JPS5844907A - Controlling method for tension of finishing mill in hot strip mill - Google Patents

Controlling method for tension of finishing mill in hot strip mill

Info

Publication number
JPS5844907A
JPS5844907A JP56143445A JP14344581A JPS5844907A JP S5844907 A JPS5844907 A JP S5844907A JP 56143445 A JP56143445 A JP 56143445A JP 14344581 A JP14344581 A JP 14344581A JP S5844907 A JPS5844907 A JP S5844907A
Authority
JP
Japan
Prior art keywords
tension
rolling
sectional area
cross
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56143445A
Other languages
Japanese (ja)
Other versions
JPH0367762B2 (en
Inventor
Yoshinosuke Noma
野間 吉之介
Toshifumi Yabuuchi
薮内 捷文
Morio Saito
斉藤 森生
Sunao Tanimoto
直 谷本
Nobuo Iwamasa
岩政 信夫
Mitsuhiro Shimono
下野 充広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP56143445A priority Critical patent/JPS5844907A/en
Publication of JPS5844907A publication Critical patent/JPS5844907A/en
Publication of JPH0367762B2 publication Critical patent/JPH0367762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control

Abstract

PURPOSE:To perform a highly accurate tension-controlling, by controlling a tension produced between stands by means of rolling torque and rolling load when the cross-sectional area of a material is larger than the prescribed cross-sectional area, and controlling the tension by a looper device when said area is smaller than the prescribed one. CONSTITUTION:In rolling a material having the cross-sectional area larger than the prescribed one, rolling load of each stand 1, 2,- (i),-(n) is measured by providing a load meter 5 each, and rolling torque is measured by a torque-meter or a main motor 6. The speed of each main motor 6 located at the opposite side of a pivot is operated so as to make each tension produced between the stands coincide with the desired tension by estimating a tension between the stands from said measured value. When the cross-sectional area of the material is small, a small inertial looper-device 4 is provided to perform a PID control against looper angle theta so as to obtain the desired tension without being affected by the inertial force by considering the looper angle theta, thereby operating the speed of the motor 6 located at the opposite side of the pivot.

Description

【発明の詳細な説明】 この発明線材料断面積が広範囲に及ぶホットストリップ
ミル仕上圧延機の張力制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a tension control method for a hot strip mill finishing rolling mill in which the cross-sectional area of wire material is wide.

ホットストリップ仕上圧延中のストリップ巾の挙動は、
スタンド間の材料張力に依存する。
The behavior of the strip width during hot strip finish rolling is
Depends on the material tension between the stands.

ホラトストリラグコイルの巾精度を改善する丸め、従来
第1図に示すようなルーツ量装置による張力制御がなさ
れている。即ち、スタンドl。
In order to improve the width accuracy of the holat strip lag coil, tension control has conventionally been performed using a roots amount device as shown in FIG. That is, stand l.

2間にルーツfローラst設け、ルー/−ロー23によ
シ材料Mを持ち上げることによシ、材料Mに適度な張力
が発生するようにルーツ譬モータ4の駆動トルクを制御
していえ。
A Roots f roller is provided between the rollers 2 and 2, and the drive torque of the Roots roller motor 4 is controlled so that an appropriate tension is generated on the material M by lifting the material M through the roller 23.

近年、ラインノやイブ用の極厚広巾なフントロールトロ
ーリング材(制御圧延材)をホラトストリラグミルで製
造することが一般的になって来九。このような高重量材
をルー/苧p−23が持ち上げ得るようにするため、ル
ール+装置が強大になっておシ、これによシ次のような
問題が発−生じている。
In recent years, it has become common to produce extra-thick and wide Huntrol trawling material (controlled rolling material) for line rolling and rolling using Holatostra lag mills. In order to enable the Lou/Momo p-23 to lift such heavy materials, the rules and equipment have become more powerful, which has caused the following problems.

