JPS61176873A - Breaking test circuit for dc breaker - Google Patents

Breaking test circuit for dc breaker

Info

Publication number
JPS61176873A
JPS61176873A JP60018135A JP1813585A JPS61176873A JP S61176873 A JPS61176873 A JP S61176873A JP 60018135 A JP60018135 A JP 60018135A JP 1813585 A JP1813585 A JP 1813585A JP S61176873 A JPS61176873 A JP S61176873A
Authority
JP
Japan
Prior art keywords
current
breaker
circuit
rectifier
discharge gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60018135A
Other languages
Japanese (ja)
Inventor
Satoru Shiga
悟 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60018135A priority Critical patent/JPS61176873A/en
Publication of JPS61176873A publication Critical patent/JPS61176873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To permit the use of a rectifier device having the capacity smaller than the capacity of an AC power source by inserting in series a discharge gap with a start electrode and resistor between the AC power source side terminals of the rectifier device and operating the discharge gap when the current flowing in a DC breaker exceeds a prescribed value. CONSTITUTION:The DC current flowing out of the rectifier device 41 flows through an impedance 49, the DC breaker 45 and a current measuring means 50 when a throwing switch 46 is thrown. A current detecting means 51 detects the prescribed current value IF when the breaker 45 fails in breaking and the current exceeds the prescribed cut-off current. Then the start pulse from a pulse generator 52 operates the discharge gap 54 with the start electrode inserted in series to the resistor 53 between the AC power source side terminals of the device 41. The increase in the current flowing in the breaker 45 slows down sharply and at the same time a protective breaker 44 starts a breaking operation so that the failure of the breaker 45 is suppressed. Thus the rectifier device 41 is just required to have the capacity corresponding to the current IF and is not required to have the capacity to deal with the final crest value of short circuit current.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、電気鉄道、電気化学、製鉄などの直流電気
設備における直流電路や直流機器の保護に使用される直
流遮断器でるって、この直流遮断器を通過する短絡電流
をその最終波高値に達する以前に限流遮断する直流遮断
器の遮断性能を検証する試験回路に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a DC circuit breaker used to protect DC circuits and DC equipment in DC electrical equipment such as electric railways, electrochemistry, and steel manufacturing. The present invention relates to a test circuit for verifying the breaking performance of a DC breaker that limits the short circuit current passing through the DC breaker before it reaches its final peak value.

〔従来技術とその問題点〕[Prior art and its problems]

直流電気設備における直流電路や直流機器の短絡事故に
よって流れる短絡電流を遮断する直流遮断器は、通常、
短絡電流がその最終波高値に到達する前に限流して遮断
するように設計されている。
DC circuit breakers that interrupt short-circuit currents that flow due to short-circuit accidents in DC circuits or DC equipment in DC electrical equipment are usually
It is designed to limit and interrupt the short circuit current before it reaches its final peak value.

