphere and temperature of decarburization annealing, but also the surface condition before annealing. By adhering FeO, the formation of FeO is suppressed, and even in the decarburization annealing atmosphere in the region where FeO is not formed, the formation rate of oxides in the form of silica and heptayarite can be significantly increased, and thereby, The present invention was completed based on the discovery that a smooth glass coating that is uniform and has good adhesion can be stably obtained.

本発明において、使用されるSi化合物は本質的にSi
、0.HあるいはSi、Oからなり、すなわち8102
・XH2Oの形で表わされる化合物であり、オルト珪酸
(H4S t 04 )、メタ珪酸(H2SiO3)、
コロイダルシリカの如き水溶状超微粒SiO2および珪
酸アルカリ水溶液中で鋼板を電解処理したときに電着す
る5i02またはこれにH2Oが結合した化合物等であ
る。
In the present invention, the Si compound used is essentially Si
,0. Consisting of H or Si, O, i.e. 8102
・It is a compound expressed in the form of XH2O, and includes orthosilicic acid (H4S t 04 ), metasilicic acid (H2SiO3),
These include water-soluble ultrafine particles of SiO2 such as colloidal silica, 5i02 which is electrodeposited when a steel plate is electrolytically treated in an aqueous alkali silicate solution, or a compound in which H2O is bonded to this.

次に本発明を実験データについて説明する。Next, the present invention will be explained using experimental data.

第1図は、表面を充分、清浄化した冷延後珪素鋼板を3
%オルト珪酸ナトリウム水溶液中で電解処理した場合の
Si付着量と、その鋼板を脱炭焼鈍した後の酸化膜形成
量(酸素目付量)、脱炭量(地鉄炭素)、表面の酸化鉄
(FeO)生成程度、およびこれらにMgOを塗布して
高温仕上げ焼鈍した後のガラス被膜外観などの関係を示
している。
Figure 1 shows three cold-rolled silicon steel sheets whose surfaces have been thoroughly cleaned.
% Si adhesion when electrolytically treated in a sodium orthosilicate aqueous solution, the amount of oxide film formed after decarburizing annealing the steel sheet (oxygen basis weight), the amount of decarburization (substrate carbon), and the surface iron oxide ( The graph shows the relationship between the degree of FeO) formation and the appearance of the glass coating after coating with MgO and high-temperature finish annealing.

珪酸ナトリウムを含む水溶液中で鋼板を電解処理した場
合、電気量条件によるが数十■/m′までのSiO2ま
たはこれにH2Oの結合した化合物が鋼板表面に電着す
ることが一般に認められ、後述の具体的実施方法でも述
べるように、冷延後の珪素鋼板表面にSi化合物を一定
量付着させる本発明の手段のひとつにこの電解処理を採
用することができる。
When a steel plate is electrolytically treated in an aqueous solution containing sodium silicate, it is generally recognized that up to several tens of square meters/m' of SiO2 or a compound in which H2O is bonded to SiO2 is electrodeposited on the surface of the steel plate, depending on the electrical quantity conditions. As described in the specific implementation method, this electrolytic treatment can be employed as one of the means of the present invention for depositing a certain amount of Si compound on the surface of a silicon steel sheet after cold rolling.

Si付着量を求めるにあたっては蛍光X線分析装置を用
い、あらカルめ作製した検量線から目付量に換算した。
In determining the Si adhesion amount, a fluorescent X-ray analyzer was used, and it was converted into the basis weight from a calibration curve prepared in a rough manner.

この場合バックグラウンドはなんらSi付着処理を行な
わない冷延−脱脂後の珪素鋼板表面の状態であって、こ
れをゼロとする。
In this case, the background is the state of the surface of the silicon steel sheet after cold rolling and degreasing without any Si adhesion treatment, and is taken as zero.

FeO生戒生変生変程度外線吸収スペクトル形および外
観の黒変程度から判定した。
The degree of FeO biodegradation was judged from the shape of the external absorption spectrum and the degree of blackening of the appearance.

Si化合物の付着によるFeO生成の抑制効果は鋼板片
面Inあたり、Siとして0.2m9の場合からすでに
あられれ、Si化合物の付着量の増大とともに、連続的
に増加することが判る。
It can be seen that the effect of suppressing FeO generation due to the adhesion of the Si compound is already seen when the amount of Si per In on one side of the steel plate is 0.2 m9, and increases continuously as the amount of the adhesion of the Si compound increases.

