JP3540843B2 - Overvoltage protection device for vehicle power converter - Google Patents

Overvoltage protection device for vehicle power converter Download PDF

Info

Publication number
JP3540843B2
JP3540843B2 JP25404494A JP25404494A JP3540843B2 JP 3540843 B2 JP3540843 B2 JP 3540843B2 JP 25404494 A JP25404494 A JP 25404494A JP 25404494 A JP25404494 A JP 25404494A JP 3540843 B2 JP3540843 B2 JP 3540843B2
Authority
JP
Japan
Prior art keywords
circuit
filter
filter capacitor
power
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25404494A
Other languages
Japanese (ja)
Other versions
JPH08126101A (en
Inventor
春樹 吉川
栄喜 土橋
和博 矢野
文雄 千崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP25404494A priority Critical patent/JP3540843B2/en
Publication of JPH08126101A publication Critical patent/JPH08126101A/en
Application granted granted Critical
Publication of JP3540843B2 publication Critical patent/JP3540843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、車両に搭載している電力変換装置を直流過電流圧から保護する車両用電力変換装置の過電圧保護装置に関する。
【0002】
【従来の技術】
図6は車両用電力変換装置の従来の主回路を示した主回路接続図である。この図6の従来例回路において、電車や電気機関車の走行用電動機へ電力を供給し、或いは車内の照明・通信・空気調和装置等に電力を供給するために、これらの車両に電力変換装置としてのインバータ10を搭載する。地上の変電所から架線1とパンタグラフ2とを介して車両へ送りこまれる電力は、高速度遮断器3と電磁接触器4、及びフィルタリアクトル6とフィルタコンデンサ7とで構成しているLCフィルタとを介してインバータ10へ与えられ、その後車輪8とレール9とを経て大地へ放流される。
【0003】
ところで架線1は他の車両にも電力を供給しているから、他車の遮断器や電磁接触器の動作の際に発生する開閉サージ電圧や、長大な架線1に誘導される雷サージ電圧などの過大なサージ電圧が当該車両に印加される。又インバータ10が例えば可変電圧可変周波数の交流電力を出力するVVVFインバータであって、このVVVFインバータが走行用電動機を駆動している場合は、回生ブレーキを使って車両を減速させる際に発生する回生エネルギーを受け取る負荷(例えば力行運転中の電気車)が無いと、この回生エネルギーが架線1の電圧を上昇させるので、フィルタコンデンサ7には過電圧が印加されることになる。
【0004】
車両に搭載しているインバータ10には前述した理由で頻繁に過電圧が印加されるが、過電圧が印加されるたびに当該インバータ10の運転を中断すると同時にフィルタコンデンサ7の電荷を放電して過電圧状態を解消させることにより、装置を構成する各機器や各素子を過電圧から保護する。
ところで走行用電動機へ電力を供給するインバータ10の場合は、車両を減速させる際に発生する回生エネルギーが非常に大きいので、回生エネルギーを消費する抵抗器を車両に設置して、架線1に回生エネルギーを受け止める負荷が接続されていないために架線1の電圧が上昇してしまうのを回避しようとすると、この抵抗器の寸法と重量を極めて大きくする必要がある。或いは抵抗器を冷却する適切な装置を付加しなければならなくなって、車両に搭載するのが困難になる。そこで回生エネルギーを吸収する装置は設けずに、回生エネルギーにより電源が過電圧になれば、インバータ10やLCフィルタを回路から切り離して、各機器や各素子が損傷するのを予防するようにしている。
【0005】
即ち図6の従来例回路では、フィルタコンデンサ7の電圧を電圧検出器13で監視して、その値が過電圧レベルを越えたことを過電圧検出器14が検出すれば、短絡用サイリスタ12へ点弧信号を送ってこれをターンオンさせると共に、図示はしていないがインバータ10へ動作停止を指令する。このとき高速度遮断器3と電磁接触器4もオフにする。その結果フィルタコンデンサ7は制限抵抗器11を介して短絡されるので、フィルタコンデンサ7の静電容量と制限抵抗器11の抵抗値とで定まる時定数に従ってフィルタコンデンサ7の電荷は放電され、その電圧は低下する。
【0006】
図7は図6の従来例回路の各部の動作を示したタイムチャートであって、図7▲1▼はフィルタコンデンサ7の電圧の変化、図7▲2▼はインバータ10の動作状態の変化、図7▲3▼は高速度遮断器3の動作、図7▲4▼は電磁接触器4の動作、図7▲5▼は短絡用サイリスタ12の動作をそれぞれが表している。
この図7において、フィルタコンデンサ7の電圧がt0 の時点で過電圧レベルVH に達するとインバータ10は停止となり、高速度遮断器3と電磁接触器4はオフとなり、且つ短絡用サイリスタ12はオンになるから、フィルタコンデンサ7は制限抵抗器11を介して短絡されてその電圧は低下し、遂には零となる。ここで短絡用サイリスタ12はオフとなリ、フィルタコンデンサ7の短絡状態は解除になる。