例えば、第5図に示される従来の直流遮断器において、
X端子から短絡ta工が流入すると、この短絡電流の上
昇過程における電流変化率に応じた電圧が誘導分路50
両端子間に生じ、この電圧によりバッキングパーと称す
る引外しコイル14に短絡電流の1部が分流する。10
は保持マグネットであって、その保持コイル13には常
時保持電流が供給されており、この保持コイルユ3がつ
くる磁束により、接極子12を開放ばね6の力に抗して
吸着しているが、引外しコイル14に電流が流れると、
この電流がつくる磁束が、前記保持マグネット13によ
ってつくられ接極子12を通る磁束を打ち消し、保持マ
グネットは吸着力を失って通電レバー3が右方へ駆動さ
れる。通電レバー3の先端には、直流遮断器の可動接触
子2が取抄付けられているから、固層接触子1との間に
アークを生ずる。このの闇につくる磁束により1図の上
方に駆動される力をうけ、2枚の絶縁性消弧板マの間で
長く引き延ばされて急速にアーク電圧を増す。このアー
ク電圧波形を第4図に極間電圧として示す。このアーク
電圧は電源電圧に対する逆起電力として作用するから、
短絡電流はこの時点の電流1bから急速に減衰して遮断
に至る。図において、’roは短絡電流が、直流遮断器
が引外しを開始すべき大きさく目盛電流)に到達した時
点、TIは固定接触子と可動接触子とが開離する時点、
T2はアークが急速に引き延ばされる時点であり、Tl
 −Tzはアークの膠者時間である。
For example, in the conventional DC breaker shown in FIG.
When a short-circuit current flows from the
A part of the short-circuit current is shunted to the tripping coil 14, which is called a bucking coil, due to the voltage generated between the two terminals. 10
is a holding magnet, and a holding current is constantly supplied to its holding coil 13, and the armature 12 is attracted by the magnetic flux generated by this holding coil 3 against the force of the opening spring 6. When current flows through the tripping coil 14,
The magnetic flux created by this current cancels the magnetic flux created by the holding magnet 13 and passing through the armature 12, and the holding magnet loses its attractive force, driving the energizing lever 3 to the right. Since the movable contact 2 of the DC circuit breaker is attached to the tip of the energizing lever 3, an arc is generated between it and the solid contact 1. The magnetic flux created in the dark generates a force that drives the arc upward in Figure 1, and the arc is stretched out between the two insulating arc-extinguishing plates, rapidly increasing the arc voltage. This arc voltage waveform is shown in FIG. 4 as a voltage between electrodes. This arc voltage acts as a back electromotive force against the power supply voltage, so
The short circuit current rapidly attenuates from the current 1b at this point, leading to interruption. In the figure, 'ro is the point at which the short-circuit current reaches the scale current at which the DC breaker should start tripping, TI is the point at which the fixed contact and the movable contact are separated,
T2 is the point at which the arc is rapidly stretched, Tl
-Tz is the arc glue time.

また、近年、直流遮断器として半導体を使用した静止形
のものが実用されはじめている。この半導体直流遮断器
は、前述のような機械的直流遮断器のように、短絡電流
の電流値が直流遮断器を始動させる目盛電流値に到達し
た時点から接触子が開離するまでの間の時間おくれやア
ークの膠着時間がなく、直ちに限流遮断の過程に入るか
ら、限流値の大きさは速断器を始動させる目盛電流値と
ほぼ等しく、従って、機械的直流遮断器の限流値よりが
短絡電流の最終波高値の約翅程度と比較的大きいのに対
し、イ。程度ンこすることが可能である。
Furthermore, in recent years, stationary type DC circuit breakers using semiconductors have begun to be put into practical use. This semiconductor DC breaker, like the mechanical DC breaker mentioned above, operates from the time when the current value of the short circuit current reaches the scale current value that starts the DC breaker until the contact opens. Since there is no time lag or arc stagnation time, and the process immediately enters the current-limiting circuit breaker, the size of the current-limiting value is almost equal to the scale current value that starts the fast breaker, and therefore, the current-limiting value of the mechanical DC circuit breaker A is relatively large, about the size of the final peak value of the short-circuit current. It is possible to rub it to a certain extent.

すなわち、例えば第5図のように構成された半導体直流
遮断器に2いて、主サイリスタ21を流れる短絡電流工
3が、この半導体直流遮断器を始動させるべき目盛電流
値に達すると、主サイリスタの電流を計測する電流計測
手段25から入力された電流検出手段26がこの目盛電
流値に到達したことを判別し、補助サイリスタ祁のゲー
トにオンの信号を送る。この補助サイリスタ祁とリアク
トル夙を介して直列に接続された転流コンデンサ22は
、別電源からめらかしめ充電されており、補助サイリス
タ葛のゲートがオンすると、転流コンデンサ22の電荷
が主サイリスタ21を逆方向に放電し、この放電の時点
から短絡電流が減衰をはじめて遮断に到る。このときの
減衰の早さは、回路22−24−23−21−29−2
2の固有振動の周波数によりきまる。
That is, for example, in a semiconductor DC breaker configured as shown in FIG. The current detecting means 26 inputted from the current measuring means 25 that measures the current determines that this scaled current value has been reached, and sends an ON signal to the gate of the auxiliary thyristor. The commutating capacitor 22 connected in series with this auxiliary thyristor through the reactor is smoothly charged from a separate power source, and when the gate of the auxiliary thyristor is turned on, the electric charge of the commutating capacitor 22 is transferred to the main thyristor 21. is discharged in the opposite direction, and from the point of discharge, the short circuit current begins to attenuate and is cut off. The speed of attenuation at this time is the circuit 22-24-23-21-29-2
It is determined by the frequency of natural vibration of 2.

