JPS5845669B2 - Equivalent testing device for breaker - Google Patents

Equivalent testing device for breaker

Info

Publication number
JPS5845669B2
JPS5845669B2 JP52130820A JP13082077A JPS5845669B2 JP S5845669 B2 JPS5845669 B2 JP S5845669B2 JP 52130820 A JP52130820 A JP 52130820A JP 13082077 A JP13082077 A JP 13082077A JP S5845669 B2 JPS5845669 B2 JP S5845669B2
Authority
JP
Japan
Prior art keywords
breaker
voltage
current
circuit
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52130820A
Other languages
Japanese (ja)
Other versions
JPS5465372A (en
Inventor
功 高橋
稔 佐藤
隆直 倉沢
俊二 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52130820A priority Critical patent/JPS5845669B2/en
Publication of JPS5465372A publication Critical patent/JPS5465372A/en
Publication of JPS5845669B2 publication Critical patent/JPS5845669B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

【発明の詳細な説明】 本発明はしゃ断器の等価試験装置、とくに4パラメータ
再起電圧を発生させる場合に好適な等価試験装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an equivalent testing device for circuit breakers, and particularly to an equivalent testing device suitable for generating a four-parameter re-electromotive voltage.

第1図は周知のワイル氏等価試験回路を示す。FIG. 1 shows the well-known Weyl equivalent test circuit.

発電機1と直列に接続した保護用しゃ断器2、投入スイ
ッチ3、電流調整用リアクトル4を通して変圧器5へ電
流を供給する回路を構成する。
A circuit is configured to supply current to the transformer 5 through a protective breaker 2, a closing switch 3, and a current adjustment reactor 4 connected in series with the generator 1.

この変圧器5の2次側には補助しゃ断器6、供試しゃ断
器7の直列回路を作り、発電機1からの大電流を流し得
る様に構成する。
A series circuit consisting of an auxiliary breaker 6 and a test breaker 7 is formed on the secondary side of the transformer 5, so that a large current from the generator 1 can flow therethrough.

この部分を電流源回路と称する。This part is called a current source circuit.

一方コンデンサ8、制御ギャップ9、リアクトル10、
抵抗11、コンデンサ12の直列回路は電圧源回路と称
し、図示の如くリアクトル10と抵抗11の接続部は補
助しゃ断器6と供試しゃ断器7の接続部へ接続されてい
る。
On the other hand, a capacitor 8, a control gap 9, a reactor 10,
The series circuit of the resistor 11 and the capacitor 12 is called a voltage source circuit, and as shown in the figure, the connection between the reactor 10 and the resistance 11 is connected to the connection between the auxiliary breaker 6 and the test breaker 7.

補助しゃ断器6と供試しゃ断器7の両者を閉路するとと
もに、保護用しゃ断器2が閉じた状態で発電機電圧を調
整し、投入スイッチ3を閉じて、電流源回路に規定の短
絡電流を流す。
Both the auxiliary breaker 6 and the test breaker 7 are closed, the generator voltage is adjusted with the protective breaker 2 closed, the closing switch 3 is closed, and a specified short-circuit current is applied to the current source circuit. Flow.

電流源回路の電圧は比較的低くてよい。The voltage of the current source circuit may be relatively low.

適当な時点で、補助しゃ断器6および供試しゃ断器7に
しゃ断指令を与え同時に開き、電流源電流icの最終時
点で、あらかじめ充電しておいたコンデンサ8から制御
ギャップ9、リアクトル10を通して第2図に示す如く
、電圧源電流ivを印加する。
At an appropriate time, a breaker command is given to the auxiliary breaker 6 and the test breaker 7 to open them at the same time, and at the final point of the current source current IC, the second As shown in the figure, a voltage source current iv is applied.

