JPS5845275B2 - Switching method between regenerative braking and dynamic braking for DC motors - Google Patents

Switching method between regenerative braking and dynamic braking for DC motors

Info

Publication number
JPS5845275B2
JPS5845275B2 JP5760177A JP5760177A JPS5845275B2 JP S5845275 B2 JPS5845275 B2 JP S5845275B2 JP 5760177 A JP5760177 A JP 5760177A JP 5760177 A JP5760177 A JP 5760177A JP S5845275 B2 JPS5845275 B2 JP S5845275B2
Authority
JP
Japan
Prior art keywords
motor
braking
regenerative
resistor
regenerative braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5760177A
Other languages
Japanese (ja)
Other versions
JPS53143918A (en
Inventor
英二 高津
博 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5760177A priority Critical patent/JPS5845275B2/en
Publication of JPS53143918A publication Critical patent/JPS53143918A/en
Publication of JPS5845275B2 publication Critical patent/JPS5845275B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 本発明は直流電動機の回生制動と発電制動の切換方式に
係り、特にその切換を円滑にする方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for switching between regenerative braking and dynamic braking for a DC motor, and particularly to a method for smoothly switching between regenerative braking and dynamic braking.

サイリスタチョッパによる直流電動機の制御技術は、従
来、電気鉄道の分野では広く実用されており、通常、制
動には回生制動が用いられている。
Control technology for DC motors using thyristor choppers has been widely used in the field of electric railways, and regenerative braking is usually used for braking.

しかし、整流式変電所を採用している直流電気鉄道にお
いては、回生電力を吸収してくれる力行中の車輌が回生
車と同−饋電区間に存在しない場合には、回生制動を行
うことができない。
However, in DC electric railways that use rectifier substations, regenerative braking cannot be performed if there is no running vehicle that can absorb regenerative power in the same section as the regenerative vehicle. Can not.

回生制動が失効するごとに機械制動にたよると制動シュ
ーの摩耗が大となり、保守に手数を要する。
Relying on mechanical braking every time regenerative braking expires will increase wear on the brake shoes, requiring maintenance.

この対策として、回生制動失効時には、発電制動に切り
かえる方法が用いられている。
As a countermeasure to this problem, a method is used in which when regenerative braking fails, the vehicle switches to dynamic braking.

第1図は上記の如き回生制動と発電制動とを切換使用す
る従来の実施例の代表的なものを示す回路図である。
FIG. 1 is a circuit diagram showing a typical example of a conventional embodiment that switches between regenerative braking and dynamic braking as described above.

PGはパンタグラフ、Sl、S2はしゃ断器、Ijl
p L2はりアクドル、Cはコンデンサ、Dはダイオー
ド、R□、R2は抵抗器、Tはサイリスタ、CHはチョ
ッパ、Mは電動機電機子、Fは界磁、OVDは過電圧検
出器である。
PG is a pantograph, SL, S2 is a breaker, Ijl
p L2 beam handle, C is a capacitor, D is a diode, R□, R2 are resistors, T is a thyristor, CH is a chopper, M is a motor armature, F is a field, and OVD is an overvoltage detector.

回生電力吸収負荷が十分存在しているときは、チョッパ
OHのオン・オフ動作によって付勢された電機子Mの発
生電力は、パンタグラフPGを通じて直流電源へ返還さ
れる。
When there is a sufficient regenerative power absorption load, the power generated by the armature M energized by the on/off operation of the chopper OH is returned to the DC power source through the pantograph PG.

回生制動時の速度が電動機の定格速度より大なる範囲で
は、抵抗R2が電動機回路に直列に挿入され、過電流が
流れない様になっている。
In a range where the speed during regenerative braking is higher than the rated speed of the motor, a resistor R2 is inserted in series with the motor circuit to prevent overcurrent from flowing.

すなわち、チョッパ電車では、通常、制御上に用いる速
度発電機を設けることは得策でないため、電圧関係によ
り、直列抵抗R2の短絡を制御するのが普通である。
That is, in a chopper electric train, since it is usually not a good idea to provide a speed generator for control, it is common to control the short circuit of the series resistor R2 based on the voltage relationship.