このように、短絡電流遮断がはじまるときの電流値すな
わち限流値は短絡電流の最終波高値よりもはるかに小さ
い。しかしながら直流遮断器の試験回路としては、その
試験回路条件として、短絡を流の最終波高値を供給する
ことのできる交流電源を必要とするとともに試験回路が
遮断器の遮断失敗時にも破損しないように構成されるこ
とから、従来この電源容量に見合った整流装置を用いる
か、整流装置を用いる代わりに、前記交流電源、例えば
短絡発電機を5Hz程度の低周波で運転し、前記短絡電
流の最終波高値に等しい交流電流波高値近傍の平担な電
流領域において等価的に遮断試験を行なってい丸。しか
し、前者すなわち整流装置を用いる場合には、整流装置
、特に整流器が著しく大容量となり、このため試験回路
の構成に多額の費用を要し、また、交流電源を低周波運
転する場合には、遮断器が万一遮断不能となったとき、
交流電流がその零点を迎えて遮断されるまでに少なくと
も数十ミリ秒を必要とするため、試験回路自れがあった
In this way, the current value at which short-circuit current interruption begins, that is, the current limit value, is much smaller than the final peak value of the short-circuit current. However, as a test circuit for a DC circuit breaker, the test circuit conditions require an AC power supply that can supply the final peak value of the current in the event of a short circuit, and also to ensure that the test circuit will not be damaged even if the circuit breaker fails to shut off. Conventionally, a rectifier suitable for this power supply capacity is used, or instead of using a rectifier, the AC power supply, for example, a short-circuit generator, is operated at a low frequency of about 5 Hz, and the final wave of the short-circuit current is An equivalent interruption test is conducted in a flat current region near the peak value of the alternating current, which is equal to the high value. However, when using the former, that is, a rectifier, the rectifier, especially the rectifier, has a significantly large capacity, which requires a large amount of money to configure the test circuit, and when operating the AC power supply at a low frequency, In the event that the circuit breaker is unable to shut off,
Since it takes at least several tens of milliseconds for the alternating current to reach its zero point and be cut off, the test circuit was unstable.

〔発明の目的〕[Purpose of the invention]

この発明は、前記交流等価試験における欠点のない、整
流装置を用いた試験回路において、楽界電源より小容量
の整流装置を用いても遮断不能時にみずから破損などの
問題を生ぜず、かつ速断器の損傷拡大をも防止すること
ができ、しかも遮断性能の検証に何ら支障を生じない試
験回路を提供することを目的とする。
This invention provides a test circuit using a rectifier that does not have any drawbacks in the AC equivalence test, which does not cause problems such as damage when it cannot shut off even if a rectifier with a smaller capacity than a paradise power supply is used, and which does not cause problems such as damage to the circuit when it cannot shut off. It is an object of the present invention to provide a test circuit which can prevent the damage from spreading and which does not cause any trouble in verifying the breaking performance.

〔発明の要点〕[Key points of the invention]

この発明は、交流電源から整流装置を介して直流遮断器
と所定のインピーダンスとの直列路に試験電流を供給し
て前記直流遮断器の電流遮断能力を検証する直流遮断器
の試験回路において、前記整流装置の交流電源側端子間
に始動電極付き放電ギャップと抵抗とを直列に挿入し、
前記直流速断器を流れる電流が、予定された限流値をわ
ずかに超えて設定された所定値を超過したときに前記始
  。
The present invention provides a test circuit for a DC breaker that verifies the current interrupting ability of the DC breaker by supplying a test current from an AC power supply through a rectifier to a series path between the DC breaker and a predetermined impedance. A discharge gap with a starting electrode and a resistor are inserted in series between the AC power supply side terminals of the rectifier,
The start occurs when the current flowing through the DC speed breaker exceeds a predetermined value that is slightly higher than a predetermined current limit value.

