JPS609511A - Method for controlling dimension in rolling mill - Google Patents

Method for controlling dimension in rolling mill

Info

Publication number
JPS609511A
JPS609511A JP58115911A JP11591183A JPS609511A JP S609511 A JPS609511 A JP S609511A JP 58115911 A JP58115911 A JP 58115911A JP 11591183 A JP11591183 A JP 11591183A JP S609511 A JPS609511 A JP S609511A
Authority
JP
Japan
Prior art keywords
rolling
control
roll
speed
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58115911A
Other languages
Japanese (ja)
Inventor
Shigemichi Matsuka
松香 茂道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58115911A priority Critical patent/JPS609511A/en
Publication of JPS609511A publication Critical patent/JPS609511A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/02Roll dimensions
    • B21B2267/06Roll diameter
    • B21B2267/065Top and bottom roll have different diameters; Asymmetrical rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed
    • B21B2275/05Speed difference between top and bottom rolls

Abstract

PURPOSE:To roll effectively a hard and thin material by correcting the control command of a motor used for driving rolls basing on the deviation signal between target dimensions and measured dimensions, in rolling the material between a pair of rolls. CONSTITUTION:A pair of rolling rolls 2H, 2L having each a different diam. are separately driven by thyristor-Leonard devices 6H, 6L to control nonsymmetrically the speeds and torques, etc. of them. A rolling material 1 is rolled by the rolls 2H, 2L and measured by a thickness-deviation detecting device 3 to input a deviation signal to an arithmetic device 4 when the deviation in thickness is detected. The device 4 calculates the changing quantity of desired speed basing on a prescribed equation to transmit it to a speed-control arithmetic device 7 of an equipment 6L, from which the signal is outputted to a roll-driving DC motor 11 through a current-control arithmetic circuit 8, a reversible thyristor-conversion-device 9, and a current detecting device 10, to correctingly control the torque of rolling roll 2L.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は一般の全屈圧延設備の寸法制御、特に金属板の
自動板厚制御に利用される。、その中でも特に硬くて薄
い材料の圧延に有効である。−〔発明の背景〕 従来の圧延技術において、金属板の板厚などを制御する
方法は大別して2つの方法があった。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is utilized for dimensional control of general full-bending rolling equipment, particularly for automatic plate thickness control of metal plates. Among these, it is particularly effective for rolling hard and thin materials. - [Background of the Invention] In conventional rolling technology, there are two main methods for controlling the thickness of a metal plate.

第1図に示すごとく、圧延材1が一組の圧延ロール2で
圧延される場合、出側板厚りの寸法を制御するには、図
で記号Sで示すロール間隙、まだは材料に加えられる前
後の引張シ張力Tr、Tbを制御する二つの方法である
。他のもう一つの方法は潤滑剤を用いる冷間圧延で、潤
滑剤の組成を変えてロールと金属材料間の摩擦係数を変
えて制御する方法がある。これらの制御原理を圧延機の
弾性変形と圧延材の塑性変形の力の釣合いの関係で模式
的に示すと第2図のようになる。
As shown in Fig. 1, when a rolled material 1 is rolled by a set of rolling rolls 2, in order to control the dimension of the exit plate thickness, the roll gap, indicated by the symbol S in the figure, is added to the material. There are two methods for controlling the front and rear tension forces Tr and Tb. Another method is cold rolling using a lubricant, in which the composition of the lubricant is changed to control the coefficient of friction between the roll and the metal material. These control principles are schematically illustrated in FIG. 2 in terms of the balance between the forces of elastic deformation of the rolling mill and plastic deformation of the rolled material.

第2図において、縦軸は圧延荷重を、横軸は入側板厚H
o 、出側板厚hO+ h31 * h32 + h4
1 +h42.ロール間隙SO+ ”1 + 52など
を同一軸上に示す。曲線30,31.32は圧延機の弾
性伸び曲線を、曲線40.41.42は圧延材の塑性変
形曲線を示す。図で弾性曲線が30で示され、ロール間
隙がs6に設定されている状態に塑性曲線が40で示さ
れる入側板厚Hoの材料が入って来ると、動作点は曲線
30と40の交点AOで示され、出側板厚はholその
時の圧延荷重はP。
In Fig. 2, the vertical axis is the rolling load, and the horizontal axis is the entrance plate thickness H.
o, outlet side plate thickness hO+ h31 * h32 + h4
1 +h42. Roll gap SO + "1 + 52, etc. are shown on the same axis. Curves 30, 31, 32 show the elastic elongation curves of the rolling mill, and curves 40, 41, 42 show the plastic deformation curves of the rolled material. In the figure, the elastic curves When a material with an entry side thickness Ho whose plasticity curve is indicated by 40 is introduced into a state where the roll gap is set to 30 and the roll gap is set to s6, the operating point is indicated by the intersection AO of the curves 30 and 40, The plate thickness at the exit side is hol, and the rolling load at that time is P.