【0007】
次いでt1 時点で電磁接触器4がオフ状態のままで高速度遮断器3をオンにするので、架線1からの電力は充電抵抗器5を経てフィルタコンデンサ7へ与えられる。よってフィルタコンデンサ7の電圧は、当該フィルタコンデンサ7の静電容量と充電抵抗器5の抵抗値とで決まる時定数に従って上昇する。この電圧が所定値まで上昇したt2 時点で電磁接触器4をオンにして充電抵抗器5を短絡すると共にインバータ10の運転を再開する。
【0008】
【発明が解決しようとする課題】
ところで図6に図示の従来例回路では、フィルタコンデンサ7の電圧が過電圧レベルVH に達したときに当該フィルタコンデンサ7に蓄えられているエネルギーをE1 とすると、このエネルギーE1 は下記の数式1で表される。但しCはフィルタコンデンサ7の静電容量である。
【0009】
【数1】
1 =(C・VH 2 )/2
制限抵抗器11はこのエネルギーE1 を消費するが、その際の発熱で高温になるのを防ぐために、当該制限抵抗器11の寸法・重量を大きくしなければならない欠点がある。
【0010】
更に、短絡用サイリスタ12はその通流電流が保持電流値以下に低下しないと消弧しない。よって当該短絡用サイリスタ12にまだ保持電流程度の小電流が流れているにもかかわらず、インバータ10の運転を再開しようとして高速度遮断器3と電磁接触器4とをオンにすると、架線1→パンタグラフ2→高速度遮断器3→電磁接触器4→フィルタリアクトル6→制限抵抗器11→短絡用サイリスタ12→車輪8→レール9の経路で電源を短絡することになるので、このときの短絡電流で制限抵抗器11を焼損してしまう。それ故短絡用サイリスタ12が点弧した後は、サイリスタ電流が保持電流以下に低下するのに十分な時間を経過した後に電源側開閉器をオンにして再起動状態にしなければならない。即ち、フィルタコンデンサ7の電圧が過電圧レベルを越えてインバータ10の運転を中断してから再起動状態までに時間が必要である。この再起動状態になってからフィルタコンデンサ7の充電が完了するまでに更に時間が必要になる。即ち過電圧でインバータ10が停止してから運転を再開するまでに長い時間が必要になる欠点を有する。
【0011】
そこでこの発明の目的は、車両の電源電圧上昇の際はフィルタコンデンサを短絡して電力変換装置の運転を中断するが、電源電圧が復帰したときの運転再開までの時間を短縮すると共に、フィルタコンデンサ短絡時のエネルギー損失を低減することにある。
【0012】
【課題を解決するための手段】
前記の目的を達成するためにこの発明の車両用電力変換装置の過電圧保護装置は、
開閉器と、フィルタコンデンサとフィルタリアクトルとで構成したLCフィルタ及び電力変換装置とを車両に搭載し、給電線から供給される直流電力を前記開閉器とLCフィルタとを介して前記電力変換装置へ供給する構成の車両用電力変換装置において、
抵抗器と自己消弧形半導体スイッチ素子との直列回路を前記フィルタコンデンサに並列に接続し、当該フィルタコンデンサの電圧が予め定めた過電圧設定値を越えれば前記自己消弧形半導体スイッチ素子をオンにすると共に前記電力変換装置の動作を停止させ、前記フィルタコンデンサの電圧が予め定めた復帰電圧設定値を下回れば、前記自己消弧形半導体スイッチ素子をオフにするものとする。
【0013】
【作用】
車両搭載用電力変換装置の入力側に設けたLCフィルタを構成するフィルタコンデンサの電圧が過電圧レベルを越えれば、当該フィルタコンデンサを制限抵抗器を介して短絡させるが、この短絡用として自己消弧形半導体スイッチ素子を使用し、フィルタコンデンサ電圧が過電圧レベルよりも下側に設けた復帰電圧設定値まで低下すれば前記自己消弧形半導体スイッチ素子をオフにする。
【0014】
【実施例】
図1は本発明の第1実施例を表した主回路接続図であるが、この図1の第1実施例回路に図示している架線1,パンタグラフ2,高速度遮断器3,電磁接触器4,充電抵抗器5,フィルタリアクトル6,フィルタコンデンサ7,車輪8,レール9,インバータ10,制限抵抗器11,及び電圧検出器13の名称・用途・機能は、図6で既述の従来例回路の場合と同じであるから、これらの説明は省略する。
【0015】
この第1実施例回路では、過電圧状態時には自己消弧形半導体スイッチ素子としての短絡用IGBT(絶縁ゲートバイポーラトランジスタ)21を使って、フィルタコンデンサ7を短絡する。短絡用IGBT21などの自己消弧形半導体スイッチ素子は、制御回路22からの指令に基づいて、任意の時点でのターンオン・ターンオフが可能であるから、電圧検出器13で検出する電圧が過電圧レベルVH まで上昇すれば、制御回路22が短絡用IGBT21へオン信号を出力し、フィルタコンデンサ7の電圧がこの過電圧レベルVH より下側に設定した適切な復帰電圧VL まで低下すれば、短絡用IGBT21へオフ信号を与える。このとき制限抵抗器11で消費されるエネルギーをE2 とすると、このE2 は下記の数式2で表される。
【0016】
【数2】
2 ={C・(VH −VL 2 }/2
この数式2で表されるエネルギーE2 は、前述した従来例回路で制限抵抗器11が消費するエネルギーE1 (数式1で表示)よりも遙かに少ない。
図2は図1の第1実施例回路の各部の動作を示したタイムチャートであって、図2▲1▼はフィルタコンデンサ7の電圧の変化、図2▲2▼はインバータ10の動作状態の変化、図2▲3▼は高速度遮断器3の動作、図2▲4▼は電磁接触器4の動作、図2▲5▼は短絡用IGBT21の動作をそれぞれが表している。
【0017】
この図2において、フィルタコンデンサ7の電圧がt0 の時点で過電圧レベルVH に達すると、インバータ10は停止となり高速度遮断器3と電磁接触器4はオフとなり、且つ短絡用IGBT21はオンになる。よってフィルタコンデンサ7の電圧は急激に減少し、t3 時点には復帰電圧値VL まで低下し、このt3 時点で短絡用IGBT21はオフとなる。
【0018】