動電極付き放電ギャップを作動させるようにして、前記
の目的を達成しようとするものである。
The object is to achieve the above object by operating a discharge gap with a moving electrode.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明に基づく遮断試験回路の一実施例を示す
。本実施例は交流電源釦の出力電圧が高く、整流装置4
1が降圧変圧器42と整流装置部とからなる場合を示す
。交流側回路Aの保護遮断器Uと直流側回路Bの直流遮
断器45とを閉路しておき、投入スイッチ46を投入す
ると、整流装置41から流出する直流電流はインピーダ
ンス49と直流遮断器45と電流計測手段50とを介し
て流れ、インピーダンス49を構成する抵抗47とイン
ダクタンス錦とにより、第2図に示されるように時間の
経過とともに所定の波形60を画こうとする。この電流
が直流遮断器45の所定の目盛電流IOに達すると、直
流遮断器が遮断動作を開始し、この遮断器に予定された
限流値比に電流を抑えて遮断を行なう。もし遮断器45
が遮断に失敗し、整流装置41からの出力電流が予定の
限流値よりを超えて上昇しようとすると、この限流値比
をわずかに超えてあらかじめ設定された所定の電流値ニ
ジを電流検出手段51が検出し、パルス発生器52を作
動させる。作動したパルス発生器52から出力される始
動パルスは、整流装置41の交流電源側端子間に抵抗部
と直列に挿入された始動電極付き放電ギャップ&の始動
電極へ導かれ、この始動電極付き放電ギャップを作動さ
せる。これにより、交流電源釦から流出する電流は抵抗
部と、整流装置41を介して直流側回路Bのインピーダ
ンス49と〈分流されるから、直流迩wfr器45を流
れる電流は、この時点T3から上昇が急激に緩慢となり
、めるいは下降に転じ、同時に保護遮断器44が遮断動
作に入るから、直流速断器45の破損は極めて小さく抑
えられ、かつ周辺設備の被害も笑質的に皆無とすること
ができる。しかも始動電極付き放電ギャップを始動させ
る電流値ニジは、予定された限流値比のばらつきを十分
カバーする大きさに設定されているから、直流遮断器4
5の遮断の成否の判断に支障を生ずることはない。従っ
て、整流装置41の容量は電流ニジに対応する大きさで
足り、短絡電流の最終波高値Inに対応する大きさを必
要とせず、試験回路を著しく経済的に構成することがで
きる。なお、始動電極付き放電ギャップ&の作動時に交
流電源40から流出する電流は、交流電源40からみ之
全回路のインピーダンスが低下することから、放電ギャ
ップ&の作動前より大きくなる方向に向かうが、リアク
トル55のインピーダンスはインピーダンス49や抵抗
部に比して著しく大きく、その変化は極めて小さいから
、直流遮断器46を流れる電流は始動電極付き放電ギャ
ップ54の作動により極めて有効に低減されることにな
る。
FIG. 1 shows an embodiment of a break test circuit based on the present invention. In this embodiment, the output voltage of the AC power button is high, and the rectifier 4
The case where 1 consists of a step-down transformer 42 and a rectifier section is shown. When the protective circuit breaker U of the AC side circuit A and the DC breaker 45 of the DC side circuit B are closed and the closing switch 46 is turned on, the DC current flowing out from the rectifier 41 is connected to the impedance 49 and the DC breaker 45. The current flows through the current measuring means 50, and attempts to draw a predetermined waveform 60 over time as shown in FIG. 2 by the resistor 47 and inductance that constitute the impedance 49. When this current reaches a predetermined scale current IO of the DC circuit breaker 45, the DC circuit breaker starts a circuit breaker operation, and performs circuit breaker by suppressing the current to a current limit value ratio scheduled for this circuit breaker. If circuit breaker 45
When the output current from the rectifier 41 attempts to rise beyond the expected current limit value due to failure of interruption, the current is detected to slightly exceed this current limit value ratio and reach a preset predetermined current value. Means 51 detects and activates pulse generator 52. The starting pulse output from the activated pulse generator 52 is guided to the starting electrode of the starting electrode-equipped discharge gap & inserted in series with the resistor between the AC power supply side terminals of the rectifier 41, and the starting electrode of the starting electrode-equipped discharge gap & Activate the gap. As a result, the current flowing out from the AC power button is shunted to the impedance 49 of the DC side circuit B via the resistor and the rectifier 41, so the current flowing through the DC WFR device 45 increases from this point T3. The current suddenly slows down, the speed begins to fall, and at the same time the protective circuit breaker 44 enters the breaking operation, so damage to the DC speed circuit breaker 45 is kept extremely small, and there is virtually no damage to the surrounding equipment. be able to. Moreover, the current value for starting the discharge gap with the starting electrode is set to a value that sufficiently covers the variation in the planned current-limiting value ratio.