第2図はSi付着量がOおよび3■/dの冷延後珪素鋼
板を脱炭焼鈍した後、表面反射赤外吸収スペクトルを測
定したものである。
FIG. 2 shows a surface reflection infrared absorption spectrum measured after decarburizing and annealing a cold-rolled silicon steel sheet with a Si adhesion amount of O and 3 .mu./d.

700〜400CrIl−1の間にあるブロードな吸収
はFeOの存在を示し、また1 000cru−’付近
あるいは600cfIL−1付近の比較的鋭い吸収はフ
ァヤライトの存在を示すものであるが、Si化合物の付
着によってファヤライトの生成が促進される一方、Fe
Oの生成が抑制されることがあきらかである。
A broad absorption between 700 and 400 CrIl-1 indicates the presence of FeO, and a relatively sharp absorption near 1 000 CrIl-1 or 600 cfIL-1 indicates the presence of fayalite, but it may be due to the attachment of Si compounds. While the formation of fayalite is promoted by Fe
It is clear that the production of O is suppressed.

一方第1図によると、脱炭焼鈍後の酸化膜形成量(酸素
目付量)は、Si付着量が約6■/、(以下の範囲では
Si化合物の付着量とともに連続的に増加する。
On the other hand, according to FIG. 1, the amount of oxide film formed after decarburization annealing (oxygen basis weight) increases continuously with the amount of Si adhesion in the following ranges, with the amount of Si adhesion being approximately 6/cm.

この酸素目付量の増加は付着させたSi化合物に配位す
る酸素量にくらべ、はるかに多いことが本発明者等が新
規に知見した重要な特徴であって、すなわち本発明によ
れば単に酸化物の不足分を脱炭焼鈍前にSi化合物を用
いて補っただけの効果が得られるのではないことを知見
した。
An important feature newly discovered by the present inventors is that this increase in the amount of oxygen per unit area is much larger than the amount of oxygen coordinated to the attached Si compound. It has been found that the effect is not only obtained by using a Si compound to compensate for the lack of material before decarburization annealing.

Si化合物がSiとして7■/7ri”を超えると母体
である珪素鋼板の脱炭が阻害されるとともに、酸化膜形
成量も急激に減少する。
If the Si compound exceeds 7 .mu./7ri" in terms of Si, decarburization of the base silicon steel sheet is inhibited, and the amount of oxide film formed also decreases rapidly.

これは表面に緻密で保護性の強い被膜が形成されるため
であろうと考えられる。
This is thought to be due to the formation of a dense and highly protective film on the surface.

方向性珪素鋼の場合、脱炭の不良は磁気特性に対し、致
命的な悪影響をおよぼすものであり、本発明において、
Si化合物の付着量の上限をSiにして7■/dと定め
た理由はこのためである。
In the case of grain-oriented silicon steel, poor decarburization has a fatal negative effect on magnetic properties, and in the present invention,
This is the reason why the upper limit of the amount of Si compound deposited is set at 7 .mu./d.

良好なガラス被膜をもたらす効果はSi付着量が0.2
m9/m”からあられれるが0.57n9 / m2よ
り少ないとあまり顕著ではない。
The effect of producing a good glass coating is when the Si adhesion amount is 0.2.
Although hail occurs from 0.57n9/m2, it is not very noticeable if it is less than 0.57n9/m2.

本発明において下限を0.51nI?/rrlとした理
由はこのためである。
In the present invention, the lower limit is 0.51nI? This is the reason why it is set to /rrl.

このようなSi化合物の付着によるFeO生成の抑制お
よび酸化膜形成量の増加をもたらす効果は、所期の成分
と酸素量をもつ酸化膜を得ることに利用しうるとともに
、脱炭焼鈍の諸条件の選択範囲を広げることにも役立つ
The effect of suppressing FeO production and increasing the amount of oxide film formed due to the adhesion of Si compounds can be utilized to obtain an oxide film with desired components and oxygen content, and can also be used to adjust the various conditions of decarburization annealing. It also helps to expand the selection range.

通常の場合、FeOの生成が避けられないような強酸化
性の雰囲気、あるいは酸化速度の小さな弱酸化性の雰囲
気でもSi化合物を付着せしめた珪素鋼板には適用可能
となるからである。
This is because normally, a strongly oxidizing atmosphere where the formation of FeO is unavoidable or a weakly oxidizing atmosphere where the oxidation rate is low can be applied to a silicon steel sheet to which a Si compound is attached.