短絡用IGBT21がオフしたことを確認する時間が経過した後のt4 時点で、高速度遮断器3と電磁接触器4とを同時にオンにし、且つインバータ10の運転も同時に再開させる。フィルタコンデンサ7の電圧値がVL まで低下したときに短絡用IGBT21をオフにするが、このVL なる値は正常電圧付近の値であるから、充電抵抗器5を介してフィルタコンデンサ7を所定電圧まで充電する時間は不必要であり、インバータ10も直ちに運転を再開できる。
【0019】
図3は本発明の第2実施例を表した制御回路の構成図であって、図1の第1実施例回路に図示の制御回路22の構成を表している。図3の第2実施例回路に図示の制御回路22はオフ電圧検知回路23と過電圧検知回路24とで構成し、電圧検出器13が検出したフィルタコンデンサ7の電圧が過電圧レベルVH に達すれば、過電圧検知回路24がインバータ10へゲートオフ信号を与えると共に、短絡用IGBT21へオン信号を与える。その結果フィルタコンデンサ7の電圧が復帰電圧VL まで低下すれば、オフ電圧検知回路23が短絡用IGBT21へオフ信号を与えるので、フィルタコンデンサ7の短絡は解除になり、インバータ10は直ちに運転を再開することができる。
【0020】
図4は本発明の第3実施例を表した制御回路の構成図であって、図1の第1実施例回路に図示の制御回路22の構成を表している。図4の第3実施例回路に図示の制御回路22は過電圧検知回路24とパルス発生器25とで構成し、電圧検出器13が検出したフィルタコンデンサ7の電圧が過電圧レベルVH に達すれば、過電圧検知回路24がインバータ10へゲートオフ信号を与えると共に、パルス発生器25へ信号を出力する。この信号を受けて、パルス発生器25は予め定めていた時間幅のパルス信号を短絡用IGBT21へ出力してこれをオンにする。一方、フィルタコンデンサ7の静電容量と制限抵抗器11の抵抗値とで定まる時定数に基づいて、フィルタコンデンサ7の電圧が復帰値VL に低下するまでの時間を計算することができるから、パルス発生器25が出力するパルスの時間幅をこの計算値に定め、高レベルだったパルスがこの時間経過後に低レベルに切り換われば、短絡用IGBT21はオフとなる。
【0021】
図5は本発明の第4実施例を表した主回路接続図であって、複数(この図5では2組)のインバータを共通の電源に接続する場合を表しているが、図5の第4実施例回路に図示の架線1,パンタグラフ2,高速度遮断器3,電磁接触器4,充電抵抗器5,フィルタリアクトル6,フィルタコンデンサ7,車輪8,レール9,インバータ10,制限抵抗器11,短絡用IGBT21,及び制御回路22の名称・用途・機能は、図1で既述の第1実施例回路の場合と同じであるから、これらの説明は省略する。更に、本発明ではフィルタリアクトル36,フィルタコンデンサ37,インバータ40,制限抵抗器41,電圧検出器43,及び制御回路52が2組目の装置として新たに付加されているが、これらは既に説明済みの各装置と同じ機能を有するから、その説明は省略する。
【0022】
本発明では、一方の装置の構成要素である短絡用IGBT21へオン・オフ信号を与える制御回路22の出力信号と、他方の装置を構成している短絡用IGBT51へオン・オフ信号を与える制御回路52の出力信号とを、論理和素子53へ入力させ、当該論理和素子53の出力信号を、短絡用IGBT21と短絡用IGBT51とへ与える回路構成にしている。これにより、検出電圧にばらつきがあっても、両短絡用IGBT21と51とを同時にオン・オフさせることができる。
【0023】
【発明の効果】
この発明によれば、走行中の車両が減速する際に生じる回生エネルギーや、長大な架線に誘導される雷サージなどが原因で、車両用電力変換装置に規定値以上の高電圧が印加されると、当該電力変換装置の運転を中断させると共に、自己消弧形半導体スイッチ素子をターンオンさせて電力変換装置の入力側に設けたフィルタコンデンサを制限抵抗器を介して短絡状態にする。次いで電圧が規定値まで低下すればこの自己消弧形半導体スイッチ素子をターンオフさせる。この動作のときの制限抵抗器で消費するエネルギーを、従来よりも大幅に低減できるので、当該制限抵抗器の寸法と重量を抑制できる効果が得られる。又フィルタコンデンサ電圧が規定値まで低下したときに電力変換装置の運転が再開できる状態になるので、運転中断期間が従来よりも大幅に短縮できる効果も得られる。更に、複数の電力変換装置を共通の電源に接続して運転中に、各フィルタコンデンサの短絡開始電圧或いは短絡解除電圧にばらつきがあっても、全装置を同時にオン・オフ動作させることができるので、各LCフィルタ間に横流が流れて無用の共振振動が発生するのを回避できる効果も得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した主回路接続図
【図2】図1の第1実施例回路の各部の動作を示したタイムチャート
【図3】本発明の第2実施例を表した制御回路の構成図
【図4】本発明の第3実施例を表した制御回路の構成図
【図5】本発明の第4実施例を表した主回路接続図
【図6】車両用電力変換装置の従来の主回路を示した主回路接続図
【図7】図6の従来例回路の各部の動作を示したタイムチャート
【符号の説明】
1 架線
3 高速度遮断器
4 電磁接触器
5 充電抵抗器
6,36 フィルタリアクトル
7,37 フィルタコンデンサ
10,40 電力変換装置としてのインバータ
11,41 制限抵抗器
12 短絡用サイリスタ
13,43 電圧検出器
14 過電圧検出器
21,51 自己消弧形半導体スイッチ素子としての短絡用IGBT
22,52 制御回路
23 オフ電圧検知回路
24 過電圧検知回路
25 パルス発生器
53 論理和素子
[0001]
[Industrial applications]
The present invention relates to an overvoltage protection device for a vehicular power converter that protects a power converter mounted on a vehicle from DC overcurrent pressure.