しゃ断性能が十分良好の場合には第2図に示す如く、電
圧源電流ivは半波だけ流れてしゃ断さへ供試しゃ断器
7には規定の高い電圧■7が印加される。
When the breaking performance is sufficiently good, as shown in FIG. 2, the voltage source current iv flows only half a wave and is cut off, so that a prescribed high voltage 7 is applied to the test breaker 7.

一般に電圧源電流ivは電流源電圧icにくらべて1/
10程度であるが、その周波数は電流源回路の10倍程
度であって、電流零点における電流変化率は電流源のそ
れとほぼ等しく選定されている。
Generally, the voltage source current iv is 1/ compared to the current source voltage ic.
The frequency is about 10 times that of the current source circuit, and the current change rate at the current zero point is selected to be approximately equal to that of the current source.

最近の研究開発によって、しゃ断器の1点当りの電圧は
上昇の一途をたどり、1点切りで定格電圧168KV程
度のものも製作される様になった。
Through recent research and development, the voltage per point of circuit breakers has continued to rise, and single-point circuit breakers with a rated voltage of about 168 KV are now being manufactured.

しゃ断器の規格、例えばJRC−181によれば、定格
電圧120に■以上のしゃ断器については、定格しゃ断
電流の場合に4パラメータ法による再起電圧が規定され
ている。
According to the breaker standard, for example, JRC-181, for a breaker with a rated voltage of 120 or more, a re-electromotive voltage is specified using a four-parameter method in the case of a rated breaking current.

これは例えば第3図に示す如く電圧■の波高値の前に電
圧極大値が1つある場合、原点から電圧極大値へ引いた
第1の接線と、電圧極大値と電圧波高値とに接する第2
の接線、および電圧波高値を通り時間軸tへ平行に引い
た第3の接線を求め、これ等3つの接線を包絡線とする
様な再起電圧波形を印加することを推奨するものである
For example, if there is one voltage maximum value before the voltage peak value as shown in Figure 3, the first tangent line drawn from the origin to the voltage peak value will touch the voltage peak value and the voltage peak value. Second
It is recommended that a third tangent drawn parallel to the time axis t through the voltage peak value and a third tangent be drawn in parallel to the time axis t, and then apply a re-electromotive voltage waveform that has these three tangents as an envelope.

しかし、第1図のワイル回路では、第3図に示す如き再
起電圧波形aまたはbの様な単純な波形しか印加できな
い。
However, in the Weyl circuit of FIG. 1, only a simple waveform such as the re-electromotive voltage waveform a or b shown in FIG. 3 can be applied.

電圧の最大値を満す様な再起電圧波形aで試験すると、
時刻t1の電圧■2付近で絶縁破壊することがある。
When testing with a restart voltage waveform a that satisfies the maximum voltage value,
Dielectric breakdown may occur near voltage 2 at time t1.

電流しや・断器の時間が短かい時点で、規定値より高い
苛酷な電圧を印加しているため、必ずしも不合格とは判
定できない。
Because a severe voltage higher than the specified value was applied during a short period of time for the current to break or break, it cannot necessarily be determined that the product has passed the test.

一方、P点を通る波形では絶縁破壊しなくとも、波高値
■2を満足しないので合格とはいえない。
On the other hand, even if a waveform passing through point P does not cause dielectric breakdown, it cannot be said to pass because it does not satisfy the peak value ■2.

この様な事情があるため、従来から各所で4パラメータ
再起電圧を発生する試験回路が考案されている。
Because of these circumstances, test circuits that generate four-parameter restart voltages at various locations have been devised.

第4図は公知の4パラメ一タ再起電圧発生回路の1例を
示す。
FIG. 4 shows an example of a known four-parameter re-electromotive voltage generating circuit.

電流源回路と電圧源回路の間に第2の補助しゃ断器SH
をおき、第3図のt0付近でこれにしゃ断を行なわせ、
電流源の電圧を変圧器Trで昇圧して、電圧源電圧に加
え合せ、4パラメータ再起電圧を得よととするものであ
る。
A second auxiliary breaker SH is installed between the current source circuit and the voltage source circuit.
, and make it cut off near t0 in Figure 3.
The current source voltage is boosted by a transformer Tr and added to the voltage source voltage to obtain a four-parameter restart voltage.

