JPS5845482A - Pre-treatment method for air separator - Google Patents

Pre-treatment method for air separator

Info

Publication number
JPS5845482A
JPS5845482A JP56142236A JP14223681A JPS5845482A JP S5845482 A JPS5845482 A JP S5845482A JP 56142236 A JP56142236 A JP 56142236A JP 14223681 A JP14223681 A JP 14223681A JP S5845482 A JPS5845482 A JP S5845482A
Authority
JP
Japan
Prior art keywords
pipe
waste nitrogen
air
adsorbent
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56142236A
Other languages
Japanese (ja)
Inventor
大谷 耕二
舜介 野北
友村 政臣
染矢 和夫
正博 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56142236A priority Critical patent/JPS5845482A/en
Publication of JPS5845482A publication Critical patent/JPS5845482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は空気から純酸素、純窒素などを得るための空気
分離装置に係り、特に、空気中の水分及び炭酸ガスを効
率的に除去する空気分離装置の前処理方法に関する。
Detailed Description of the Invention The present invention relates to an air separation device for obtaining pure oxygen, pure nitrogen, etc. from air, and in particular, a pretreatment method for an air separation device that efficiently removes moisture and carbon dioxide from the air. Regarding.

空気分離装置は低温で運転されるため凝縮固化成分であ
る水分及び炭酸ガスの除去を必要とする。
Since air separation equipment is operated at low temperatures, it is necessary to remove water and carbon dioxide, which are condensed and solidified components.

従来、これらの除去法として温度差吸着方式%式% 称する。)を採用した前処理装置が採用されてきた。(
特公昭47−35185.特公昭55−4113など)
。本方法は吸着温度に対して脱着温度を約200℃高く
して温度差によって吸着剤の再生を行わせるものである
。一般に吸着剤の吸着容量は温度によって大巾に変化し
、TSA法によって水分及び炭酸ガスを充分に除去する
ことができる。しかし、吸着剤を加熱するために、多大
な熱量を必要とし、製品の製造コストを上昇させるとい
う欠点があった。上記欠点を補う方法として圧力差吸着
方式(Pressure Swing Adsorpt
ion+以下PSA法と称する)を採用した前処理装置
が特開昭54−103778で提案された。本方法は吸
着剤の吸着容量が被吸着成分の分圧によって変化するこ
とを利用し、吸着圧力に対して低い圧力。
Conventionally, these removal methods have been referred to as temperature difference adsorption methods. ) has been adopted. (
Special Publication Showa 47-35185. Tokuko Sho 55-4113, etc.)
. In this method, the desorption temperature is raised by about 200° C. relative to the adsorption temperature, and the adsorbent is regenerated by the temperature difference. Generally, the adsorption capacity of an adsorbent varies widely depending on the temperature, and water and carbon dioxide can be sufficiently removed by the TSA method. However, there is a drawback that a large amount of heat is required to heat the adsorbent, which increases the manufacturing cost of the product. As a method to compensate for the above drawbacks, pressure difference adsorption method (Pressure Swing Adsorpt
A pretreatment device employing ion+ (hereinafter referred to as PSA method) was proposed in Japanese Patent Laid-Open No. 103778/1983. This method utilizes the fact that the adsorption capacity of the adsorbent changes depending on the partial pressure of the adsorbed component, and the pressure is lower than the adsorption pressure.

下で廃窒素をバーンして吸着剤の再生を行うもので、吸
着剤再生のための熱量使用がなく、製品コストの低減が
達成された。第1図にPSA法前処理装置を適用した空
気分離装置の系統図を示す。
The adsorbent is regenerated by burning waste nitrogen at the bottom, and no heat is used to regenerate the adsorbent, reducing product costs. FIG. 1 shows a system diagram of an air separation device to which a PSA method pretreatment device is applied.