[0002]
[Prior art]
FIG. 6 is a main circuit connection diagram showing a conventional main circuit of the vehicle power converter. In the circuit of the prior art shown in FIG. 6, in order to supply electric power to a traveling motor of a train or an electric locomotive, or to supply electric power to lighting, communication, air conditioners, and the like in the vehicle, a power conversion device is provided to these vehicles. The inverter 10 is mounted. The electric power transmitted from the substation on the ground to the vehicle via the overhead wire 1 and the pantograph 2 is transmitted to the high-speed circuit breaker 3 and the electromagnetic contactor 4, and the LC filter composed of the filter reactor 6 and the filter capacitor 7. The power is supplied to the inverter 10 via the wheels 8 and the rails 9 and then discharged to the ground.
[0003]
By the way, since the overhead wire 1 also supplies power to other vehicles, a switching surge voltage generated when a circuit breaker or an electromagnetic contactor of another vehicle operates, a lightning surge voltage induced in a long overhead wire 1 or the like. Is applied to the vehicle. When the inverter 10 is, for example, a VVVF inverter that outputs AC power having a variable voltage and a variable frequency, and the VVVF inverter drives a traveling motor, the regenerative braking that occurs when the vehicle is decelerated using a regenerative brake. If there is no load that receives energy (for example, an electric car during power running operation), the regenerative energy increases the voltage of the overhead wire 1, and an overvoltage is applied to the filter capacitor 7.
[0004]
Overvoltage is frequently applied to the inverter 10 mounted on the vehicle for the reason described above. However, every time the overvoltage is applied, the operation of the inverter 10 is interrupted, and at the same time, the charge of the filter capacitor 7 is discharged and the overvoltage state is released. , Each device and each element constituting the device are protected from overvoltage.
By the way, in the case of the inverter 10 that supplies electric power to the traveling motor, the regenerative energy generated when the vehicle is decelerated is very large. In order to avoid an increase in the voltage of the overhead wire 1 due to the absence of a load for receiving the load, the size and weight of the resistor must be extremely large. Alternatively, an appropriate device for cooling the resistor must be added, which makes it difficult to mount on a vehicle. Therefore, a device for absorbing the regenerative energy is not provided, and if the power supply becomes overvoltage due to the regenerative energy, the inverter 10 and the LC filter are separated from the circuit to prevent each device and each element from being damaged.
[0005]
That is, in the conventional circuit shown in FIG. 6, the voltage of the filter capacitor 7 is monitored by the voltage detector 13, and if the overvoltage detector 14 detects that the value exceeds the overvoltage level, the short-circuit thyristor 12 is fired. A signal is sent to turn it on, and an operation stop command is issued to the inverter 10 (not shown). At this time, the high-speed circuit breaker 3 and the electromagnetic contactor 4 are also turned off. As a result, the filter capacitor 7 is short-circuited through the limiting resistor 11, so that the charge of the filter capacitor 7 is discharged according to a time constant determined by the capacitance of the filter capacitor 7 and the resistance value of the limiting resistor 11, and the voltage of the filter capacitor 7 is reduced. Drops.
[0006]
7 is a time chart showing the operation of each part of the conventional circuit of FIG. 6, wherein FIG. 7 (1) shows a change in the voltage of the filter capacitor 7, FIG. 7 (2) shows a change in the operation state of the inverter 10, 7 (3) shows the operation of the high-speed circuit breaker 3, FIG. 7 (4) shows the operation of the electromagnetic contactor 4, and FIG. 7 (5) shows the operation of the short-circuit thyristor 12.