このことは実生産に用いる長大な連続焼鈍炉において、
炉内全域の雰囲気を一定組成に保つという、きわめて困
難な制御が必ずしも必要でなくなる点からも有利である
This means that in the long continuous annealing furnace used for actual production,
It is also advantageous in that extremely difficult control of maintaining the atmosphere throughout the furnace at a constant composition is not necessarily required.

本発明によれば、2〜4%Siを含む従来の珪素鋼に熱
延を施し、それに続いて適当な焼鈍ならびに冷延を施し
て最終板厚とした珪素鋼板を出発素材として用いること
ができる。
According to the present invention, a silicon steel plate can be used as a starting material by hot rolling a conventional silicon steel containing 2 to 4% Si, followed by appropriate annealing and cold rolling to obtain a final thickness. .

すなわち、成分組成範囲が従来の方向性珪素鋼素材の戒
分絹成範囲内にある素材、例えば一次粒成長抑制剤とし
てSe、S、Sb、A1等の元素を含有した素材、およ
び最終冷延によって最終板厚にされるまでに従来の方向
性珪素鋼素材に施される熱延、中間焼針、冷延等の種々
の処理と同様の処理を施された素材を本発明の出発素材
として用いることができる。
That is, materials whose composition range is within the range of conventional grain-oriented silicon steel materials, for example, materials containing elements such as Se, S, Sb, A1 as primary grain growth inhibitors, and final cold rolled materials. The starting material of the present invention is a material that has been subjected to various treatments such as hot rolling, intermediate annealing, and cold rolling that are applied to conventional grain-oriented silicon steel materials until the final thickness is achieved by Can be used.

本発明によれば、鋼板上にSi化合物を付着させるには
、大別して塗布による方法と電解処理による方法との二
つの方法を用いることができる。
According to the present invention, two methods can be used to adhere a Si compound onto a steel plate, which can be roughly divided into a coating method and an electrolytic treatment method.

塗布による方法を選ぶ場合は、塗布液かはじかないよう
事前に表面を脱脂して充分、濡れ性をよくしておかなけ
ればならない。
If a coating method is chosen, the surface must be thoroughly degreased in advance to ensure good wettability so that the coating solution does not repel.

塗布剤としては10〜20μmの粒子径をもつコロイド
状シリカ、あるいは水に対する溶解度は小さいが、珪酸
(S r 02・XH20)などを用いることができる
As a coating agent, colloidal silica having a particle size of 10 to 20 μm, or silicic acid (S r 02.XH20), which has low solubility in water, can be used.

塗布のための具体的な手段、塗布液の成分、濃度などは
いかようでもよく、要は本発明による付着量を満足する
ものであればよい。
The specific means for coating, the components of the coating liquid, the concentration, etc. may be any, as long as they satisfy the coating amount according to the present invention.

たとえば0.5〜2.0mm程度の間隔に溝を切った塗
布ロールを用いれば、塗布液濃度、ロール圧下刃の選択
により塗布量が任意に制御できるため好適である。
For example, it is preferable to use a coating roll with grooves cut at intervals of about 0.5 to 2.0 mm, since the coating amount can be controlled arbitrarily by selecting the coating liquid concentration and roll reduction blade.

つぎに電解処理による方法について述べる。Next, a method using electrolytic treatment will be described.

方向性珪素鋼板は、最終冷間圧延の後、表面に付着した
圧延油、鉄粉、あるいは最終冷間圧延に先立つ、種々の
工程において形成したスケールの粒子などを除去し、清
浄な表面を得るためにクリーニングが行われる。
After the final cold rolling of grain-oriented silicon steel sheets, rolling oil and iron powder adhering to the surface, as well as scale particles formed in various processes prior to the final cold rolling, are removed to obtain a clean surface. Cleaning is performed for this purpose.

クリーニング方法としては、浸漬脱脂、スプレー脱脂、
ブラッシング脱脂などの他アルカリ性脱脂浴中で鋼板を
電極として電解するいわゆる電解脱脂がある。
Cleaning methods include immersion degreasing, spray degreasing,
In addition to brushing degreasing, there is so-called electrolytic degreasing, which involves electrolysis using a steel plate as an electrode in an alkaline degreasing bath.