CTは電流検出用変流器、GSTは制御ギャップ9の放
電を制御する装置である。
CT is a current detecting current transformer, and GST is a device for controlling discharge of the control gap 9.

リアクトルL9、抵抗R,コンデンサC5は印加電圧調
整用のものである。
Reactor L9, resistor R, and capacitor C5 are for adjusting applied voltage.

第4図の従来公知の実施例ではきわめて高速度動作の出
来るしゃ断性能の優れた補助しゃ断器SHとが必要であ
る。
The conventionally known embodiment of FIG. 4 requires an auxiliary breaker SH which can operate at extremely high speed and has excellent breaking performance.

このような補助しゃ断器SHは一般の実験所では入手が
困難であり、価格等の面でも問題があった。
Such an auxiliary circuit breaker SH is difficult to obtain in general laboratories, and there are also problems in terms of price and the like.

そのために従来から、さらに安価、容易に4パラメータ
ー再起電圧を発生し得る等価試験回路の出現が望まれて
いた。
For this reason, there has been a desire for an equivalent test circuit that can generate a four-parameter re-electromotive voltage more cheaply and easily.

本発明の目的は構造簡単で入手容易な補助しや断器を用
いて4パラメータ再起電圧を発生するようにした等価試
験装置を提供するにある。
An object of the present invention is to provide an equivalent test device that generates a four-parameter re-electromotive voltage using a simple structure and an easily available auxiliary switch and disconnector.

本発明は、第4図のSHに相当するきわめて高速動作を
要するしゃ断器をとくに使用しないで、ごく普通の高電
圧しゃ断器を使用できるよう、従来の補助しゃ断器開極
前から開極してアークを持続させ、所定時点で消弧する
ようにしたものである。
The present invention opens the conventional auxiliary breaker before opening so that an ordinary high-voltage breaker can be used without using a breaker that requires extremely high-speed operation corresponding to SH in Fig. 4. The arc is sustained and extinguished at a predetermined point.

例えば、補助しゃ断器の開極に合わせて直流あるいは低
周波数の交流を供給して電流零点をつくらず、所定の時
点で強制的に電流零点をつくるようにしたものである。
For example, instead of creating a current zero point by supplying direct current or low-frequency alternating current in accordance with the opening of an auxiliary breaker, a current zero point is forcibly created at a predetermined point of time.

以下本発明を図面に示す実施例によって説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第5図は本発明の詳細な説明図、第6図はその現象説明
図である。
FIG. 5 is a detailed explanatory diagram of the present invention, and FIG. 6 is an explanatory diagram of its phenomenon.

第1図と同じ番号の部品名は、第1図と同様の機能を有
するものとして、詳細説明は省略する。
Part names with the same numbers as in FIG. 1 are assumed to have the same functions as in FIG. 1, and detailed explanations will be omitted.

第1の補助しゃ断器6と供試しゃ断器7の接続点と、リ
アクトル10間に第2の補助しゃ断器22を直列接続し
ており、この第2の補助しゃ断器22と並列に、直列接
続された充電用コンデンサ14と制御ギャップ17と電
流制限りアクドル20から成るしゃ断時点調整回路、更
に直列接続された充電用コンデンサ13と制御ギャップ
16と電流制限用抵抗19から戒る第2の電流源回路と
を有する。
A second auxiliary breaker 22 is connected in series between the connection point of the first auxiliary breaker 6 and the test breaker 7 and the reactor 10, and is connected in series in parallel with this second auxiliary breaker 22. A cutoff timing adjustment circuit consisting of a charging capacitor 14, a control gap 17, and a current-limiting handle 20, and a second current source consisting of a charging capacitor 13, a control gap 16, and a current-limiting resistor 19 connected in series. It has a circuit.