このとき、特開昭51−42918号公報で周知のよう
に、電源電圧と電動機発生電圧とが所定の関係を満足し
たとき、直列抵抗R2を短絡すれば、理想的な回生効率
が得られ、電源電圧の変動を無視しては、望ましい回生
効率は得られない。
At this time, as is well known from Japanese Patent Application Laid-Open No. 51-42918, when the power supply voltage and the motor generated voltage satisfy a predetermined relationship, if the series resistor R2 is short-circuited, ideal regeneration efficiency can be obtained. Desired regeneration efficiency cannot be obtained if fluctuations in power supply voltage are ignored.

このため、電源電圧相当値として、フィルタコンデンサ
Cの電圧を検出するのが普通である。
For this reason, it is common to detect the voltage of the filter capacitor C as a value equivalent to the power supply voltage.

筐た、回生制動中に回生電力を吸収する負荷がなくなっ
た場合には、パンタグラフPGを通じて直流電源へ回生
電流は流れ得す、電機子Mの発生する電力はコンデンサ
Cの電圧を上昇させる。
If there is no load to absorb regenerative power during regenerative braking, the regenerative current can flow to the DC power source through the pantograph PG, and the power generated by the armature M increases the voltage of the capacitor C.

コンデンサCの電圧がある限度値を超えた場合にはその
ことを過電圧検出器OVDが検出し、サイリスタTを点
弧して抵抗R1を回生電力吸収負荷として接続する。
When the voltage of the capacitor C exceeds a certain limit value, an overvoltage detector OVD detects this, ignites the thyristor T, and connects the resistor R1 as a regenerative power absorption load.

上述の如く電動機の高速域では抵抗R2が電動機と直列
に挿入されるが、電動機の速度が低下して、コンデンサ
Cの両端の電位差(以下コンデンサ電圧と呼びその値を
E とする。
As mentioned above, in the high speed range of the motor, the resistor R2 is inserted in series with the motor, but as the speed of the motor decreases, the potential difference across the capacitor C (hereinafter referred to as capacitor voltage and its value is E).

)E と電機子Mの発生電圧(その値をE とする。)E and the voltage generated by armature M (the value is assumed to be E).

)EMとの差がある一定値に以上になったとき、すなわ
ち、E −E 乏K(1) なる場合には抵抗R2をしゃ断器S2によって短絡して
直流電源へ回生する電力を確保している。
) When the difference from EM exceeds a certain value, that is, when E −E is insufficient, the resistor R2 is short-circuited by the breaker S2 to ensure the regenerated power to the DC power supply. There is.

しかし、回生電力を吸収する負荷がなくなった場合には
、高速域であってもコンデンサ電圧ECが上昇するため
に(1)式は満足され、抵抗R2は短絡されるので、電
動機電流は過大となり、電動機がフラッシュオーバーす
る傾向が大きくなる。
However, when there is no load to absorb the regenerated power, the capacitor voltage EC increases even in the high speed range, so equation (1) is satisfied, and the resistor R2 is shorted, causing the motor current to become excessive. , the tendency of the electric motor to flashover increases.

また、その後に、回生電力を吸収する負荷が回復して回
生制動に戻った場合でも、高速域であるにもかかわらず
抵抗R2が短絡されているので、上記と同様な過電流状
態が出現するので、何等かの方法で電動機電流を減少せ
しめる手段を講じないと、安定した制動力が得られない
こととなる。
Furthermore, even if the load that absorbs regenerative power recovers and returns to regenerative braking after that, the same overcurrent condition as above will appear because resistor R2 is short-circuited despite the high speed range. Therefore, unless some method is taken to reduce the motor current, stable braking force cannot be obtained.

上述の如く、従来の直流電動機の回生制動と発電制動の
切換方法にお−では、高速域において抵抗R2が短絡さ
れるために、制動動作が不安定であるという欠点を有し
ていた。
As described above, the conventional method of switching between regenerative braking and dynamic braking for a DC motor has the disadvantage that the braking operation is unstable because the resistor R2 is short-circuited in the high speed range.

本発明の目的は上記の欠点をなくシ、回生制動から発電
制動に移行り、Xtた回生制動に戻る場合にも、常に安
定した制動力を確保する方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a method that always ensures stable braking force even when switching from regenerative braking to dynamic braking and returning to regenerative braking at Xt.