In FIG. 7, when the voltage of the filter capacitor 7 reaches the overvoltage level V H at time t 0 , the inverter 10 is stopped, the high-speed circuit breaker 3 and the electromagnetic contactor 4 are turned off, and the short-circuit thyristor 12 is turned on. Therefore, the filter capacitor 7 is short-circuited through the limiting resistor 11 and its voltage decreases, and finally becomes zero. Here, the short-circuit thyristor 12 is turned off, and the short-circuit state of the filter capacitor 7 is released.
[0007]
Next, at time t 1 , the high-speed circuit breaker 3 is turned on while the electromagnetic contactor 4 remains off, so that the power from the overhead wire 1 is supplied to the filter capacitor 7 via the charging resistor 5. Therefore, the voltage of the filter capacitor 7 increases according to a time constant determined by the capacitance of the filter capacitor 7 and the resistance value of the charging resistor 5. At time t 2 when this voltage has risen to a predetermined value, the electromagnetic contactor 4 is turned on, the charging resistor 5 is short-circuited, and the operation of the inverter 10 is restarted.
[0008]
[Problems to be solved by the invention]
By the way, in the conventional circuit shown in FIG. 6, when the energy stored in the filter capacitor 7 when the voltage of the filter capacitor 7 reaches the overvoltage level V H is E 1 , this energy E 1 is represented by the following equation. It is represented by 1. Here, C is the capacitance of the filter capacitor 7.
[0009]
(Equation 1)
E 1 = (C · V H 2 ) / 2
Limiting resistor 11 consumes the energy E 1, to prevent the high temperatures in the heat generation at this time, there is a disadvantage that it is necessary to increase the size and weight of the limiting resistor 11.
[0010]
Further, the arc of the short-circuit thyristor 12 does not extinguish unless the current flowing through the thyristor 12 falls below the holding current value. Therefore, when the high-speed circuit breaker 3 and the electromagnetic contactor 4 are turned on to restart the operation of the inverter 10 even though a small current of about the holding current still flows through the short-circuit thyristor 12, the overhead wire 1 → The power supply is short-circuited in the path of pantograph 2 → high-speed circuit breaker 3 → magnetic contactor 4 → filter reactor 6 → limiting resistor 11 → short-circuit thyristor 12 → wheel 8 → rail 9 so that the short-circuit current at this time As a result, the limiting resistor 11 is burned. Therefore, after the short-circuit thyristor 12 has been fired, it is necessary to turn on the power supply-side switch after a sufficient time has elapsed for the thyristor current to fall below the holding current, and to restart the thyristor. That is, it takes time from the time when the voltage of the filter capacitor 7 exceeds the overvoltage level to the time when the operation of the inverter 10 is interrupted to the time when the inverter 10 is restarted. Further time is required until the charging of the filter capacitor 7 is completed after the restart state. That is, there is a disadvantage that a long time is required from the stop of the inverter 10 due to the overvoltage to the restart of the operation.
[0011]
Therefore, an object of the present invention is to interrupt the operation of the power converter by short-circuiting the filter capacitor when the power supply voltage of the vehicle rises, but to shorten the time until the restart of operation when the power supply voltage is restored, and to reduce the filter capacitor. It is to reduce energy loss at the time of short circuit.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an overvoltage protection device for a vehicle power conversion device according to the present invention includes:
A switch, an LC filter and a power converter configured by a filter capacitor and a filter reactor are mounted on a vehicle, and DC power supplied from a power supply line is supplied to the power converter via the switch and the LC filter. In the vehicle power conversion device configured to supply,
A series circuit of a resistor and a self-extinguishing type semiconductor switch element is connected in parallel to the filter capacitor, and when the voltage of the filter capacitor exceeds a predetermined overvoltage set value, the self-extinguishing type semiconductor switch element is turned on. At the same time, the operation of the power converter is stopped, and when the voltage of the filter capacitor falls below a preset return voltage set value, the self-turn-off semiconductor switch element is turned off.
[0013]
[Action]
If the voltage of the filter capacitor constituting the LC filter provided on the input side of the vehicle-mounted power converter exceeds the overvoltage level, the filter capacitor is short-circuited through the limiting resistor. When a semiconductor switch element is used and the filter capacitor voltage falls to a reset voltage set value provided below the overvoltage level, the self-extinguishing type semiconductor switch element is turned off.
[0014]
【Example】
FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention. The overhead wire 1, the pantograph 2, the high-speed circuit breaker 3, the electromagnetic contactor shown in the circuit of the first embodiment of FIG. 4, the charging resistor 5, the filter reactor 6, the filter capacitor 7, the wheel 8, the rail 9, the inverter 10, the limiting resistor 11, and the voltage detector 13 have the same names, uses, and functions as those of the conventional example described with reference to FIG. The description is omitted because it is the same as the case of the circuit.
[0015]
In the circuit of the first embodiment, the filter capacitor 7 is short-circuited by using a short-circuiting IGBT (insulated gate bipolar transistor) 21 as a self-extinguishing semiconductor switch element in an overvoltage state. The self-extinguishing type semiconductor switch element such as the short-circuit IGBT 21 can be turned on and off at any time based on a command from the control circuit 22. Therefore, the voltage detected by the voltage detector 13 is overvoltage level V if increased to H, the control circuit 22 outputs an oN signal to the short-circuit IGBT 21, when lowering the voltage of the filter capacitor 7 is higher than the overvoltage level V H to the appropriate return voltage V L set in the lower, shorting An off signal is given to the IGBT 21. Assuming that the energy consumed by the limiting resistor 11 at this time is E 2 , this E 2 is represented by the following Equation 2.