この第2の電流源回路は後述する説明から解かるように
直流もしくは低周波数の電流を供給し所定時点まで第2
の補助しゃ断器22へ電流零点を供給しないようにした
しゃ断時点調整回路であり、しゃ断時点調整回路と並列
に接続されている。
This second current source circuit supplies direct current or low frequency current, and the second current source circuit supplies direct current or low frequency current until a predetermined point in time.
This is a cut-off point adjustment circuit designed not to supply a current zero point to the auxiliary circuit breaker 22, and is connected in parallel with the cut-off time adjustment circuit.

波形調整用コンデンサ15は第2の補助しゃ断器22と
並列に接続されている。
The waveform adjustment capacitor 15 is connected in parallel with the second auxiliary breaker 22.

18は電流制限用抵抗で、しゃ断時点調整回路と第2の
電流源回路のコンデンサ13.14をギャップ17に対
し並列に接続している。
18 is a current limiting resistor, and capacitors 13 and 14 of the cutoff point adjustment circuit and the second current source circuit are connected in parallel to the gap 17.

21は断路器である。21 is a disconnector.

第1の補助しゃ断器6、供試しゃ断器7を閉じた状態で
断路器21を閉じて、図示しない充電装置からコンデン
サ8と同時に、コンデンサ13゜14も充電する。
With the first auxiliary breaker 6 and the test breaker 7 closed, the disconnector 21 is closed, and the capacitors 13 and 14 are charged at the same time as the capacitor 8 from a charging device (not shown).

試験開始に先立って断路器21を開く。Prior to starting the test, the disconnector 21 is opened.

この試験回路においても、電流源電流icの最終零点直
前でコンデンサ8の電荷をギャップ9、リアクトル10
、第2の補助しゃ断器22を通して印加することは第1
図の場合と変らない。
In this test circuit as well, the charge of the capacitor 8 is transferred to the gap 9 and the reactor 10 just before the final zero point of the current source current IC.
, the application through the second auxiliary breaker 22 is applied to the first
It is no different from the case shown in the figure.

本試験では、第2の補助しゃ断器22としては従来公知
の第4図の場合の高速しゃ断器SHとは異なって、特に
高速動作を要しない。
In this test, the second auxiliary breaker 22 does not require particularly high-speed operation, unlike the conventionally known high-speed breaker SH shown in FIG.

第2の補助しゃ断器22が開極する少し前に、しゃ断時
点遅延回路の制御ギャップ16を放電させ、抵抗19を
通して第2の補助しゃ断器22に適当な大きさの例えば
直流電流ipcを流す。
Shortly before the second auxiliary breaker 22 is opened, the control gap 16 of the breaker time delay circuit is discharged, and an appropriate magnitude of, for example, DC current ipc is caused to flow through the resistor 19 to the second auxiliary breaker 22.

この状態で、第2の補助しゃ断器22の極間が極間再起
電圧に十分耐えるまで直流アークをつけた状態で極間距
離を犬にする。
In this state, the distance between the poles of the second auxiliary breaker 22 is increased with a DC arc being applied until the pole gap of the second auxiliary breaker 22 can sufficiently withstand the re-electromotive voltage between the poles.

この時点で前記の如く第6図に示す電圧源電流ivを流
して、供試しゃ断器7がしゃ断成功してivが半波でし
ゃ断されると第2の補助しゃ断器22を通る電流は再び
直流となる。
At this point, the voltage source current iv shown in FIG. 6 is applied as described above, and when the test breaker 7 successfully interrupts iv and iv is interrupted by a half-wave, the current passing through the second auxiliary breaker 22 starts flowing again. It becomes direct current.

この場合、第2の補助しゃ断器22を通る電流には電流
零点がないので、その電流はしゃ断されず、第2の補助
しゃ断器22はアーク電流によって導通状態にある。
In this case, since the current passing through the second auxiliary breaker 22 has no current zero point, the current is not interrupted, and the second auxiliary breaker 22 is in a conductive state due to the arc current.