配管7から導入された空気は圧縮機1で加圧され、冷却
器2、配管8を経由してPSA法前法理処理装置3られ
て水分及び炭酸ガスを吸着除去された後、配管9、熱交
換器4、配管10を経由して精留塔5に供給される。供
給された空気は沸点の差を利用して純酸素、純窒素、高
圧廃窒素、低圧廃窒素に分離される。高圧廃窒素は配管
13、熱交換器4、配管14を経由して複式膨張タービ
ン(以下タービンと称する)6に送られ、断熱膨張され
た後、配管15を経由して配管11.を流れる低圧廃窒
素と合流し、廃窒素として配管I2、熱交換器4、配管
16、配管17を経由してPSA法前法理処理装置3ら
れ、吸着剤を再生した後、配管18から放出される。純
酸素は配管21、熱交換器4、配管23を経由して、純
窒素は配管22、熱交換器4、配管24を経由して、そ
れぞれ製品として回収される。ここで、タービン6は回
転数を制御するためのブレーキガスを必要とし、配管1
6を流れる廃空素の一部を配管19を経由してブレーキ
ガスとしてタービン6に送り、配管20から大気に放出
している。そのため、″PSA法前処理装置に供給され
る廃窒素の流量が減少し、吸着剤の再生効率が低下する
と■う欠点があった。
The air introduced from the pipe 7 is pressurized by the compressor 1, passes through the cooler 2 and the pipe 8, and is sent to the PSA pre-method processing equipment 3 where moisture and carbon dioxide are adsorbed and removed. It is supplied to the rectification column 5 via the exchanger 4 and piping 10. The supplied air is separated into pure oxygen, pure nitrogen, high pressure waste nitrogen, and low pressure waste nitrogen using the difference in boiling points. The high-pressure waste nitrogen is sent to a double expansion turbine (hereinafter referred to as a turbine) 6 via a pipe 13, a heat exchanger 4, and a pipe 14, where it is adiabatically expanded, and then passed through a pipe 15 to a pipe 11. It joins with the low-pressure waste nitrogen flowing through the pipe 12, the heat exchanger 4, the pipe 16, and the pipe 17 as waste nitrogen to the PSA pre-method processing equipment 3, and after regenerating the adsorbent, is discharged from the pipe 18. Ru. Pure oxygen is recovered as a product via piping 21, heat exchanger 4, and piping 23, and pure nitrogen is recovered as a product via piping 22, heat exchanger 4, and piping 24. Here, the turbine 6 requires brake gas to control the rotation speed, and the piping 1
A part of the waste air flowing through the turbine 6 is sent to the turbine 6 as brake gas via a pipe 19, and is discharged to the atmosphere from a pipe 20. Therefore, there was a drawback that the flow rate of waste nitrogen supplied to the PSA method pretreatment device decreased, and the regeneration efficiency of the adsorbent decreased.

本考案の目的はタービンブレーキガスの有効利用により
吸着剤の再生効率を向上させ、空気中の水分及び炭酸ガ
スを効率的に除去する空気分離装置の前処理手段を提供
するにある。
An object of the present invention is to provide a pretreatment means for an air separation device that improves the regeneration efficiency of adsorbent through effective use of turbine brake gas and efficiently removes moisture and carbon dioxide from the air.

第1図に示した空気分離装置の系統図において、配管1
9を流れる廃窒素流量はタービン6から配管20に排出
される際のガス温度が、通常100℃以下になるように
調整され、配管20を経由して大気に放出される。一方
、配管17を流れる廃窒素の温度は熱交換器4での空気
との熱交換によって左右され、通常、空気温度よりも低
くなる。
In the system diagram of the air separation device shown in Figure 1, piping 1
The flow rate of waste nitrogen flowing through the turbine 9 is adjusted so that the gas temperature when discharged from the turbine 6 to the pipe 20 is usually 100° C. or less, and is discharged to the atmosphere via the pipe 20. On the other hand, the temperature of waste nitrogen flowing through the pipe 17 depends on heat exchange with the air in the heat exchanger 4, and is usually lower than the air temperature.

吸着剤の使用条件は、吸着温度を低く、脱着温度を筒く
するのが良い。したがって、PSA法前法理処理装置3
られる廃窒素の温度を高くできれば、吸着剤再生効率が
より一層向上することになる。
The conditions for using the adsorbent are preferably such that the adsorption temperature is low and the desorption temperature is high. Therefore, the PSA pre-legal legal processing device 3
If the temperature of the waste nitrogen produced can be raised, the adsorbent regeneration efficiency will be further improved.