本発明の特徴は、回生電力を吸収する負荷がなくなった
場合にそのことを検出器の出力信号により指令を与え、
電動機と直列に接続された抵抗器の短絡条件を解除する
ことにより、高速域で、発電制動時には過電流を防ぎ、
回生制動では制動力を安定化することである。
The feature of the present invention is that when there is no load to absorb regenerated power, a command is given by the output signal of the detector,
By removing the short-circuit condition of the resistor connected in series with the motor, it prevents overcurrent during dynamic braking at high speeds.
Regenerative braking is about stabilizing the braking force.

第2図は本発明の一実施例を示す図であり、VDは電圧
検出器、MEは記憶要素、ANDはANDゲートであり
その一方の入力端子には(1)式の条件が満足されてい
るときは信号がインプットされている。
FIG. 2 is a diagram showing an embodiment of the present invention, where VD is a voltage detector, ME is a storage element, and AND is an AND gate, one of whose input terminals satisfies the condition of equation (1). When the signal is input, the signal is being input.

その他の記号は第1図のものと同様である。Other symbols are the same as those in FIG.

過電圧検知器OVDの出力は記憶要素MEに入力され、
その出力信号はしゃ断器S1を開路すると同時にAND
ゲートの他方の入力端子に′O”がインプットされるの
で、前記一方の入力端子に信号″′1”が入っていても
、しゃ断器S2が投入されることはなく、直列抵抗R2
は接続されたま1となる。
The output of the overvoltage detector OVD is input to the storage element ME,
The output signal is ANDed at the same time as breaker S1 is opened.
Since 'O' is input to the other input terminal of the gate, even if the signal ''1' is input to the one input terminal, the circuit breaker S2 is not turned on and the series resistor R2
remains connected and becomes 1.

また、この記憶要素MEの記憶は、電圧検知器VDによ
り直流電源が回生の受入可能を検知すると、その信号に
より、クリヤされる様になっている。
Further, the memory of this memory element ME is cleared by a signal when the voltage detector VD detects that the DC power source is capable of accepting regeneration.

この結果として、高速域で回生制動中に直流電源から切
離されて過電圧となっても、抵抗R2は短絡されること
なく、従って発電制動に切換えられても過電流となるこ
とがないので、回生制動から安定した発電制動への切換
が行われる。
As a result, even if the resistor R2 is disconnected from the DC power supply during regenerative braking at high speeds and an overvoltage occurs, the resistor R2 will not be short-circuited, and therefore, even when switching to dynamic braking, no overcurrent will occur. A switch is made from regenerative braking to stable dynamic braking.

また、発電制動から回生制動に戻る際にも、抵抗R2が
あるために過電流とならないので、この切換も順調に行
われる。
Further, even when returning from dynamic braking to regenerative braking, there is no overcurrent due to the presence of the resistor R2, so this switching is also performed smoothly.

次に本発明を電流特性図により、従来例と比較説明する
Next, the present invention will be explained in comparison with a conventional example using current characteristic diagrams.

第3図は電動機速度を横軸とし電動機電流を縦軸として
示す図である。
FIG. 3 is a diagram showing the motor speed as the horizontal axis and the motor current as the vertical axis.

図に釦いてOR1は抵抗R2を短絡した場合、CR2は
R2を挿入した場合の波形を示す。
In the figure, OR1 shows the waveform when resistor R2 is short-circuited, and CR2 shows the waveform when R2 is inserted.

従来例の如く、高速度で、かつ、抵抗R2が短絡された
場合、発電制動時チョッパによる定電流制御は不能にな
り、電動機電流は1→2→3→4のように変化し、前述
の如く過電流となり、電動機のフラッシュオーバーにつ
ながる。
As in the conventional example, when the speed is high and the resistor R2 is short-circuited, constant current control by the chopper during dynamic braking becomes impossible, and the motor current changes as 1 → 2 → 3 → 4, resulting in the above-mentioned change. This can lead to overcurrent and flashover of the motor.

第4図は制動時の電動機電流の時間的変化を示す図であ
る。
FIG. 4 is a diagram showing temporal changes in motor current during braking.