したがって、供試しゃ断器7が電圧源電流しゃ断器、そ
の極間にはたとえば第6図Uの如き電圧のt3〜t4の
範囲があられれる。
Therefore, the test breaker 7 is a voltage source current breaker, and a voltage range from t3 to t4 as shown in FIG. 6U, for example, is placed between its poles.

極間電圧の極大値付近で、しゃ断時点調整回路の制御ギ
ャップ17を放電させ、コンデンサ14に充電された電
荷をインダクタンス20、第2の補助しゃ断器22を通
して電流iv’の如く、振動的に放電する。
Near the maximum value of the voltage between electrodes, the control gap 17 of the cutoff timing adjustment circuit is discharged, and the electric charge charged in the capacitor 14 is oscillatedly discharged as a current iv' through the inductance 20 and the second auxiliary breaker 22. do.

その時点に、第2の補助しゃ断器22を流れている直流
電流に比べ追加する振動電流自身の波高値を若干大にし
ておけば、第2の補助しゃ断器を通る全電流に電流零点
があられれ、第6図の15の時点でしゃ断される。
At that point, if the peak value of the added oscillating current itself is made slightly larger than the DC current flowing through the second auxiliary breaker 22, the total current passing through the second auxiliary breaker 22 will have a current zero point. and is cut off at point 15 in FIG.

その後、コンデンサ14、制御ギャップ17、リアクト
ル20、コンデンサ15の回路に電流が流れ、コンデン
サ15の端子電圧に等しい、第2の補助しゃ断器22の
極間電圧が従来のワイル回路の再起電圧に重畳される。
After that, a current flows through the circuit of the capacitor 14, control gap 17, reactor 20, and capacitor 15, and the voltage between the poles of the second auxiliary breaker 22, which is equal to the terminal voltage of the capacitor 15, is superimposed on the re-EMF voltage of the conventional Weyl circuit. be done.

コンデンサ8,14は振動性の電流を半波流した後はそ
の極性が反転するのに対して、コンデンサ13は十分大
きい抵抗を通して放電するために、電圧の極性は反転し
ない。
The polarity of the capacitors 8 and 14 is reversed after a half-wave of oscillating current is passed through the capacitor, whereas the polarity of the voltage of the capacitor 13 is not reversed because it is discharged through a sufficiently large resistance.

この様子をコンデンサの両端に記入した十−の記号で示
す。
This situation is shown by the 10- symbols drawn on both ends of the capacitor.

コンデンサ13,14および15の容量によっては、た
とえば第6図U′に示す如く、第2の補助しゃ断器22
にあられれる電圧が供試しゃ断器7の極間電圧を小さく
する向きに加算されるが、コンデンサ13の容量をコン
デンサ14に比較して十分大にするとともに、抵抗18
の値を適切に選定することによって、間もなくその極性
を反転して、供試しゃ断器の極間電圧に最大値が発生す
るように回路定数を選定できる。
Depending on the capacitance of the capacitors 13, 14 and 15, the second auxiliary breaker 22 may be connected, for example as shown in FIG.
The voltage appearing in
By appropriately selecting the value of , it is possible to select the circuit constants such that its polarity is soon reversed and a maximum value occurs in the voltage across the poles of the breaker under test.

本実施例によれば、4パラメ一タ発生回路の従来例第4
図で必要であった両端子に高電圧を発生できる変圧器T
4、きわめて短時間で高い信頼性をもって動作する高価
な高速度しゃ断器SH等が不要となり経済的に4パラメ
一タ発生回路を構成できる。
According to this embodiment, the fourth conventional example of the four-parameter generating circuit
A transformer T that can generate high voltage at both terminals was required in the diagram.
4. An expensive high-speed circuit breaker SH, etc., which operates with high reliability in an extremely short period of time, is not required, and a four-parameter generation circuit can be constructed economically.

t4に対応する制御ギャップ17の放電開始時間を調節
することにより、供試しゃ断器7の両端にあられれる再
起電圧波形を比較的簡単に調整できる。
By adjusting the discharge start time of the control gap 17 corresponding to t4, the waveform of the re-electromotive voltage generated across the test breaker 7 can be adjusted relatively easily.