This will not impede the judgment of the success or failure of the interruption in step 5. Therefore, the capacity of the rectifier 41 is sufficient to be large enough to correspond to the current difference, and does not need to be large enough to correspond to the final peak value In of the short-circuit current, making it possible to construct the test circuit extremely economically. Note that the current flowing out from the AC power supply 40 when the discharge gap & with a starting electrode is activated tends to become larger than before the discharge gap & is activated because the impedance of the entire circuit from the AC power supply 40 decreases. The impedance 55 is significantly larger than the impedance 49 and the resistance portion, and its change is extremely small, so the current flowing through the DC breaker 46 is extremely effectively reduced by the operation of the discharge gap 54 with starting electrode.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、交流電源から整
流装置を介して直流遮断器と所定のインピーダンスとの
直列路に試験電流を供給して前記直fi遮断器の電流遮
断能力を検証する直流遮断器の試験回路において、前記
整流装置の交流電源側端子間に、連断試験場において常
用されている始動電極付き放電ギャップと抵抗とを直列
に挿入し、前記直流遮断器を流れる電流がこの遮断器に
予定された限流値をわずかに超えて設定された電流値を
超過したときに前記始動電極付き放電ギャップを作動さ
せるようKしたので、追加費用をほとんど必要とするこ
となく整流装置を小形化することができ、また、供試さ
れた直流遮断器が遮断に失敗したときに4整流装置内体
の破損や供試遮断器の破損拡大や周辺装置の被害を避け
ることができ、しかも遮断性能の検証を何ら支障なく行
なうことができるという効果が得られる。
As described above, according to the present invention, a test current is supplied from an AC power supply through a rectifier to a series path between a DC breaker and a predetermined impedance to verify the current interrupting ability of the DC FI breaker. In a test circuit for a DC circuit breaker, a discharge gap with a starting electrode and a resistor, which are commonly used in continuous test sites, are inserted in series between the AC power supply side terminals of the rectifier, and the current flowing through the DC circuit breaker is Since the discharge gap with starting electrode is activated when the current value slightly exceeds the current limit value scheduled for this circuit breaker, the rectifier device can be operated without any additional cost. In addition, when the tested DC circuit breaker fails to shut off, it is possible to avoid damage to the internal body of the 4-rectifier device, damage to the test circuit breaker, and damage to peripheral equipment. Furthermore, it is possible to obtain the effect that the interruption performance can be verified without any problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく遮断試験回路の一実施例を示す
試験回路構成図、第2図はオニ図の試験回路において直
流遮断器を通る電流の波形を示す図、牙3図は機械的直
流遮断器の構成例を示す説明図、牙4図は第3図の直流
速断器によって短絡電流を遮断したときの遮断器各部の
電圧、電流の波形を示す図、第5図は半導体直流遮断器
の構成例を示す説明図である。
Fig. 1 is a test circuit configuration diagram showing one embodiment of the breaking test circuit based on the present invention, Fig. 2 is a diagram showing the waveform of the current passing through the DC breaker in the Oni diagram test circuit, and Fig. 3 is the mechanical diagram. An explanatory diagram showing an example of the configuration of a DC circuit breaker. Figure 4 is a diagram showing the voltage and current waveforms of each part of the circuit breaker when a short circuit current is interrupted by the DC speed circuit breaker in Figure 3. Figure 5 is a diagram showing the waveform of the voltage and current at each part of the circuit breaker when the short circuit current is interrupted by the DC circuit breaker in Figure 3. It is an explanatory view showing an example of a structure of a container.