T1及びT3は回生制動、T2は発電制動の期間を示す
T1 and T3 indicate the period of regenerative braking, and T2 indicates the period of dynamic braking.

発電制動中の電流変化:1A→2A→3A→4Aの記号
は第3図の1→2→3→4の記の位置に相当するもので
ある。
Current change during dynamic braking: The symbols 1A→2A→3A→4A correspond to the positions 1→2→3→4 in FIG.

第4図で4A→5A→6Aに示す電流変化は、従来例に
よるR2が短絡状態で、高速度で、発電制動から回生制
動に戻ったときのもので、この場合には電動機発生電圧
が高いので電流が過大となるから、之を抑えたための対
策が講じられた場合の特性を示す。
The current change shown in Figure 4 from 4A to 5A to 6A is when R2 in the conventional example is short-circuited and the dynamic braking returns to regenerative braking at high speed.In this case, the motor generated voltage is high. Therefore, the current becomes excessive, so the characteristics are shown when measures are taken to suppress this.

本発明による場合には、第3図で見ると、従来例による
1→2→3→4の如くはならず、チョッパによる定電流
制御が継続されるので、1→4の如くなり、第4図では
、1A→4Aの如く実線のように変化する。
In the case of the present invention, as shown in FIG. 3, the flow is not like 1 → 2 → 3 → 4 as in the conventional example, but the constant current control by the chopper is continued, so the flow becomes like 1 → 4, and the 4th In the figure, it changes like a solid line, such as from 1A to 4A.

また、発電制動から回生制動に戻る際には、R2が挿入
されているので、P4→P6 (実線部)の如くなる。
Furthermore, when returning from dynamic braking to regenerative braking, R2 is inserted, so the transition becomes P4→P6 (solid line part).

第5図は本発明の他の実施例であり、第2図と異る点は
回生制動不能を検知する方法として、直流電源の電圧の
検出に代って電流検知器4による方法を採づていること
である。
Fig. 5 shows another embodiment of the present invention, which differs from Fig. 2 in that a method using a current detector 4 is adopted instead of detecting the voltage of the DC power source as a method for detecting failure of regenerative braking. This is what is happening.

実際に直流電源に回生ずる電流が減少したことを検出し
て回生負荷不足を検知し、抵抗R2の短絡条件と解除す
るものである。
Insufficient regenerative load is detected by detecting that the current regenerated in the DC power supply actually decreases, and the short-circuit condition of resistor R2 is canceled.

なお、回生負荷不足の検出方法は、第2図および第5図
の方法以外の方法でも実現可能である。
Note that the method for detecting insufficient regenerative load can be realized by methods other than those shown in FIGS. 2 and 5.

以上述べたところよシ、本発明によれば、直流電動機の
回生制動と発電制動との切換を円滑に行うことができる
という効果がある。
As described above, according to the present invention, it is possible to smoothly switch between regenerative braking and dynamic braking of a DC motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の回路図、第2図は本発明の一実施例
を示す回路図、第3図は発電制動速度−電流特性による
従来例と本発明による方式との比較図、第4図は制度時
の電動機電流電化による従来例と本発明との比較図、第
5図は本発明の他の実施例を示す回路図である。 S1# S2・・・しゃ断器、Ll、L2・・・リアク
トル、D・・・ダイオード、C・・・コンデンサ、R1
t R2・・・抵抗器、T・・・サイリスタ、CH・・
・チョッパ、M・・・直流電動機、OVD・・・過電圧
検出器、VD・・・電圧検出器、ME・・・記憶要素、
AND・・・ANDゲート、CD・・・電流検出器。
Fig. 1 is a circuit diagram of a conventional device, Fig. 2 is a circuit diagram showing an embodiment of the present invention, Fig. 3 is a comparison diagram between the conventional example and the system according to the present invention based on dynamic braking speed-current characteristics, and Fig. 4 The figure is a comparison diagram of the present invention and a conventional example in which the motor current is electrified at the time of regulation, and FIG. 5 is a circuit diagram showing another embodiment of the present invention. S1# S2... Breaker, Ll, L2... Reactor, D... Diode, C... Capacitor, R1
t R2...Resistor, T...Thyristor, CH...
・Chopper, M...DC motor, OVD...overvoltage detector, VD...voltage detector, ME...memory element,
AND...AND gate, CD...current detector.