特に第4図の例では、巻線の高圧側両端子を大地電圧か
ら浮かせた高電圧の変圧器T、が必要であったのに対し
、本実施例ではこのような変圧器を必要としない。
In particular, in the example shown in Fig. 4, a high-voltage transformer T with both terminals on the high-voltage side of the winding floating above the ground voltage was required, whereas in this embodiment, such a transformer is not required. .

第5図では、コンデンサ13.14の両方ともコンデン
サ8と同じ電圧に充電するように構成しであるが、コン
デンサ13.14の少くとも一方を、抵抗分圧方式等に
よってコンデンサ8より低い電圧に充電することも再起
電圧波形調整上有効である。
In FIG. 5, both capacitors 13 and 14 are configured to be charged to the same voltage as capacitor 8, but at least one of capacitors 13 and 14 is charged to a lower voltage than capacitor 8 using a resistor voltage division method or the like. Charging is also effective in adjusting the restart voltage waveform.

またコンデンサ15に適当な抵抗を直列に挿入してコン
デンサ15の両端にあられれる電圧の振巾率を調節し、
これ等の方法により供試しゃ断器極間の4パラメータ再
起電圧の波高値を調節することができる。
In addition, by inserting a suitable resistor in series with the capacitor 15, the amplitude ratio of the voltage appearing across the capacitor 15 is adjusted.
By these methods, it is possible to adjust the peak value of the four-parameter re-electromotive voltage between the poles of the test breaker.

さらに、コンデンサ15と並列に適当な値の抵抗を接続
し、抵抗19との比によって供試しゃ断器の回復電圧を
適切な値に調節することも可能である。
Furthermore, it is also possible to connect a resistor of an appropriate value in parallel with the capacitor 15 and adjust the recovery voltage of the test breaker to an appropriate value depending on the ratio with the resistor 19.

さらにまた、別の充電回路を用いる等の方法でコンデン
サ14を、あらかじめ第5図の場合と逆方向に充電して
おけば、トリガー電極付の3点ギャップ17の放電開始
後比較的短時間で第2の補助しゃ断器22を通る電流に
電流零点を作り得るので、供試しゃ断器の再起電圧の波
高値までの時間が短かいものに適用すると、波形の調節
が容易であるという特徴がある。
Furthermore, if the capacitor 14 is charged in advance in the opposite direction to the case shown in FIG. 5 by using a different charging circuit, it is possible to charge the capacitor 14 in a relatively short time after the discharge of the three-point gap 17 with the trigger electrode starts. Since a current zero point can be created in the current passing through the second auxiliary breaker 22, the waveform can be easily adjusted when applied to a test breaker in which the time required to reach the peak value of the re-electromotive voltage is short. .

第7図は他の実施例を示す。FIG. 7 shows another embodiment.

この例では第4図の例と同様に高電圧の変圧器T、を用
いている。
In this example, a high voltage transformer T is used as in the example shown in FIG.

第2の補助しゃ断器22に対し並列に、抵抗19とコン
デンサ13′とギャップ16から成る第2の電流源であ
るしゃ断時点遅延回路、またコンデンサ14とインダク
タンス20とギャップ17から成り、しゃ断時点遅延回
路と共働して補助しゃ断器22に電流零点を供給するし
ゃ断時点調整回路、更に補助しゃ断器22に所定の高電
圧を印加する変圧器Trと抵抗R8とインダクタンスL
8から成る第2の高電圧回路を有する。
In parallel with the second auxiliary circuit breaker 22, there is a cut-off time delay circuit, which is a second current source, consisting of a resistor 19, a capacitor 13', and a gap 16; A cutoff point adjustment circuit that works together with the circuit to supply a current zero point to the auxiliary breaker 22, and a transformer Tr, a resistor R8, and an inductance L that apply a predetermined high voltage to the auxiliary breaker 22.
8. The second high voltage circuit consists of 8 circuits.