そこで、タービンブレーキガスとして使用した廃窒素を
吸着剤再生に再利用することを試みた。これによって、
吸着剤の再生に使用する廃窒素流量が増加し、また、脱
着温度が上昇するため吸着剤の再生効率が向上し、空気
中の水分及び炭酸ガスをより効率的に除jすることがで
きる。また、タービンブレーキガスとして廃窒素流量を
十分にとることができるようになり、タービンの運転温
度を低下でき、安全性を向上することができた。なお、
本発明を実施するうえで重要なことは、タービンブレー
キガスとして使用する廃窒素の圧力変動を抑制すること
にある。すなわち、PSA法前法理処理装置用する複数
の吸着塔の切替時に圧力変動が生じるとタービンの回転
数が変化踵それによって空気分離装置の圧力及び温度変
化を生じ、精留塔の分離効率が低下する。そのため、吸
着塔の切替時には吸着塔の圧力損失に相当する抵抗をも
ったバイパス配管から廃窒素を放出すること、あるいは
タービン出口配管に安全弁等の圧力調節器を捲すつけて
、圧力変動を抑制する手段を付与することが有効でるる
Therefore, an attempt was made to reuse waste nitrogen used as turbine brake gas for adsorbent regeneration. by this,
Since the flow rate of waste nitrogen used for regenerating the adsorbent increases and the desorption temperature increases, the regeneration efficiency of the adsorbent improves, making it possible to more efficiently remove moisture and carbon dioxide from the air. In addition, it became possible to use a sufficient flow rate of waste nitrogen as turbine brake gas, lowering the operating temperature of the turbine and improving safety. In addition,
What is important in implementing the present invention is to suppress pressure fluctuations in waste nitrogen used as turbine brake gas. In other words, when pressure fluctuations occur when switching between multiple adsorption towers used in the pre-PSA process, the rotational speed of the turbine changes, which causes pressure and temperature changes in the air separation equipment, reducing the separation efficiency of the rectification tower. do. Therefore, when switching between adsorption towers, it is necessary to release waste nitrogen from a bypass pipe that has a resistance equivalent to the pressure loss of the adsorption tower, or to suppress pressure fluctuations by wrapping a pressure regulator such as a safety valve around the turbine outlet pipe. It would be effective to provide a means to do so.

以下、本発明の一実施例を第2図により説明する。配管
7から導入された空気は圧縮機1で加圧され、冷却器2
、配管8、PSA法前法理処理装置3管9、熱交換器4
、配管10を経由して精留塔5に供給される。供給され
た空気は沸点の差を利用して純酸素、純窒素、高圧廃窒
素、低圧廃窒素に分離される。純酸素は配管21、熱交
換器4、配管23を経由して、純窒素は配管22、熱交
換器4、配管24を経由して、それぞれ製品として回収
される。高圧廃窒素は配管13、熱交換器4、配管14
を経由してタービン6に送られ、断熱膨張された後、配
管15を経由して配管11を流れる低圧廃窒素と合流し
、廃窒素として熱交換器4、配管16を経由した後、配
管19及び配管25への流れとして分岐される。配管1
9に分岐された廃窒素はタービン6、配管20を経由し
た後、配管26及び配管27に分岐される。配管26に
分岐された廃窒素は大気に放出される。、配管27に分
岐された廃窒素は配管25を流れる廃窒素と合流し、配
管17を経由してPSA法前法理処理装置られ、吸着剤
を再生した後、配管18を経由して大気に放出される。
An embodiment of the present invention will be described below with reference to FIG. Air introduced from piping 7 is pressurized by compressor 1, and then passed through cooler 2.
, piping 8, PSA pre-legal treatment equipment 3 pipes 9, heat exchanger 4
, and is supplied to the rectification column 5 via piping 10. The supplied air is separated into pure oxygen, pure nitrogen, high pressure waste nitrogen, and low pressure waste nitrogen using the difference in boiling points. Pure oxygen is recovered as a product via piping 21, heat exchanger 4, and piping 23, and pure nitrogen is recovered as a product via piping 22, heat exchanger 4, and piping 24. High pressure waste nitrogen is pipe 13, heat exchanger 4, pipe 14
After being sent to the turbine 6 via the pipe 15 and adiabatically expanded, it joins with the low-pressure waste nitrogen flowing through the pipe 11 via the pipe 15, and after passing through the heat exchanger 4 and the pipe 16 as waste nitrogen, the pipe 19 and is branched off as a flow to piping 25. Piping 1
The waste nitrogen branched into the pipe 9 passes through the turbine 6 and the pipe 20, and then branches into the pipe 26 and the pipe 27. The waste nitrogen branched into the pipe 26 is discharged into the atmosphere. The waste nitrogen branched into the pipe 27 joins with the waste nitrogen flowing through the pipe 25, is sent to the PSA pre-processing equipment via the pipe 17, and after regenerating the adsorbent is released into the atmosphere via the pipe 18. be done.