この電解脱脂は、通常、苛性ソーダ、炭酸ソーダ、リン
酸ソーダ、珪酸ソーダ等の一種あるいは二種以上を含む
水溶液が脱脂浴として採用されるが、珪酸塩を含む脱脂
浴を用いて鋼板を電解脱脂すると、鋼板表面に珪酸また
は珪酸塩あるいはそれらと鉄の水酸化物を含む化合物が
電着する。
In this electrolytic degreasing, an aqueous solution containing one or more of caustic soda, soda carbonate, sodium phosphate, sodium silicate, etc. is usually used as a degreasing bath. Then, silicic acid, silicate, or a compound containing iron hydroxide and silicic acid is electrodeposited on the surface of the steel sheet.

この現象はとくに陰極において顕著である。This phenomenon is particularly noticeable at the cathode.

最終冷延後の方向性珪素鋼板を珪酸塩を含む脱脂浴中で
電解脱脂するか、通常の浸漬脱脂の末部に電解用電極を
付設することは脱脂処理と同時に本発明の主旨であるS
i化合物の付着を実現できることからきわめて有利であ
る。
It is the gist of the present invention to electrolytically degrease the grain-oriented silicon steel sheet after final cold rolling in a degreasing bath containing silicate, or to attach an electrode for electrolysis at the end of normal immersion degreasing at the same time as degreasing.
This is extremely advantageous because it allows the attachment of i-compounds.

また、電気量の制御によってSi化合物の付着量を任意
に選ぶことができることも有利な点である。
Another advantage is that the amount of Si compound deposited can be arbitrarily selected by controlling the amount of electricity.

この電解浴に用いる珪酸塩はナトリウムの珪酸塩すなわ
ちオルト珪酸ナトリウム (Na 4 S t 04 )、メタ珪酸ナトリウム(
Na2 S 103 )あるいは種々の珪酸ナトリウム
の液体混合物であるいわゆる水ガラス等が適当である。
The silicates used in this electrolytic bath are sodium silicates, that is, sodium orthosilicate (Na 4 S t 04 ), sodium metasilicate (
Suitable are Na2 S 103 ) or so-called water glass, which is a liquid mixture of various sodium silicates.

また、カリウムあるいはリチウムの珪酸塩を用いること
も可能である。
It is also possible to use potassium or lithium silicates.

いずれも金属イオンとSiのモル比はその如何を問わな
い。
In either case, the molar ratio of metal ions to Si does not matter.

電解浴の組成は上記珪酸化合物を含むものであれば、そ
の他の成分、たとえばNaOH、Na2 co3゜Na
4 P 207 、Na 3 PO4などの存在およ
びその濃度の如何を問わないが、珪酸塩の濃度が0,5
〜5%程度で、脱脂とSiの付着の両方において所期の
目的を遠戚することが可能である。
The composition of the electrolytic bath includes the above-mentioned silicic acid compound, and other components such as NaOH, Na2 co3 °Na
4 P 207 , Na 3 PO 4 , etc., and their concentration does not matter, but if the concentration of silicate is 0.5
At about 5%, it is possible to achieve the desired purpose in both degreasing and Si adhesion.

電解の方法や条件すなわち通電方法、電極形状あるいは
温度、電流密度、電解時間などについても限定する必要
はなく、要は脱脂を充分に行なうことができかつ、Si
が目的量付着する条件を選べばよい。
There is no need to limit the electrolysis method or conditions, such as the current application method, electrode shape or temperature, current density, or electrolysis time.
All you have to do is choose the conditions under which the desired amount of

Si化合物を付着せしめた後に続く連続脱炭焼鈍、焼鈍
分離剤塗布および高温仕上げ焼鈍の各工程は、今日、方
向性珪素鋼板の製造において公知となってている方法に
したがって実施することができる。
The steps of continuous decarburization annealing, application of an annealing separator, and high-temperature finish annealing that follow after depositing the Si compound can be carried out according to methods known today in the production of grain-oriented silicon steel sheets.

すなわち、脱炭焼鈍はすでに詳述したとおり、N2−N
2Oを含む雰囲気中で連続焼鈍を行ない、シリカとファ
ヤライトを主成分として含む酸化膜を形成させるのであ
るが温度は750〜850℃が適当である。
In other words, as already detailed, decarburization annealing is performed using N2-N
Continuous annealing is performed in an atmosphere containing 2O to form an oxide film containing silica and fayalite as main components, and the temperature is suitably 750 to 850°C.