動作は先の実施例とほぼ同様で、第2の補助しゃ断器2
2の開離に先立ってギャップ16で放電して補助しゃ断
器22のしゃ断時点を遅延し、補助しゃ断器22が十分
に開いた状態でギャップ17で放電させてしゃ断時点調
整回路によって振動性の電流を補助しゃ断器22に供給
する。
The operation is almost the same as in the previous embodiment, and the second auxiliary breaker 2
2 is discharged in the gap 16 prior to the opening of the auxiliary breaker 22 to delay the cutoff point of the auxiliary breaker 22, and with the auxiliary breaker 22 fully open, the discharge is made in the gap 17 to generate an oscillatory current by the cutoff point adjustment circuit. is supplied to the auxiliary breaker 22.

先の実施例と同様の原理で補助しゃ断器22がしゃ断状
態になると、供試しゃ断器Tには変圧器Trの2次側の
再起電圧が現わ札第1の電圧源の電圧に重畳される。
When the auxiliary breaker 22 enters the cut-off state using the same principle as in the previous embodiment, the re-electromotive voltage on the secondary side of the transformer Tr appears in the test breaker T and is superimposed on the voltage of the first voltage source. Ru.

本実施例によれば、高電圧の変圧器Trを用いる点を除
いて先の実施例と同様の効果が得られる。
According to this embodiment, the same effects as in the previous embodiment can be obtained except that a high voltage transformer Tr is used.

尚、本実施例では補助しゃ断器22のしゃ断状態の直後
においてギャップ16で放電が継続するようなコンデン
サ13′を選んだため、このコンデンサ13′によって
補助しゃ断器22への印加電圧を調整するようにしてい
るが、第4図の例のように印加電圧調整用コンデンサC
8を別置してもよい。
In this embodiment, since the capacitor 13' is selected so that discharge continues in the gap 16 immediately after the auxiliary breaker 22 is turned off, the voltage applied to the auxiliary breaker 22 is adjusted by this capacitor 13'. However, as shown in the example in Figure 4, the applied voltage adjustment capacitor C
8 may be placed separately.