Claims (1)

【特許請求の範囲】[Claims] 1)交流電源から整流装置を介して直流遮断器と所定の
インピーダンスとの直列路に試験電流を供給して前記直
流遮断器の電流遮断能力を検証する直流遮断器の試験回
路において、前記整流装置の交流電源側端子間に始動電
極付き放電ギャップと抵抗とが直列に挿入され、前記直
流遮断器を流れる電流が所定値を超過したときに前記始
動電極付き放電ギャップが作動せしめられることを特徴
とする直流遮断器の遮断試験回路。
1) In a test circuit for a DC breaker that verifies the current interrupting ability of the DC breaker by supplying a test current from an AC power source to a series path between the DC breaker and a predetermined impedance through the rectifier, the rectifier A discharge gap with a starting electrode and a resistor are inserted in series between the AC power supply side terminals of the DC circuit breaker, and the discharge gap with a starting electrode is activated when the current flowing through the DC circuit breaker exceeds a predetermined value. Breaking test circuit for DC circuit breakers.
JP60018135A 1985-02-01 1985-02-01 Breaking test circuit for dc breaker Pending JPS61176873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60018135A JPS61176873A (en) 1985-02-01 1985-02-01 Breaking test circuit for dc breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60018135A JPS61176873A (en) 1985-02-01 1985-02-01 Breaking test circuit for dc breaker

Publications (1)

Publication Number Publication Date
JPS61176873A true JPS61176873A (en) 1986-08-08

Family

ID=11963156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60018135A Pending JPS61176873A (en) 1985-02-01 1985-02-01 Breaking test circuit for dc breaker

Country Status (1)

Country Link
JP (1) JPS61176873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042782A1 (en) * 2009-10-05 2011-04-14 パナソニック電工株式会社 Direct current breaker device
JP2022520073A (en) * 2019-07-10 2022-03-28 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to test the internal arc resistance of a DC high speed switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042782A1 (en) * 2009-10-05 2011-04-14 パナソニック電工株式会社 Direct current breaker device
JP2022520073A (en) * 2019-07-10 2022-03-28 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to test the internal arc resistance of a DC high speed switch

Similar Documents

Publication Publication Date Title
KR102640183B1 (en) Apparatus, system, and method for interrupting electrical current
US5633540A (en) Surge-resistant relay switching circuit
US7594958B2 (en) Spark management method and device
RU2668986C1 (en) Switching device for conducting and interrupting electric currents
JP6297619B2 (en) DC circuit breaker
US6956725B2 (en) Current controlled contact arc suppressor
CA2071405A1 (en) Fault detection apparatus for a transformer isolated transistor drive circuit for a power device
JP3965037B2 (en) DC vacuum interrupter
AU716799B2 (en) A circuit for the protected power supply of an electrical load
US4118749A (en) Field overvoltage protecting apparatus for synchronous machine
US4688133A (en) Electronic detection circuit for a ground fault circuit interrupter
JPS61176873A (en) Breaking test circuit for dc breaker
EP0011958B1 (en) Dc contactor with solid state arc quenching
JP3719456B2 (en) DC circuit breaker
JPH0581973A (en) Dc circuit breaker
US4712521A (en) Ignition system
JP3067428B2 (en) Abnormality monitoring device for DC breaker
JPH08271596A (en) Synthetic equivalent test method for circuit breaker
SU1647469A1 (en) Device for testing heavy-duty transformers under short-circuit conditions
JPH063425A (en) Testing circuit for switch
JP3103240B2 (en) Residual voltage discharge device
JPH03129614A (en) Switch gear for high tension load
JPS5814710Y2 (en) Overcurrent prevention device for high-speed shutdown of DC generators
JPS5845669B2 (en) Equivalent testing device for breaker
JPS6441130A (en) Gas insulated electric apparatus