1)ルーツ9装置の慣性能率増大に伴なう一儀力制御性
の低下;例えば従来の最大正弧サイズが厚さ8mm、巾
150011@の圧延機に比し、最近の最大圧延サイズ
が厚さ25M、巾2300m!lll0圧延機では機械
強度上、ルーΔ慣性能率が10倍近く増加している。発
明者等のシミ息レージ1ンによると、この場合は張力制
御性がいに低下する。
1) Decreased force controllability due to an increase in the inertia rate of the Roots 9 machine; for example, compared to the conventional rolling mill with a maximum positive arc size of 8 mm thick and a width of 150011 @, the recent maximum rolling size is thick 25m long, 2300m wide! In the 110 rolling mill, the Leu Δ inertia rate increases by nearly 10 times due to mechanical strength. According to the inventors' research, the tension controllability is significantly reduced in this case.

2)材料張力計の 信号/ノイズ 比の低下:通常、材
料張力を検出するために、ルーパローラ3の軸下にロー
ドセルが設置されている。このロードセルはルーツ’P
ローラ3にかかる材料重量と材料張力の垂直成分の和を
測定して、材料張力を推定するものである。発明者等の
シミエレーシlンでは、例えば厚さ1.6 ws 、中
700mの材料の通、常圧延におけるロードセルの張力
成分°は70/lであ)、メインモータ電流に占める張
力成分はモータ定格電流の196程度である。
2) Decrease in the signal/noise ratio of the material tension meter: Usually, a load cell is installed under the axis of the looper roller 3 to detect the material tension. This load cell is Roots'P
The material tension is estimated by measuring the sum of the material weight applied to the roller 3 and the vertical component of the material tension. In the inventors' simulation machine, for example, for a material with a thickness of 1.6 ws and a medium length of 700 m, the tension component of the load cell during normal rolling is 70/l), and the tension component that accounts for the main motor current is the motor rating. The current is about 196.

一方厚さ25m、巾2300111mの材料ノロートセ
ルにかかる力は7200Ic9となる。従って7200
権の荷重に耐える過負荷耐量を有するロードセルで、7
0kgの値を精度よく検出することは困難である。
On the other hand, the force applied to a material Noroth cell with a thickness of 25 m and a width of 2300111 m is 7200 Ic9. Therefore 7200
A load cell with an overload capacity that can withstand the load of 7
It is difficult to accurately detect the value of 0 kg.

この発明は、上記のような実情にかんがみてなされたも
のであって、その目的は材料断面積が広範囲に及ぶホッ
トストリッツミル仕上圧延機において、高精度の張力制
御ができるようにした張力制御方法を提供しようとする
ものである。
This invention was made in view of the above-mentioned circumstances, and its purpose is to provide tension control that enables high-precision tension control in a hot strip mill finishing rolling mill in which the material cross-sectional area is wide-ranging. It is intended to provide a method.

この発明のホットストリッツミル仕上圧延機71″′ の張力制御方法の特徴は、材料断面積で所定断面積よシ
大きいものを圧延する場合には、圧延トルクと圧延荷重
に基づく演算によってスタンぜ ド間張力を制御し、上記以外の小さい材料断面積のもの
を圧延する場合には、ルーツク装置によりスタンド間張
力を制御するものであ杢。
A feature of the tension control method of the hot stritz mill finishing rolling mill 71''' of the present invention is that when rolling a material whose cross-sectional area is larger than a predetermined cross-sectional area, the tension control method of the hot stritz mill finish rolling mill 71''' is performed by calculation based on rolling torque and rolling load. When rolling a material with a small cross-sectional area other than those mentioned above, the tension between the stands is controlled using a rolling stock device.

以下この発明方法の一実施例を、説明する。An embodiment of the method of this invention will be described below.

材料断面積が所定断面積S@より大きいものを圧延する
場合の制御方法は、特公昭49−第18538号公報(
本出願人による)K開示されているもので、第2図に示
す如く各スタンド1.2.・・・量・・・nK荷重計5
.5・・・を設は圧延荷重Pを測定すると共k、トルク
計を設けるか或いはメインモータ6の電圧、電流によシ
圧延トルクGを測定する。この場合圧延トルクGは次式
で表わされる。
A control method for rolling a material whose cross-sectional area is larger than a predetermined cross-sectional area S@ is described in Japanese Patent Publication No. 18538-1983 (
As shown in FIG. 2, each stand 1.2. ...Quantity...nK load cell 5
.. 5. In addition to measuring the rolling load P, a torque meter is provided or the rolling torque G is measured based on the voltage and current of the main motor 6. In this case, the rolling torque G is expressed by the following formula.