[0016]
(Equation 2)
E 2 = {C · (V H −V L ) 2 } / 2
The energy E 2 represented by the formula 2 is much smaller than the energy E 1 (represented by the formula 1) consumed by the limiting resistor 11 in the above-described conventional circuit.
2 is a time chart showing the operation of each part of the circuit of the first embodiment of FIG. 1. FIG. 2 (1) shows a change in the voltage of the filter capacitor 7, and FIG. FIG. 2 (3) shows the operation of the high-speed circuit breaker 3, FIG. 2 (4) shows the operation of the electromagnetic contactor 4, and FIG. 2 (5) shows the operation of the short-circuit IGBT 21.
[0017]
In FIG. 2, when the voltage of the filter capacitor 7 reaches the overvoltage level V H at time t 0 , the inverter 10 is stopped, the high-speed circuit breaker 3 and the electromagnetic contactor 4 are turned off, and the short-circuit IGBT 21 is turned on. Become. Thus the voltage of the filter capacitor 7 rapidly decreases, the t 3 time lowered to return the voltage value V L, the short-circuit IGBT21 in this t 3 time is turned off.
[0018]
In t 4 time after the short-circuit IGBT21 has elapsed time to verify that the off, turn on the high-speed circuit breaker 3 and the electromagnetic contactor 4 At the same time, to resume at the same time and the operation of the inverter 10. Voltage of the filter capacitor 7 is shorting IGBT21 off when lowered to V L, but since the V L becomes a value is a value in the vicinity of normal voltage, the filter capacitor 7 through the charging resistor 5 predetermined The time required for charging to the voltage is unnecessary, and the operation of the inverter 10 can be restarted immediately.
[0019]
FIG. 3 is a configuration diagram of a control circuit showing a second embodiment of the present invention, and shows a configuration of a control circuit 22 shown in the circuit of the first embodiment of FIG. The control circuit 22 of the illustrated second embodiment circuit 3 is constituted by an off-voltage detection circuit 23 and an overvoltage detection circuit 24, when reaches the voltage of the filter capacitor 7 is detected by the voltage detector 13 is an overvoltage level V H , The overvoltage detection circuit 24 supplies a gate-off signal to the inverter 10 and an ON signal to the short-circuit IGBT 21. As a result, when the voltage of the filter capacitor 7 decreases to the return voltage V L , the off-voltage detection circuit 23 gives an off signal to the IGBT 21 for short-circuit, so that the short-circuit of the filter capacitor 7 is released and the inverter 10 immediately resumes operation. can do.
[0020]
FIG. 4 is a configuration diagram of a control circuit showing a third embodiment of the present invention, and shows a configuration of a control circuit 22 shown in the circuit of the first embodiment of FIG. Third Embodiment control circuit of the circuit shown 22 in FIG. 4 is constituted by an overvoltage detection circuit 24 and the pulse generator 25, if reaches the voltage of the filter capacitor 7 is detected by the voltage detector 13 is an overvoltage level V H, The overvoltage detection circuit 24 provides a gate-off signal to the inverter 10 and outputs a signal to the pulse generator 25. Upon receiving this signal, the pulse generator 25 outputs a pulse signal of a predetermined time width to the short-circuit IGBT 21 to turn it on. On the other hand, the time until the voltage of the filter capacitor 7 decreases to the reset value VL can be calculated based on the time constant determined by the capacitance of the filter capacitor 7 and the resistance value of the limiting resistor 11. When the time width of the pulse output from the pulse generator 25 is set to the calculated value, and the high-level pulse is switched to the low level after the lapse of this time, the short-circuit IGBT 21 is turned off.
[0021]
FIG. 5 is a main circuit connection diagram showing a fourth embodiment of the present invention, in which a plurality of (two in FIG. 5) inverters are connected to a common power supply. Fourth Embodiment Overhead Wire 1, Pantograph 2, High Speed Circuit Breaker 3, Electromagnetic Contactor 4, Charge Resistor 5, Filter Reactor 6, Filter Capacitor 7, Wheel 8, Rail 9, Inverter 10, Inverter 10, Limiting Resistor 11 Since the names, applications, and functions of the short-circuit IGBT 21 and the control circuit 22 are the same as those of the circuit of the first embodiment described above with reference to FIG. 1, their description will be omitted. Further, in the present invention, a filter reactor 36, a filter capacitor 37, an inverter 40, a limiting resistor 41, a voltage detector 43, and a control circuit 52 are newly added as a second set of devices, which have already been described. Since it has the same function as each device described above, its description is omitted.
[0022]
According to the present invention, an output signal of the control circuit 22 for providing an on / off signal to the short-circuit IGBT 21 which is a component of one device, and a control circuit for providing an on-off signal to the short-circuit IGBT 51 constituting the other device. The output signal of the OR element 52 is input to the OR element 53, and the output signal of the OR element 53 is applied to the short-circuit IGBT 21 and the short-circuit IGBT 51. Thereby, even if the detection voltage varies, both the short-circuit IGBTs 21 and 51 can be simultaneously turned on and off.