で示される。It is indicated by.

前述の圧延材の寸法を制御する手法として、ロール間隙
を変更する方法は、第2図でSQをSI又はS2に動か
す事であシ、動作点をAoからA31又tiAs*に変
え、結果として出側板厚をh31又はh32に制御する
もので、あらゆる圧延設備でもつとも一般的に使われて
いる手法である。次に圧延材の張力を変えて制御する方
法は、等制約に圧延材の塑性曲線を変更することに相当
し、前後方の張力の一方又は両方を弱めれば、曲線は4
0から41に移行、逆に強めれば40から42に移って
各々動作点はA41又はA42に移シ、結果として出側
板厚はh41或いはh42と制御される。潤滑剤を用い
て滑υ易さを変更する場合も、結果的には塑性曲線の傾
斜を変更していることに等しい。
As a method of controlling the dimensions of the rolled material mentioned above, the method of changing the roll gap is to move SQ to SI or S2 in Fig. 2, change the operating point from Ao to A31 or tiAs*, and as a result This method controls the outlet plate thickness to h31 or h32, and is a method commonly used in all rolling equipment. Next, the method of controlling the tension of the rolled material by changing the tension is equivalent to changing the plasticity curve of the rolled material with equal constraints.If one or both of the front and rear tensions is weakened, the curve becomes 4.
It moves from 0 to 41, and conversely, if it is strengthened, it moves from 40 to 42, and the operating point moves to A41 or A42, respectively, and as a result, the exit side plate thickness is controlled to h41 or h42. Changing the slipperiness using a lubricant also results in changing the slope of the plasticity curve.

各々の制御手段の特長について述べる。ロール間隙を調
整する方法は、最も一般的に用いられており、近年油圧
式の高応答のロール間隙調整装置も実用化されオンライ
ン制御手段として最も有効な方法である。しかし、圧延
材が硬いか、−薄くなって加工硬化が進んで来た状態で
は、間隙を狭くして圧延材に加えている力の大半がロー
ル偏平に消費され、ロール間隙を調整しても圧延材の減
厚は圧延材に加えられる張力の制御はロール間隙に次い
で有効な寸法制御手段として使用されておシ、特に圧延
材の硬度がff=<てロール間隙調整が利きにくい場合
は有効な手段である。敢えて問題点を挙げれば、張力制
御方式はロール間隙制御方式と比べてやや応答が遅い事
、バッチ圧延では先後端部がどうしても無張力となるた
め、寸法が大きく変化し易く、この補償をロール間隙制
御で考えなければならないこと、圧延材によっては張カ
一定で圧延をしたい場合がある事など、若干の制約を有
している。潤滑剤の制御はオンラインで連続的に変更す
ることは仲々難しく、一度設定しだらオンラインでは殆
ど変更しないのが、実情である。
The features of each control means will be described. The method of adjusting the roll gap is the most commonly used, and in recent years hydraulic high-response roll gap adjustment devices have been put into practical use, making it the most effective method as an online control means. However, if the rolled material is hard or has become thinner and has progressed to work hardening, most of the force applied to the rolled material by narrowing the gap will be consumed by the flattening of the rolls, even if the roll gap is adjusted. Reducing the thickness of the rolled material is used as the second most effective dimensional control method after controlling the tension applied to the rolled material after the roll gap, and is especially effective when the hardness of the rolled material is ff, making it difficult to adjust the roll gap. It is a method. If I had to point out the problems, the response of the tension control method is a little slower than that of the roll gap control method, and in batch rolling, there is no tension at the leading and trailing edges, so the dimensions tend to change significantly, and this compensation is done by adjusting the roll gap. There are some limitations, such as the need to consider control and the need to roll with a constant tension depending on the rolled material. It is difficult to change lubricant control continuously online, and the reality is that once the settings are made, they are rarely changed online.

これは他の2つの手段と比べ応答が遅い事が、大きな制
約になっている。
A major limitation of this is that the response is slow compared to the other two methods.

〔発明の目的〕[Purpose of the invention]

上下−組のロールに速度差、あるいはトルク差をつけて
圧延する非対称圧延法が提唱されて久しい。また本圧延
法は特に従来の圧延法では実現出来なかった加工硬化の
進んだ薄い材料、または材質的に硬い材料を圧延するの
に有効なことが次第に実証されて来た。
It has been a long time since an asymmetric rolling method has been proposed, in which an upper and lower set of rolls are rolled with a speed difference or a torque difference. Moreover, it has been gradually demonstrated that this rolling method is particularly effective for rolling thin materials with advanced work hardening or materials that are materially hard, which could not be achieved by conventional rolling methods.