処理時間および雰囲気組成は既述の観点から脱炭と酸化
膜形成が適切に行なえる範囲で任意に選ぶことができる
The treatment time and atmosphere composition can be arbitrarily selected from the above-mentioned viewpoints within a range that allows appropriate decarburization and oxide film formation.

通常、N260〜70φ、露点50〜70℃が適当であ
る。
Usually, N260 to 70φ and dew point of 50 to 70°C are appropriate.

焼鈍分離剤としてはマグネシアを単味で使用する場合は
もちろん、酸化チタン、酸化マンガンあるいはその他の
添加剤を一種または二種以上を加えた場合も被膜の均一
性および密着性が向上する。
As an annealing separator, the uniformity and adhesion of the film are improved not only when magnesia is used alone, but also when one or more of titanium oxide, manganese oxide, or other additives are added.

さらに仕上げ焼鈍についてはN2を含む雰囲気中で11
00〜1300℃の箱焼鈍を行なえばよい。
Furthermore, for final annealing, 11
Box annealing at 00 to 1300°C may be performed.

以下に本発明を実施例について比較例と比較して説明す
る。
The present invention will be explained below by comparing examples with comparative examples.

実施例 1 厚さ0.3 yytmに冷間圧延された3、3%のSi
と、抑制剤としてSを含む珪素鋼板を、オルト珪酸ナト
リウムを主剤とし、ノニオン系活性剤を添加した80℃
のアルカリ脱脂剤を用いて浸漬脱脂した後、充分な水洗
および乾燥を行なった。
Example 1 3.3% Si cold rolled to a thickness of 0.3 yytm
A silicon steel plate containing S as an inhibitor was heated at 80°C with sodium orthosilicate as the main ingredient and a nonionic activator added.
After degreasing by immersion using an alkaline degreaser, sufficient water washing and drying were performed.

この鋼板に80℃の飽和したケイ酸(SiO2・XN2
0 )水溶液を溝入り、リンガ−ロールを用いて塗布し
、乾燥した。
This steel plate was coated with saturated silicic acid (SiO2/XN2) at 80°C.
0) An aqueous solution was applied using a grooved ringer roll and dried.

表面のSi付着量は約0.8■/m′であった。The amount of Si deposited on the surface was approximately 0.8 .mu./m'.

引続いてFeO生成域である露点60℃。N240φ、
残りN2からなる雰囲気中で820℃。
Subsequently, the dew point is 60°C, which is the FeO generation region. N240φ,
820°C in an atmosphere consisting of residual N2.

2.5分の脱炭焼鈍を行なった。Decarburization annealing was performed for 2.5 minutes.

脱炭焼鈍後の酸化膜の酸素目付量は1697m″であっ
た。
The oxygen basis weight of the oxide film after decarburization annealing was 1697 m''.

つぎに焼鈍分離剤としてMgO粉末の水懸濁液を塗布し
、加熱乾燥した。
Next, an aqueous suspension of MgO powder was applied as an annealing separator and dried by heating.

MgOの塗布量は乾燥後で片面、約6 g/mであった
The coating amount of MgO was approximately 6 g/m on one side after drying.

コイル状に巻取った後、N2気流中で12000C,1
5時間の仕上げ焼鈍を行ない、冷却後未反応の分離剤を
除去し、形成したガラス被膜の外観均一性の半定を行な
った。
After winding it into a coil, it was heated at 12000C, 1 in a N2 stream.
Finish annealing was performed for 5 hours, and after cooling, unreacted separating agent was removed, and the appearance uniformity of the formed glass coating was semi-determined.

さらに、リン酸マグネシウムを主剤とし、コロイダルシ
リカと無水クロム酸を添加した処理液を塗布し、800
℃で60秒間、焼きつけてコーティング被膜を形成した
あと、屈曲剥離性、占積率および層間抵抗を測定した。
Furthermore, a treatment solution containing magnesium phosphate as the main ingredient and colloidal silica and chromic anhydride was applied.
After forming a coating film by baking at °C for 60 seconds, the flexural releasability, space factor, and interlayer resistance were measured.

これらの結果は他の実施例の結果とともに表に示す。These results are shown in the table along with the results of other examples.

実施例 2 0.3間に冷間圧延された2、9%のSiと抑制剤とし
てSe 、Sbを含む高磁束密度用珪素鋼板を、80℃
の3%オルト珪酸ソーダ浴中で脱脂をかねて電解処理し
た。
Example 2 A silicon steel plate for high magnetic flux density containing 2.9% Si and Se and Sb as inhibitors was cold rolled at 80°C.
Electrolytic treatment was carried out for degreasing in a 3% sodium orthosilicate bath.