[0023]
【The invention's effect】
According to the present invention, a high voltage equal to or higher than a specified value is applied to the vehicle power conversion device due to regenerative energy generated when the traveling vehicle decelerates or a lightning surge induced in a long overhead line. Then, the operation of the power converter is interrupted, and the self-extinguishing type semiconductor switch element is turned on to short-circuit the filter capacitor provided on the input side of the power converter through the limiting resistor. Next, when the voltage drops to a specified value, the self-extinguishing type semiconductor switch element is turned off. Since the energy consumed by the limiting resistor during this operation can be greatly reduced as compared with the related art, the effect of suppressing the size and weight of the limiting resistor can be obtained. In addition, since the operation of the power converter can be restarted when the filter capacitor voltage drops to the specified value, the effect that the operation interruption period can be significantly reduced as compared with the conventional case can be obtained. Furthermore, during operation with a plurality of power converters connected to a common power supply, even if the short-circuit start voltage or short-circuit release voltage of each filter capacitor varies, all devices can be simultaneously turned on and off. In addition, there is also obtained an effect that it is possible to avoid the occurrence of unnecessary resonance vibration due to the cross flow flowing between the LC filters.
[Brief description of the drawings]
1 is a main circuit connection diagram showing a first embodiment of the present invention; FIG. 2 is a time chart showing the operation of each part of the circuit of the first embodiment in FIG. 1; FIG. 3 is a second embodiment of the present invention; FIG. 4 is a block diagram of a control circuit showing a third embodiment of the present invention. FIG. 5 is a main circuit connection diagram showing a fourth embodiment of the present invention. Main circuit connection diagram showing a conventional main circuit of the power converter for use [FIG. 7] Time chart showing operation of each part of the conventional circuit of FIG.
REFERENCE SIGNS LIST 1 overhead wire 3 high-speed circuit breaker 4 electromagnetic contactor 5 charging resistor 6, 36 filter reactor 7, 37 filter capacitor 10, 40 inverter 11, 41 as power conversion device limiting resistor 12, short-circuit thyristor 13, 43 voltage detector 14 Overvoltage detectors 21 and 51 Short-circuit IGBTs as self-extinguishing semiconductor switch elements
22, 52 control circuit 23 off-voltage detection circuit 24 overvoltage detection circuit 25 pulse generator 53 OR element

Claims (3)

開閉器と、フィルタコンデンサとフィルタリアクトルとで構成したLCフィルタ及び電力変換装置とを車両に搭載し、給電線から供給される直流電力を前記開閉器とLCフィルタとを介して前記電力変換装置へ供給する構成の車両用電力変換装置において、
抵抗器と自己消弧形半導体スイッチ素子との直列回路を前記フィルタコンデンサに並列に接続し、前記自己消弧形半導体スイッチ素子の制御回路には過電圧検出回路とオンパルス発生回路とを備え、前記フィルタコンデンサの電圧が予め定めた過電圧設定値を越えれば、前記オンパルス発生回路は前記自己消弧形半導体スイッチ素子をオンにする所定の幅のパルス信号を出力し、前記パルス信号の幅は前記フィルタコンデンサの静電容量と前記抵抗器との抵抗値で定まる時定数に基づいて前記フィルタコンデンサの電圧が前記過電圧設定値よりも下側に設定した復帰電圧設定値に低下するまでの時間幅とすることを特徴とする車両用電力変換装置の過電圧保護装置。
A switch, an LC filter and a power converter configured by a filter capacitor and a filter reactor are mounted on a vehicle, and DC power supplied from a power supply line is supplied to the power converter via the switch and the LC filter. In the vehicle power conversion device configured to supply,
A series circuit of a resistor and a self-extinguishing type semiconductor switch element is connected in parallel to the filter capacitor, and the control circuit of the self-extinguishing type semiconductor switch element includes an overvoltage detection circuit and an on-pulse generation circuit, When the voltage of the capacitor exceeds a predetermined overvoltage set value, the on-pulse generating circuit outputs a pulse signal having a predetermined width for turning on the self-extinguishing type semiconductor switch element, and the width of the pulse signal is equal to the filter capacitor. And a time width until the voltage of the filter capacitor decreases to a reset voltage set value lower than the overvoltage set value based on a time constant determined by the capacitance of the resistor and the resistance value of the resistor. An overvoltage protection device for a power conversion device for a vehicle, comprising:
開閉器と、フィルタコンデンサとフィルタリアクトルとで構成した複数のLCフィルタ及び複数の電力変換装置を車両に搭載し、給電線から前記開閉器を介して供給される直流電力を、それぞれが入力側にLCフィルタを備えている複数の電力変換装置へ供給する構成の車両用電力変換装置において、
抵抗器と自己消弧形半導体スイッチ素子との直列回路を前記の各フィルタコンデンサに別個に並列接続し、いずれかのフィルタコンデンサ電圧が予め定めた過電圧設定値を越えれば全ての前記自己消弧形半導体スイッチ素子を同時にオンにすると共に全ての前記電力変換装置の動作を停止させることを特徴とする車両用電力変換装置の過電圧保護装置。
A switch, a plurality of LC filters and a plurality of power converters configured by a filter capacitor and a filter reactor are mounted on a vehicle, and DC power supplied from a power supply line via the switch is input to an input side. In a vehicle power conversion device configured to supply to a plurality of power conversion devices including an LC filter,
A series circuit of a resistor and a self-extinguishing type semiconductor switch element is separately connected in parallel to each of the filter capacitors, and if any of the filter capacitor voltages exceeds a predetermined overvoltage set value, all of the self-extinguishing type An overvoltage protection device for a vehicular power converter, wherein the semiconductor switch elements are simultaneously turned on and the operations of all the power converters are stopped.