G1 = 241・Pi−αf濫・tfi−αb1−t
bi   ・・(1)ここで、   Pl;iスタンド
圧延荷重Gi ; iスタンド圧延トルク ti ;   //   圧延トルクアームtfi; 
  l/   前方張力 tb1;   //   後方張力 αf1.αbi;   /l   ノ譬うメータである
G1 = 241・Pi−αf・tfi−αb1−t
bi...(1) Here, Pl; i-stand rolling load Gi; i-stand rolling torque ti; // rolling torque arm tfi;
l/ Front tension tb1; // Back tension αf1. αbi; /l This is a meter that compares to αbi; /l.

そこで、tb、 =0.  tf濫=tbl◆l なる
性質を用い、(1)式をスタンド毎に連立化して、圧延
荷重P及び圧延トルクGの実測値から、スタンド間張力
tf、tbを推定する。そしてこのスタンド間張力if
、tbが目標張力となるように反ビがット側のメインモ
ータ6の速度を操作するものである。
Therefore, tb, =0. The inter-stand tensions tf and tb are estimated from the measured values of the rolling load P and the rolling torque G by combining equation (1) for each stand using the property that tf tension=tbl◆l. And this tension between the stands if
, tb are operated to control the speed of the main motor 6 on the opposite side so that the tensions become the target tensions.

この制御方法は、材料断面積が大きく、圧延トルクGが
大きい場合、即ちメインそ一夕6の電流に占める張力成
分の大きい材料を圧延する場合に、慣性能率の大きい強
大なルー・ぐ装置を用いることなく、制御性よく仕上ス
タンド間の材料張力の制御をすることができる。
This control method uses a powerful rolling device with a high rate of inertia when rolling a material that has a large cross-sectional area and a large rolling torque G, that is, when rolling a material that has a large tension component in the current of the main coil 6. It is possible to control the material tension between the finishing stands with good controllability without using a finishing stand.

次に、上記以外の小さい材料断面積のものを圧延する場
合の制御方法は、第3図に示す如き低慣性ルーツ母装置
を設け、ルーフ9角度θを考慮して目標張力が慣性力を
無視して実現できるよ、うに、ルー/皆角度0に対して
PID制御を施し、反ビがット側メインモータ6の速度
を操作するものである。
Next, the control method when rolling a material with a small cross-sectional area other than the above is to install a low-inertia rooting device as shown in Figure 3, and set the target tension to ignore the inertial force by considering the roof angle θ. In this way, the speed of the main motor 6 on the reverse side is controlled by applying PID control to the zero angle.

この場合、ルー・母ロール3は大重量材料を持ち上げる
必要がないため、過負荷耐量の小さいロードセルを設置
することが可能となるので、張力検出の 信号/ノイズ
 比を改善して、ルーツ4装置の低慣性を併せて、張力
制御性を向上することができる。
In this case, the root/mother roll 3 does not need to lift heavy materials, so it is possible to install a load cell with a small overload capacity, which improves the signal/noise ratio for tension detection and improves the signal/noise ratio of the root 4 device. Combined with the low inertia of , tension controllability can be improved.

なお、上記第3図の場合、材料張力を直接測定してない
が、材料張力針を設置し、実測値をルーツやモーターの
トルク及び反ビIット側メイ7%−夕6の速度に反映さ
せてもよい。またルー/ぐのアクチ為エータに電気モー
タを用いているが、油圧を用いても同様な効果を得るこ
とができる。
In the case of Fig. 3 above, the material tension is not directly measured, but a material tension needle is installed and the actual measured value is adjusted to the roots, motor torque, and speed of 7% - 6 on the anti-bit side. It may be reflected. Also, although an electric motor is used as the actuator for the loop/gun, the same effect can be obtained by using hydraulic pressure.