電解条件は交番極性方式で、電気量密度10C/diで
あった。
The electrolysis conditions were an alternating polarity system and a charge density of 10 C/di.

この後、充分な水洗、乾燥を行ない、表面のSi付着量
を調べると約2■/、1であった。
Thereafter, it was thoroughly washed with water and dried, and the amount of Si deposited on the surface was examined and was found to be approximately 2/.1.

引き続いて露点60℃。H248φ、残りN2からなる
雰囲気中で820℃。
Subsequently, the dew point was 60°C. H248φ, remaining at 820°C in an atmosphere consisting of N2.

3分間の脱炭焼鈍を行なった。Decarburization annealing was performed for 3 minutes.

酸化膜の酸素目付量は1.69/rn”であった。The oxygen basis weight of the oxide film was 1.69/rn''.

このあと1φのT i 02を添加したMgOを片面6
.5 g/ 711塗布し、コイル状に巻き取って85
0’C,30時間の二次再結晶のための保定と1200
’C,15時間の高温保定を含む仕上げ焼鈍を行なった
After this, MgO added with 1φ T i 02 was applied to one side for 6
.. Coat 5 g/711, wind up into a coil and roll 85
0'C, retention for 30 hours secondary recrystallization and 1200
'C, finish annealing including high temperature holding for 15 hours was performed.

この後、実施例1と同じ条件で処理し、た。Thereafter, it was treated under the same conditions as in Example 1.

実施例 3 実施例2と同じ珪素鋼板を実施例1と同じ方法によって
、浸漬脱脂し、充分な水洗乾燥を行なったあと、0.0
3φのコロイダルシリカ水溶液を塗布し、乾燥した。
Example 3 The same silicon steel plate as in Example 2 was immersed and degreased in the same manner as in Example 1, thoroughly washed with water, and then dried.
A 3φ colloidal silica aqueous solution was applied and dried.

この時のSi付着量は約5■/dであった。The amount of Si deposited at this time was approximately 5 .mu./d.

ひき続いて露点61°C,H252%。残りN2からな
る雰囲気中で820℃、3分間の脱炭焼鈍を行なった。
Subsequently, the dew point was 61°C and the temperature was 252%. Decarburization annealing was performed at 820° C. for 3 minutes in an atmosphere consisting of residual N2.

酸化膜の酸素目付量は1.89/ m”であった。The oxygen density of the oxide film was 1.89/m''.

このあと、実施例2と同じ条件で処理した。Thereafter, it was treated under the same conditions as in Example 2.

参考例 実施例2と同じ珪素鋼板を、実施例2と同じオルト珪酸
ソーダ浴中で脱脂をかねて電解処理した。
Reference Example The same silicon steel plate as in Example 2 was electrolytically treated in the same sodium orthosilicate bath as in Example 2, also for degreasing.

電解条件は交番極性方式で、電気量密度は45C/dr
rlであった。
The electrolysis conditions are alternating polarity, and the electricity density is 45C/dr.
It was rl.

充分な水洗乾燥の後、調べた表面のSi付着量は約9
yn9/ m”であった。
After thorough washing and drying, the amount of Si deposited on the surface was approximately 9.
yn9/m”.

引き続いて露点600C2H250多、残りN2からな
る雰囲気中で820℃、3分の脱炭焼鈍を行なった。
Subsequently, decarburization annealing was performed at 820°C for 3 minutes in an atmosphere with a dew point of 600C2H250 and the remainder being N2.

酸化膜の酸素目付量は0.8 g/ m”であった。The oxygen basis weight of the oxide film was 0.8 g/m''.

この後、実施例2と同じ条件で処理した。Thereafter, it was treated under the same conditions as in Example 2.

比較例 1 実施例1と同じ珪素鋼板を冷間圧延後、実施例1と同じ
方法によって浸漬脱脂し、充分な水洗、乾燥を行なった
後、Siの付着処理を行なわずに露点60℃、H247
%、残りN2からなる雰囲気中で820℃、5.3分の
脱炭焼鈍を行なった。
Comparative Example 1 The same silicon steel plate as in Example 1 was cold-rolled, then immersed and degreased in the same manner as in Example 1, thoroughly washed with water, and dried, and then heated to a dew point of 60°C and H247 without any Si adhesion treatment.
Decarburization annealing was carried out at 820° C. for 5.3 minutes in an atmosphere consisting of % and N2.