本発明の目的は、上下のロール周速の非対称圧延法を寸
法制御の一手段として積極的に活用することにより、特
に薄板または硬質材の圧延時の自動板厚制御に於いてロ
ール間隙制御が限界に来た時の板厚制御の補助手段を与
えると同時にロール間隙制御の有効範囲を回復しようと
するものである。
An object of the present invention is to actively utilize the asymmetric rolling method of upper and lower roll circumferential speeds as a means of dimensional control, thereby improving roll gap control, especially in automatic plate thickness control during rolling of thin plates or hard materials. The purpose is to provide an auxiliary means for controlling the plate thickness when it reaches its limit, and at the same time to restore the effective range of roll gap control.

〔発明の概要〕[Summary of the invention]

第3図に、−組のローールの圧延速度または圧延トルク
を変えた場合の板厚への影響を示す。第3図では一組の
圧延ロール2R,2Lに圧延材1が咬み込まれて圧延さ
れている状況を示すが、通常の対称圧延と異り、中立点
3Hと3Lが図示の如く非対象な位置にある。このよう
に−組のロールの中立点位置を変えることは、本ロール
を駆動している電動機の速度を個別に異った値に制御す
れば実現できることは衆知である。(真速圧延または異
トルク圧延と呼ばれている。)このような真速または異
トルク圧延では、図示の■の領域に於て、中立点の位置
が異っているため摩擦力μFIPIIとμI、Pt、が
逆方向となり、相互に相殺されて圧延荷重のピークが生
じない。従って材料とロールの接触弧内での荷重分布は
対象圧延の場合に比べてなくなる。即ち第3図で縦軸4
は荷重を、横軸5は接触弧の水平方向への投影表を示し
、これに沿った圧力分布を示すと、対象圧延時はABC
DEFGの如くD点でピークを示すのに対し、非対象圧
延に於いては、各ロールの中立点の位置の間、(即ち角
度では、φしくθくφH1φL、φには各々中立角)で
は#魯ぼ一定の荷重を示す。この結果衆知の如く、非対
象圧延では荷重分布の和である全圧延荷重が小さくなシ
、且つピークを持たないため、ロール偏平の度合いが少
くなシ、荷重限界から来る薄物圧延限界厚みも大巾に緩
和される。
FIG. 3 shows the effect on the plate thickness when the rolling speed or rolling torque of the - set of rolls is changed. Fig. 3 shows a situation in which the rolled material 1 is caught between a pair of rolling rolls 2R and 2L and rolled, but unlike normal symmetrical rolling, the neutral points 3H and 3L are asymmetrical as shown in the figure. in position. It is well known that changing the neutral point position of a set of rolls in this way can be achieved by controlling the speeds of the electric motors that drive the rolls to different values individually. (This is called true speed rolling or different torque rolling.) In such true speed or different torque rolling, the positions of the neutral points are different in the region (■) shown in the figure, so the frictional forces μFIPII and μI , Pt, are in opposite directions and cancel each other out, so that no peak of rolling load occurs. Therefore, the load distribution within the contact arc between the material and the roll is reduced compared to the case of target rolling. In other words, the vertical axis 4 in Figure 3
indicates the load, the horizontal axis 5 indicates the horizontal projection table of the contact arc, and the pressure distribution along this indicates ABC during target rolling.
In contrast to DEFG, which shows a peak at point D, in asymmetric rolling, between the positions of the neutral points of each roll (in terms of angles, φ is θ, φH1φL, and φ is each a neutral angle). # Indicates a constant load. As a result, as is well known, in asymmetric rolling, the total rolling load, which is the sum of the load distributions, is small and does not have a peak, so the degree of roll flattening is small, and the limit thickness for thin material rolling due to the load limit is also large. It will be relaxed to a wide extent.

従来の真速圧延または異トルク圧延の用法は、真速比ま
たは異トルク比を設定し、少い荷重でより薄い板を圧延
することにあった。
The conventional use of true speed rolling or differential torque rolling was to set a true speed ratio or a differential torque ratio to roll a thinner plate with a small load.

本発明は、上記真速または異トルクの程度をかえること
によシ、同じロール間隙でも圧延荷重が変化することに
着目し、これは前記第2図の塑性曲線カーブを変更して
板厚を調整するのと等価な効果があることを利用する。
The present invention focuses on the fact that the rolling load changes even with the same roll gap by changing the true speed or the degree of the different torque, and this is achieved by changing the plasticity curve shown in FIG. Take advantage of the fact that it has the same effect as adjusting.