次に材料Mの所定断面積8c即ち境界材料断面積の決定
方法を第4図によシ説明する。シミ為レーシヲンの結果
、ルーツ9装置を使用しない材料張力制御方式では、一
般の操業状態で制御結果の張力誤差二乗値が曲線aとな
る。一方最大材料断面積島ムXを持ち上げることができ
るルー・や装置を使用した材料張力制御方式では曲線す
となる。今、材料断面積が小さい場合にのみ、ルーツ4
装置を使うようにしてルー・9装置を低慣性化した礒合
、曲線すに相当する張力誤差二乗値はX軸に近づく。そ
して所定断面積Se即ち境界材料断面積を持ち上げられ
るルーツ4装置にした場合、曲線Cに示す如く、最小断
面積SMINの材料をルーツク装置を用いて材料張力制
御し九場合と所定断面積Seなる材料をルーツク装置を
用いずに材料張力制御し九場合との張力誤差二乗値が等
しくなる所定断面積Seが存在する。このような所定断
面積Sc即ち境界材料断面積を求めた結果Se S 1
.5 X 10’−を得た。
Next, a method for determining the predetermined cross-sectional area 8c of the material M, that is, the cross-sectional area of the boundary material, will be explained with reference to FIG. As a result of the stain ratio, in the material tension control method that does not use the Roots 9 device, the tension error square value of the control result becomes curve a under normal operating conditions. On the other hand, in a material tension control method using a Lou-Ya device that can lift the island X with the maximum material cross-sectional area, the material becomes curved. Now, roots 4 only if the material cross-sectional area is small.
The tension error square value corresponding to the combination and curved line obtained by using the Roux 9 device with low inertia approaches the X-axis. Then, when the predetermined cross-sectional area Se, that is, the cross-sectional area of the boundary material is set to the Roots 4 device that can be lifted, as shown in curve C, the material tension of the material with the minimum cross-sectional area SMIN is controlled using the Rootsku device, and the predetermined cross-sectional area Se is obtained. There is a predetermined cross-sectional area Se where the square tension error value is the same as in the case where the material tension is controlled without using the Lutsk device. As a result of determining such a predetermined cross-sectional area Sc, that is, the cross-sectional area of the boundary material, Se S 1
.. 5×10'- was obtained.

従って材料断面積が広範囲に及ぶホットストリップミル
仕上圧延機において、材料断面積が所定断面積Scよシ
大きいものを圧延する場合には第2図に示したルーパ装
置を用いない張力制御(曲a、>を行ない、上記以外の
小さい断面積のものを圧延する場合には第3図に示した
低慣性ルーツヤ装置によシ張力制御を行なう(曲線C)
ことにより、両者の場合に張力誤差二乗値をある値以下
におさえて制御性のよい張力制御を行なうことができる
Therefore, in a hot strip mill finishing mill where the material cross-sectional area is wide, when rolling a material whose cross-sectional area is larger than the predetermined cross-sectional area Sc, tension control without using the looper device shown in Fig. 2 (curve a , >, and when rolling a product with a small cross-sectional area other than the above, tension control is performed using a low-inertia root shear device shown in Fig. 3 (curve C).
By doing so, in both cases, it is possible to suppress the tension error square value to a certain value or less and perform tension control with good controllability.