酸化膜の酸素目付量はL3fl/mであった。The oxygen basis weight of the oxide film was L3 fl/m.

この後、実施例1と同じ条件で処理した。Thereafter, it was treated under the same conditions as in Example 1.

比較例 2 実施例2と同じ珪素鋼板を実施例1と同じ方法によって
浸漬脱脂し、水洗乾燥を行なった後、Siの付着処理を
行なわずにFeO生戒生成ある露点60℃、H240%
、残りN2からなる雰囲気中で820℃、4.5分の脱
炭焼鈍を行ない、以下実施例2と同じ条件で処理した。
Comparative Example 2 The same silicon steel plate as in Example 2 was immersed and degreased by the same method as in Example 1, washed with water and dried, and then FeO was produced without any Si adhesion treatment. Dew point: 60°C, H2: 40%
Decarburization annealing was carried out at 820° C. for 4.5 minutes in an atmosphere consisting of the remaining N2, and the following treatment was carried out under the same conditions as in Example 2.

なお、酸化膜の酸素目付量は1.6g/lri’であっ
た。
Note that the oxygen basis weight of the oxide film was 1.6 g/lri'.

これらの結果をまとめて示した表によると、実施例1と
比較例2の比較から、本発明の方法はFeO生成域の雰
囲気で脱炭焼鈍しても、FeOの生成が少なく、均一な
ガラス被膜を形成すること、また、実施例1〜3から、
本発明の方法がいずれも短時間の脱炭焼鈍で所要の酸素
目付量を確保でき、均一なガラス被膜を形成することが
わかる。
According to the table summarizing these results, a comparison between Example 1 and Comparative Example 2 shows that even if the method of the present invention is decarburized annealed in an atmosphere in the FeO generation region, less FeO is generated and a uniform glass is produced. Forming a coating, and from Examples 1 to 3,
It can be seen that all of the methods of the present invention can ensure the required amount of oxygen basis weight in a short time decarburization annealing and form a uniform glass coating.

なお、このガラス被膜の剥離性、占積率、層間抵抗も充
分すぐれていることが判る。
Furthermore, it can be seen that the releasability, space factor, and interlayer resistance of this glass coating are also sufficiently excellent.

なお、参考例は本発明による以上にSiを付着せしめた
場合であるが、酸化膜生成が抑制され、正常なガラス被
膜形成も阻害されることを示している。
Note that the reference example is a case in which more Si is deposited than according to the present invention, and it shows that oxide film formation is suppressed and normal glass film formation is also inhibited.