配管9を流れる空気の圧力、 1温度及び流量がそれぞ
れ5.5 k g/Cm2G 、 30℃及び300O
Nm3/h、配管25を流れる廃窒素の圧力、温度及び
流量がそれぞ゛れ0.2 kg/C1n2G。
The pressure, temperature and flow rate of the air flowing through the pipe 9 are 5.5 kg/Cm2G, 30°C and 300O, respectively.
Nm3/h, and the pressure, temperature, and flow rate of waste nitrogen flowing through the pipe 25 are each 0.2 kg/C1n2G.

28℃及び11l100N/h、配管19を流れる廃窒
素の圧力、温度及び流量がそれぞれ0.2kg/cm2
G、28℃及び280 Nm3/hの条件丁で、配管2
7の廃窒素流量をO及び200 Nm3/hに変えて運
転を行った。上記廃窒素流量がONm3/hの場合には
配管17を流れる廃窒素の温度及び流量はそれぞれ11
l100N/h及び28℃で、配管9f:流れる空気中
の水分及び炭酸ガス濃度はそれぞれIpJ)m以下及び
4ppmであった。それに対して本発明に基づく配管2
7における廃窒素流量が200 Nm3/ hの場合に
は配管17を流れる廃窒素の温度及び流量はそれぞれ3
3℃及び130ONm3/hで、配管9を流れる空気中
の原発及び炭酸ガス濃度は共に11)pm以下となった
28℃ and 11l 100N/h, the pressure, temperature and flow rate of waste nitrogen flowing through the pipe 19 are each 0.2kg/cm2
G, under the conditions of 28°C and 280 Nm3/h, pipe 2
The operation was carried out by changing the waste nitrogen flow rate of No. 7 to O and 200 Nm3/h. When the waste nitrogen flow rate is ONm3/h, the temperature and flow rate of the waste nitrogen flowing through the pipe 17 are 11
At 1100 N/h and 28° C., the moisture and carbon dioxide concentrations in the flowing air of pipe 9f were less than IpJ)m and 4 ppm, respectively. In contrast, the piping according to the invention 2
When the waste nitrogen flow rate in pipe 17 is 200 Nm3/h, the temperature and flow rate of waste nitrogen flowing through pipe 17 are respectively 3
At 3°C and 130 ONm3/h, both the nuclear power and carbon dioxide concentrations in the air flowing through the pipe 9 were below 11) pm.

本発明によれば、従来大気に放出されていたタービンブ
レーキガスとしての廃窒素を吸着剤の再生に有効利用で
きるので、次の効果がある。
According to the present invention, waste nitrogen as turbine brake gas, which has conventionally been released into the atmosphere, can be effectively used for regenerating the adsorbent, resulting in the following effects.

(1)空気中の水分及び炭酸ガス除去性能を向上させる
効果がある。(2)脱着温度の上昇が可能となるため、
上記除去性能の一層の向上が達成される。
(1) It has the effect of improving the performance of removing moisture and carbon dioxide from the air. (2) Since it is possible to increase the desorption temperature,
Further improvement of the above removal performance is achieved.