開閉器と、フィルタコンデンサとフィルタリアクトルとで構成した複数のLCフィルタ及び複数の電力変換装置を車両に搭載し、給電線から前記開閉器を介して供給される直流電力を、それぞれが入力側にLCフィルタを備えている複数の電力変換装置へ供給する構成の車両用電力変換装置において、
抵抗器と自己消弧形半導体スイッチ素子との直列回路を前記の各フィルタコンデンサに別個に並列接続し、各フィルタコンデンサにはその電圧が予め定めた過電圧設定値を越えたことを別個に検出する過電圧検出回路と、各過電圧検出回路が出力する過電圧検出信号を共通して入力する論理和回路とを備え、この論理和回路の論理演算結果に従って全ての前記自己消弧形半導体スイッチ素子を同時にオンさせることを特徴とする車両用電力変換装置の過電圧保護装置。
A switch, a plurality of LC filters and a plurality of power converters configured by a filter capacitor and a filter reactor are mounted on a vehicle, and DC power supplied from a power supply line via the switch is input to an input side. In a vehicle power conversion device configured to supply to a plurality of power conversion devices including an LC filter,
A series circuit of a resistor and a self-extinguishing semiconductor switch element is separately connected in parallel to each of the filter capacitors, and each filter capacitor separately detects that its voltage exceeds a predetermined overvoltage set value. An overvoltage detection circuit, and an OR circuit for commonly inputting an overvoltage detection signal output from each overvoltage detection circuit, and simultaneously turning on all the self-extinguishing type semiconductor switch elements in accordance with a logical operation result of the OR circuit. An overvoltage protection device for a vehicle power converter.
JP25404494A 1994-10-20 1994-10-20 Overvoltage protection device for vehicle power converter Expired - Lifetime JP3540843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25404494A JP3540843B2 (en) 1994-10-20 1994-10-20 Overvoltage protection device for vehicle power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25404494A JP3540843B2 (en) 1994-10-20 1994-10-20 Overvoltage protection device for vehicle power converter

Publications (2)

Publication Number Publication Date
JPH08126101A JPH08126101A (en) 1996-05-17
JP3540843B2 true JP3540843B2 (en) 2004-07-07

Family

ID=17259460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25404494A Expired - Lifetime JP3540843B2 (en) 1994-10-20 1994-10-20 Overvoltage protection device for vehicle power converter

Country Status (1)

Country Link
JP (1) JP3540843B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678374B2 (en) 2007-01-04 2011-04-27 トヨタ自動車株式会社 LOAD DEVICE CONTROL DEVICE AND VEHICLE
JP2010110099A (en) * 2008-10-30 2010-05-13 Hitachi Automotive Systems Ltd Protection device for automobile power converter
JP6842812B2 (en) * 2017-12-12 2021-03-17 東芝三菱電機産業システム株式会社 Power converter
DE112018007793T5 (en) * 2018-07-04 2021-04-01 Mitsubishi Electric Corporation CONTROL DEVICE FOR RAILWAY VEHICLES
JP7278917B2 (en) * 2019-09-26 2023-05-22 株式会社日立製作所 POWER CONVERSION SYSTEM AND CURRENT CONTROL METHOD IN POWER CONVERSION SYSTEM

Also Published As

Publication number Publication date
JPH08126101A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP6552736B2 (en) Motor drive
EP2241472B1 (en) Power storage control apparatus and method of electric vehicle
US5170105A (en) Method for determining operability of an electrical dynamic braking system
KR101169343B1 (en) Restoration-electric power storage system of DC electric railway car
KR20090126196A (en) Vehicle control device for performing intermittent power reception
CN112721958B (en) Traction auxiliary system and method suitable for power outage area and vehicle
JP2012039867A (en) Device for control of electric rolling stock
JP3618273B2 (en) DC feeder system for electric railway
JP3808701B2 (en) Vehicle power supply device and control device therefor
JP2013211964A (en) Driving apparatus of railway vehicle
JP3355066B2 (en) Bidirectional DC circuit breaker
JP3540843B2 (en) Overvoltage protection device for vehicle power converter
WO2018123917A1 (en) Circuit system for railroad vehicle
JPS61240802A (en) Protecting method for electric railcar controller
JP2001037004A (en) Inverter type electric rolling stock controller
JP2014030343A (en) Electric-vehicle control device
JP3071944B2 (en) Electric vehicle power converter
JPH11234802A (en) Controller for electric rolling stock
JPS6271404A (en) Controller for electric rolling stock
JP3954265B2 (en) Power converter for vehicle
JPS63103745A (en) Protecting system for regenerative electric power absorbing device
JP2000358384A (en) Power controller
WO2003015277A1 (en) A series power switch bridge having the ability of automatic voltage-sharing
JP2015089194A (en) Control system for railway vehicle, control method, and electric power conversion system
JP2635549B2 (en) Electric car control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term