以上の結果から本発明の方法が脱炭焼鈍の雰囲気におけ
る選択範囲を広げるとともに、脱炭焼鈍の生産性をあげ
、均一で良好な特性をもつガラス被膜を形成する上で犬
なる効果をもつことがあきらかである。
From the above results, it can be concluded that the method of the present invention is effective in expanding the selection range of decarburization annealing atmospheres, increasing the productivity of decarburization annealing, and forming a glass coating with uniform and good properties. is obvious.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかわる脱炭焼鈍前表面のSi付着量
と脱炭焼鈍後の酸化膜の酸素目付量、地鉄のC含有量、
表面の酸化鉄および仕上げ焼鈍後のガラス被膜外観との
関係を示す図、第2図は脱炭焼鈍後の酸化膜表面の反射
赤外吸収スペクトルであり、脱炭焼鈍前表面のSi付着
の有無による相違を示す図である。
Figure 1 shows the amount of Si deposited on the surface before decarburization annealing, the oxygen basis weight of the oxide film after decarburization annealing, and the C content of the base steel, according to the present invention.
A diagram showing the relationship between iron oxide on the surface and the appearance of the glass coating after final annealing. Figure 2 shows the reflection infrared absorption spectrum of the oxide film surface after decarburization annealing, and shows the presence or absence of Si adhesion on the surface before decarburization annealing. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 所望の最終厚みに冷間圧延した珪素鋼帯に脱炭焼鈍
を施して脱炭すると同時に鋼中のSiを酸化して5i0
2を含む酸化膜を表面に生じさせた後、MgOを主体と
する物資を焼鈍分離剤として塗布し、さらにコイル状に
巻き取って高温仕上げ焼鈍を施してS i O2−Mj
iO系被膜を形成する方向性珪素鋼板の絶縁被膜形成方
法において、前記脱炭焼鈍前の珪素鋼帯の表面に本質的
にSi、0.Hを含有する珪素化合物あるいは本質的に
Si、0を含有する珪素化合物の倒れか1種をSi重量
で鋼板片面li当り0.5〜7.0■付着せしめた後、
脱炭焼鈍を施し、次いで焼鈍分離剤を塗布し、さらに高
温仕上溶錬を施すことを特徴とする方向性珪素鋼板の絶
縁被膜形成方法。
1 A silicon steel strip cold-rolled to a desired final thickness is subjected to decarburization annealing to decarburize it and at the same time oxidize the Si in the steel to form 5i0
After forming an oxide film containing 2 on the surface, a material mainly composed of MgO is applied as an annealing separation agent, and the material is further wound into a coil and subjected to high-temperature finish annealing to form SiO2-Mj.
In the method for forming an insulating coating on a grain-oriented silicon steel sheet in which an iO-based coating is formed, the surface of the silicon steel strip before decarburization annealing is essentially Si, 0. After depositing a silicon compound containing H or a silicon compound containing essentially Si, 0 at a weight of Si of 0.5 to 7.0 cm per li on one side of the steel plate,
A method for forming an insulating film on a grain-oriented silicon steel sheet, which comprises performing decarburization annealing, then applying an annealing separator, and further performing high-temperature finish smelting.
JP54035341A 1979-03-26 1979-03-26 Method for forming insulation coating on grain-oriented silicon steel sheet Expired JPS5846547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54035341A JPS5846547B2 (en) 1979-03-26 1979-03-26 Method for forming insulation coating on grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54035341A JPS5846547B2 (en) 1979-03-26 1979-03-26 Method for forming insulation coating on grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS55128543A JPS55128543A (en) 1980-10-04
JPS5846547B2 true JPS5846547B2 (en) 1983-10-17

Family

ID=12439145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54035341A Expired JPS5846547B2 (en) 1979-03-26 1979-03-26 Method for forming insulation coating on grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS5846547B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761827A3 (en) * 1995-09-07 1998-05-27 Kawasaki Steel Corporation Process for producing grain oriented silicon steel sheet, and decarburized sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086418A (en) * 1973-12-07 1975-07-11
JPS5432124A (en) * 1977-08-15 1979-03-09 Nippon Steel Corp Applying method for strain relief annealing seizureproof films on electro- magnetic steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086418A (en) * 1973-12-07 1975-07-11
JPS5432124A (en) * 1977-08-15 1979-03-09 Nippon Steel Corp Applying method for strain relief annealing seizureproof films on electro- magnetic steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761827A3 (en) * 1995-09-07 1998-05-27 Kawasaki Steel Corporation Process for producing grain oriented silicon steel sheet, and decarburized sheet

Also Published As

Publication number Publication date
JPS55128543A (en) 1980-10-04

Similar Documents

Publication Publication Date Title
US3562011A (en) Insulating coating comprising an aqueous mixture of the reaction product of chromium nitrate and sodium chromate,phosphoric acid and colloidal silica and method of making the same
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP3220362B2 (en) Manufacturing method of grain-oriented silicon steel sheet
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JP4018878B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JP2731312B2 (en) Pretreatment method for uniform formation of electrical steel sheet insulation coating
JPS5846547B2 (en) Method for forming insulation coating on grain-oriented silicon steel sheet
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
JP2683036B2 (en) Annealing agent
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP6579260B2 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
JP3668994B2 (en) Method for producing grain-oriented silicon steel sheet
JP2667098B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP4479047B2 (en) Method for producing unidirectional electrical steel sheet with extremely low iron loss
JPS59215421A (en) Method for forming film containing zirconia on surface of silicon steel sheet
JP4635347B2 (en) Magnetic steel sheet manufacturing method with excellent magnetic properties and film adhesion after strain relief annealing
HU182582B (en) Process for preparing electromagnetic steel with texture
JPS5893875A (en) Production of directional silicon steel plate
JP3612753B2 (en) Method for producing grain-oriented silicon steel sheet
WO2020149336A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO1999019538A1 (en) Method of forming an insulating film on a magnetic steel sheet
JP3461712B2 (en) Unidirectional electrical steel sheet and method for forming insulating film on unidirectional electrical steel sheet
JP2000282249A (en) Insulated coating film of grain oriented silicon electric steel sheet and its formation