上記のように本発明によれば、しゃ断時点調整回路とし
ゃ断時点調整回路を設け、これによって第2の補助しゃ
断器のしゃ断時点を制御するようにしたため、きわめて
高速度で動作する補助しゃ断器に代えて、入手容易な補
助しゃ断器を使用できる。
As described above, according to the present invention, the cutoff time adjustment circuit and the cutoff time adjustment circuit are provided to control the cutoff time of the second auxiliary breaker. Alternatively, readily available auxiliary circuit breakers can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知のワイル氏試験回路図、第2図および第3
図は第1図の試験説明図、第4図は従来の4パラメ一タ
再起電圧発生回路図、第5図は本発明の一実施例による
等価試験装置の回路図、第6図は第5図の試験説明図、
第7図は本発明の他の実施例を示す等価試験装置の回路
図である。 6・・・第1の補助しゃ断器、7・・・供試しゃ断器、
13.14・・・充電用コンデンサ、16.17・・・
制御ギャップ、19・・・電流制限用抵抗、20・・・
リアクトル、22・・・第2の補助しゃ断器。
Figure 1 is a known Weyl test circuit diagram, Figures 2 and 3.
1 is a diagram explaining the test of FIG. 1, FIG. 4 is a conventional four-parameter re-electromotive voltage generation circuit diagram, FIG. 5 is a circuit diagram of an equivalent test device according to an embodiment of the present invention, and FIG. Figure test illustration,
FIG. 7 is a circuit diagram of an equivalent test device showing another embodiment of the present invention. 6... First auxiliary breaker, 7... Test breaker,
13.14... Charging capacitor, 16.17...
Control gap, 19... Current limiting resistor, 20...
Reactor, 22...second auxiliary breaker.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の補助しゃ断器と供試しゃ断器の直列回路と、
この直列回路に短絡大電流を供給する電流源と、第2の
補助しゃ断器を介して上記供試しゃ断器に電圧源電流を
供給する電圧源回路とを有するものにおいて、上記第2
の補助しゃ断器と並列に制御ギャップを有するしゃ断時
点調整回路を設けると共に、上記制御ギャップおよび上
記第2の補助しゃ断器と並列に異なる制御ギャップを有
するしゃ断時点調整回路を設け、このしゃ断時点調整回
路によって上記第2の補助しゃ断器を流れる電流の零点
を与えるようにしたことを特徴とするしゃ断器の等価試
験装置。
1 A series circuit of a first auxiliary breaker and a test breaker,
A current source that supplies a short-circuit large current to this series circuit, and a voltage source circuit that supplies a voltage source current to the test breaker via a second auxiliary breaker, wherein the second
A cut-off point adjustment circuit having a control gap is provided in parallel with the auxiliary breaker, and a cut-off point adjustment circuit having a different control gap is provided in parallel with the control gap and the second auxiliary breaker; A breaker equivalency test device characterized in that the zero point of the current flowing through the second auxiliary breaker is given by:
JP52130820A 1977-11-02 1977-11-02 Equivalent testing device for breaker Expired JPS5845669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52130820A JPS5845669B2 (en) 1977-11-02 1977-11-02 Equivalent testing device for breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52130820A JPS5845669B2 (en) 1977-11-02 1977-11-02 Equivalent testing device for breaker

Publications (2)

Publication Number Publication Date
JPS5465372A JPS5465372A (en) 1979-05-25
JPS5845669B2 true JPS5845669B2 (en) 1983-10-12

Family

ID=15043468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52130820A Expired JPS5845669B2 (en) 1977-11-02 1977-11-02 Equivalent testing device for breaker

Country Status (1)

Country Link
JP (1) JPS5845669B2 (en)

Also Published As

Publication number Publication date
JPS5465372A (en) 1979-05-25

Similar Documents

Publication Publication Date Title
US6703839B2 (en) Synthetic making/breaking-capacity test circuit for high-voltage alternating-current circuit-breakers
US4157496A (en) Circuit for testing protection devices
CA1153421A (en) Relaxation oscillator type spark generator
JP2550046B2 (en) Inspection circuit
JPS5845669B2 (en) Equivalent testing device for breaker
GB1582932A (en) Synthetic testing apparatus for circuit breakers
JPH08271596A (en) Synthetic equivalent test method for circuit breaker
JP3103240B2 (en) Residual voltage discharge device
JP2675649B2 (en) Switchgear test method and device
JP3185541B2 (en) High voltage circuit breaker synthesis test equipment
JPH06186309A (en) Interruption test circuit for switch
JPS60125569A (en) Testing method of multithunder operating duty of lightning arrester
RU2306574C1 (en) Device for testing switching capacity of high voltage switches
JPH0651036A (en) Short line fault testing device
JPH0449662B2 (en)
SU1647469A1 (en) Device for testing heavy-duty transformers under short-circuit conditions
JPH063425A (en) Testing circuit for switch
JPS5818174A (en) Equivalent test method for circuit breaker
SU938223A1 (en) Device for synthetic testing of switches for switching-off capability
JPH01123176A (en) Arc extension circuit
SU1583888A1 (en) Apparatus for synthetic tests of switch with reproduction of aperiodic component of turn-off current
JPH08278349A (en) Method for synthetic equalization testing of breaker
JPS61176873A (en) Breaking test circuit for dc breaker
JP2597694B2 (en) Power switchgear
JP3302857B2 (en) Test method of breaking performance