この発明のホットストリップミル仕上圧延機の張力制御
方法は上記のよ−うなものであるから、材料断面積が広
範囲に及ぶ場合に、精度の高い張力制御を行なうことが
できる。
Since the tension control method of the hot strip finishing mill of the present invention is as described above, it is possible to perform highly accurate tension control when the cross-sectional area of the material is over a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のルーツ4装置による張力制御方法を示す
説明図、第2図及び第3図はこの発明方法の一実施例を
示すもので、第2図はルーツク装置を用いない張力制御
方法の説明図、第3図はルーツク装置を用いた張力制御
方法の説明図、第4図はそれぞれの張力制御方法と張力
誤差二乗値の関係を示す説明図である。 1,1′L:A 第2 図 g’i 3図 第4図
Fig. 1 is an explanatory diagram showing a tension control method using a conventional Roots 4 device, Figs. 2 and 3 show an embodiment of the method of the present invention, and Fig. 2 is a tension control method without using a Roots device. FIG. 3 is an explanatory diagram of the tension control method using the Lutsk device, and FIG. 4 is an explanatory diagram showing the relationship between each tension control method and the tension error square value. 1,1'L:A Figure 2 g'i Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 材料断面積が所定断面積よシ大きいものを圧延する場合
には圧延トルクと圧延荷重に基づく演算によっ、てスタ
ンド間張力を制御し、上記以外の小さい材料断面積のも
のを圧延する場合にはルーツ9装置によジスタント間張
力を制御することを特徴とする。ホットストリップミル
仕上圧延機の張力制御方法。
When rolling a material whose cross-sectional area is larger than the predetermined cross-sectional area, the tension between the stands is controlled by calculation based on the rolling torque and rolling load, and when rolling a material with a smaller cross-sectional area other than the above, is characterized in that the tension between the distants is controlled by a Roots 9 device. Tension control method for hot strip mill finishing rolling machine.
JP56143445A 1981-09-11 1981-09-11 Controlling method for tension of finishing mill in hot strip mill Granted JPS5844907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143445A JPS5844907A (en) 1981-09-11 1981-09-11 Controlling method for tension of finishing mill in hot strip mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143445A JPS5844907A (en) 1981-09-11 1981-09-11 Controlling method for tension of finishing mill in hot strip mill

Publications (2)

Publication Number Publication Date
JPS5844907A true JPS5844907A (en) 1983-03-16
JPH0367762B2 JPH0367762B2 (en) 1991-10-24

Family

ID=15338858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143445A Granted JPS5844907A (en) 1981-09-11 1981-09-11 Controlling method for tension of finishing mill in hot strip mill

Country Status (1)

Country Link
JP (1) JPS5844907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140864B1 (en) 2009-03-26 2012-05-03 현대제철 주식회사 Device for inputting a angle of looper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140864B1 (en) 2009-03-26 2012-05-03 현대제철 주식회사 Device for inputting a angle of looper

Also Published As

Publication number Publication date
JPH0367762B2 (en) 1991-10-24

Similar Documents

Publication Publication Date Title
KR101214348B1 (en) Strip rolling mill and its control method
JPS60206511A (en) Method and device for controlling sheet shape
JPS605373B2 (en) rolling mill
WO1995007776A1 (en) Snaking control method and tandem plate rolling mill facility line
JPS5844907A (en) Controlling method for tension of finishing mill in hot strip mill
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JPH0616891B2 (en) Rolling control method
JP2653128B2 (en) Control method of cold tandem rolling mill
JPH0347613A (en) Thickness control device for cold tandem mill
JPH11277141A (en) Method for centering rolled stock
JP3229437B2 (en) Shape control method in sheet rolling
JP6683166B2 (en) Cold rolling strip thickness control method
JPS60247407A (en) Method for preventing squeezing in rolling of steel strip
JPS6195711A (en) Method for controlling sheet camber in thick plate rolling
JPS609511A (en) Method for controlling dimension in rolling mill
JPH0734931B2 (en) Plate shape and elongation control device for rolling mill
JPS61226109A (en) Method and apparatus for hot rolling
JPH06339717A (en) Method for controlling meandering of camber in hot rolling
JPS62244506A (en) Setting up method for edge drop control of sheet rolling
JPS59144507A (en) Method for controlling shape of steel plate in accelerating and decelerating rolling speed
JPH01162507A (en) Looper control device for continuous hot rolling mill
JPH02165807A (en) Method for controlling sheet thickness in rolling mill for steel strip
JPS62224413A (en) Control method for plate crown in hot rolling mill
JPS61202712A (en) Rolling method by controlling shape of sheet stock
JPH0775831A (en) Winding guide controller for rolling