(3)タービンブレーキガスとして使用できる廃窒素流
量を従来より大巾に増加でき、タービン温度を低下して
機器の寿命向上が計れる。
(3) The flow rate of waste nitrogen that can be used as turbine brake gas can be greatly increased compared to the conventional method, and the turbine temperature can be lowered to extend the life of the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPSA法前処理装置を採用した空気分離装置の
系統図、第2図は本発明の一実施例としてのPSA法前
処理装置を採用した空気分離装置の系統図である。
FIG. 1 is a system diagram of an air separation apparatus employing a PSA method pretreatment apparatus, and FIG. 2 is a system diagram of an air separation apparatus employing a PSA method pretreatment apparatus as an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、 .710圧空気を吸着剤に接触させて空気中の水
分及び炭酸ガスを除去し、水分及び炭酸ガスを吸着した
前記吸着剤を大気圧前後の圧力下で廃窒素をパージして
再生するPSA法前処理装置を採用した空気分離装置に
おいて、複式膨張タービンのブレーキガスとして使用す
る廃窒素をPSA法前処理装置のパージ用に再使用する
ことを特徴とした空気分離装置の前処理方法。
1. Before the PSA method, 710-pressure air is brought into contact with an adsorbent to remove moisture and carbon dioxide from the air, and the adsorbent that has adsorbed moisture and carbon dioxide is regenerated by purging waste nitrogen under pressure around atmospheric pressure. A pretreatment method for an air separation device, characterized in that waste nitrogen used as brake gas for a dual expansion turbine is reused for purging of a PSA method pretreatment device in an air separation device employing a treatment device.
JP56142236A 1981-09-11 1981-09-11 Pre-treatment method for air separator Pending JPS5845482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142236A JPS5845482A (en) 1981-09-11 1981-09-11 Pre-treatment method for air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142236A JPS5845482A (en) 1981-09-11 1981-09-11 Pre-treatment method for air separator

Publications (1)

Publication Number Publication Date
JPS5845482A true JPS5845482A (en) 1983-03-16

Family

ID=15310589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142236A Pending JPS5845482A (en) 1981-09-11 1981-09-11 Pre-treatment method for air separator

Country Status (1)

Country Link
JP (1) JPS5845482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346371A (en) * 1986-08-09 1988-02-27 株式会社神戸製鋼所 Air separating method
JPS6441785A (en) * 1987-08-06 1989-02-14 Kobe Steel Ltd Nitrogen production unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527034A (en) * 1978-08-16 1980-02-26 Hitachi Ltd Pressure swing adsorption system used with heat regeneration method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527034A (en) * 1978-08-16 1980-02-26 Hitachi Ltd Pressure swing adsorption system used with heat regeneration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346371A (en) * 1986-08-09 1988-02-27 株式会社神戸製鋼所 Air separating method
JPS6441785A (en) * 1987-08-06 1989-02-14 Kobe Steel Ltd Nitrogen production unit

Similar Documents

Publication Publication Date Title
JPH01172204A (en) Recovery of gaseous co2 from gaseous mixture by adsorption
WO2018135206A1 (en) Carbon dioxide recovery method and recovery apparatus
JPH0459926B2 (en)
JPH11316082A (en) Method and device for producing clean and dry air
JP2006522079A (en) Method for removing solvent contained in acetylene and apparatus for carrying out said method
JP3084248B2 (en) Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas
JPH04359785A (en) Device for collecting liquid carbon dioxide
JPH0422848B2 (en)
JPS5845482A (en) Pre-treatment method for air separator
JPS6129768B2 (en)
JPS5895181A (en) Pre-treatment method for air separator
JPS638395B2 (en)
JPH05172459A (en) Pretreation of raw material air in air separating process
JP3544860B2 (en) Pretreatment device in air separation unit
JPS621767B2 (en)
JP6655645B2 (en) Purified gas production apparatus and purified gas production method
JPS60139311A (en) Regeneration of adsorbing tower
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
JP3515901B2 (en) Pretreatment device in air separation unit
JPS5826515B2 (en) How to start up and operate an air separation device
JPS6135889B2 (en)
JPS6161854B2 (en)
JPS63151602A (en) Purification of high-purity nitrogen gas
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JPH10202115A (en) Regenerating method for catalytic adsorbent bed