Claims (1)

【特許請求の範囲】[Claims] 1 発電機として動作する直流電動機と、この直流電動
機の自励回路を構成するチョッパと、このチョッパのオ
フ時に直流電動機の発生エネルギを直流電源へ回生する
ためのダイオードと、直流電動機の前記自励回路内に直
列に挿入され前記電源電圧と電動機電圧との関連のもと
に比較的低速時に短絡される直列抵抗器と、電源電圧が
所定値を越えたことに応動する回生不能検出手段と、こ
の検出手段の動作に応動して前記発生エネルギを発電制
動抵抗に消費させるサイリスタとを備えた直流電動機の
制動制御装置にむいて、前記回生不能検出手段の動作に
応動して前記直列抵抗器の短絡を阻止する手段を設けた
直流電動機の回生制動と発電制動の切換方式。
1. A DC motor that operates as a generator, a chopper that constitutes a self-excitation circuit of this DC motor, a diode that regenerates the energy generated by the DC motor to a DC power source when the chopper is turned off, and the self-excitation circuit of the DC motor. a series resistor inserted in series in the circuit and short-circuited at a relatively low speed based on the relationship between the power supply voltage and the motor voltage; and a regeneration failure detection means responsive to the power supply voltage exceeding a predetermined value; For a braking control device for a DC motor including a thyristor that causes the generated energy to be consumed in a dynamic braking resistor in response to the operation of the detection means, A method for switching between regenerative braking and dynamic braking for DC motors with means to prevent short circuits.
JP5760177A 1977-05-20 1977-05-20 Switching method between regenerative braking and dynamic braking for DC motors Expired JPS5845275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5760177A JPS5845275B2 (en) 1977-05-20 1977-05-20 Switching method between regenerative braking and dynamic braking for DC motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5760177A JPS5845275B2 (en) 1977-05-20 1977-05-20 Switching method between regenerative braking and dynamic braking for DC motors

Publications (2)

Publication Number Publication Date
JPS53143918A JPS53143918A (en) 1978-12-14
JPS5845275B2 true JPS5845275B2 (en) 1983-10-07

Family

ID=13060365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5760177A Expired JPS5845275B2 (en) 1977-05-20 1977-05-20 Switching method between regenerative braking and dynamic braking for DC motors

Country Status (1)

Country Link
JP (1) JPS5845275B2 (en)

Also Published As

Publication number Publication date
JPS53143918A (en) 1978-12-14

Similar Documents

Publication Publication Date Title
US5436540A (en) Protection circuit for a gate turn-off device in an electrical braking system for an electric traction motor vehicle
GB2139024A (en) Electrical braking control for dc motors
US4355267A (en) Propulsion motor control apparatus
JP2001037004A (en) Inverter type electric rolling stock controller
JPS5845275B2 (en) Switching method between regenerative braking and dynamic braking for DC motors
JP2531153B2 (en) Regenerative power absorber protection device
CA1186037A (en) Electrical brake system for electric rolling stock
JPS6057313B2 (en) DC motor braking control device
US3670225A (en) System for braking electric motor vehicles
JP3540843B2 (en) Overvoltage protection device for vehicle power converter
JP2613584B2 (en) Electric car control device
JP2545928B2 (en) Regeneration control device for electric railway substation
WO2022009794A1 (en) Power converting system, control method for same, and railway vehicle equipped with same
JP2635549B2 (en) Electric car control device
JPS639228Y2 (en)
JPH10239360A (en) Excess current detection circuit
JPS5829682B2 (en) electric car control device
JPH059941Y2 (en)
JPH0124002B2 (en)
JPS5939997B2 (en) DC motor braking control device
JPH03159501A (en) Controller for electric vehicle
Bailey et al. A Modern Chopper Propulsion System or Rapid Transit Application with High Regeneration Capability
JPS5829716B2 (en) DC electric car drive circuit
JPS5829301A (en) Controlling circuit for regenerative brake equipment for electric rolling stock
JPH0445364Y2 (en)