即ち第2図に於いて、若干の真速又は異トルク状態での
圧延動作点をAo点とする。真速または異トルクの程度
を大きくすると、第3図の■領域が広くなシ、ΔCDE
の面積が拡大して荷重が小さくなることがわかる。
That is, in FIG. 2, the rolling operating point at a slightly different true speed or different torque is defined as point Ao. When the degree of true speed or different torque is increased, the ■ area in Figure 3 becomes wider, and ΔCDE
It can be seen that the area of is expanded and the load is reduced.

この事は第2図でロール間隙をs(1に保ったまま、塑
性曲線を40から42に等制約に変更した事になシ、動
作点はAoがらA42に移シ、荷重はP。
This can be seen in Figure 2 by changing the plasticity curve from 40 to 42 while keeping the roll gap at s (1), moving the operating point from Ao to A42, and changing the load to P.

からP22に下シ、且つ板厚はhoからh4wに薄くな
る。真速または異トルクの方向を逆に小さくすれば、塑
性曲線は40から41に、動作点はAOからA 41に
、荷重はPoからP41に増加し、板厚はり、からh4
1に厚くなる。
The plate thickness decreases from ho to h4w. Conversely, if the true speed or the direction of the different torque is decreased, the plasticity curve increases from 40 to 41, the operating point increases from AO to A41, the load increases from Po to P41, and the plate thickness increases from h4
It becomes thicker to 1.

本動作の方向は圧延荷重から見ると、ロール間隙操作の
方向と全く逆であることがわかる。ロール間隙を用いる
場合、板を薄くしようとすると間隙を狭くする方向なの
で圧延荷重は増大する。一方真速または異トルクの度合
いを大きくする方向は板を薄くすると同時に圧延荷重を
減少さす方向である。此の事は、真速または異トルクの
程度をオンラインで積極的に(実際には極くわずか)変
更することにより、加工硬化が進んだシ、硬質材の為ロ
ール間隙の制御では容易に良好な板厚精度の得られない
圧延材に対して有効な制御手段を与えると共に、通常の
ロール間隙制御が限界に達ワした際に、真速または異ト
ルク領域に持ち込むことで、圧延荷重が減少し、通常の
ロール間隙制御の能力を回復させる効果もあることを示
しておシ、本発明はこれらの効果を利用したものである
It can be seen that the direction of this operation is completely opposite to the direction of roll gap operation when viewed from the rolling load. When a roll gap is used, if the plate is made thinner, the rolling load increases because the gap is narrowed. On the other hand, the direction in which the true speed or the degree of differential torque is increased is the direction in which the plate is made thinner and at the same time the rolling load is reduced. In this case, work hardening progressed by actively changing the true speed or the degree of differential torque online (actually very little), and since it is a hard material, it is easy to control the roll gap. In addition to providing an effective control method for rolled materials that cannot obtain accurate plate thickness accuracy, when the normal roll gap control reaches its limit, the rolling load is reduced by bringing it into the true speed or different torque range. However, the present invention utilizes these effects.

〔発明の実施例〕[Embodiments of the invention]

発明の第一の実施例を第4図に示す。本図で1は圧延材
、2R,2Lは一組の圧延ロールで、基本的には非対象
の径で、速度、トルク等が非対称に制御されている。各
々の圧延ロールは一点鎖線で囲んだ61,6t、のサイ
リスタレオナード装置で、・個別に独立に駆動されてお
シ、本図では両ロールとも速度制御系(ASR)が購成
されている。
A first embodiment of the invention is shown in FIG. In this figure, 1 is a rolled material, and 2R and 2L are a set of rolling rolls, which basically have asymmetric diameters and whose speed, torque, etc. are controlled asymmetrically. Each rolling roll is individually and independently driven by a 61.6 t thyristor Leonard device surrounded by a dashed line, and in this figure both rolls are equipped with a speed control system (ASR).

ロールの駆動系は、独立に速度が制御出来れば良いので
、必ずしもサイリスタレオナード装置である必要はない
。独立の速度制御系では、−速度指令装置51.5Lに
よって、独立に個別に速度指令が与えられるが、本実施
例では便宜上下ロール速度Vaが上品−ル速度VLに対
し、等しいか太き目に設定され、下ロール速度が圧延基
準速度になる事を想定している。3は厚み偏差検出装置
であシ、出側板厚が目標板厚と合致している場合は出力
は零である。演算装置4は本発明実施部の主要部分で、
板厚偏差が°生じた場合に与えるべき上下ロールの速度
差を指令する演算装置であシ、本装置で算出される基本
演算式は下式による。
The roll drive system does not necessarily need to be a thyristor Leonard device as long as the speed can be controlled independently. In an independent speed control system, the speed command device 51.5L independently gives speed commands, but in this embodiment, for convenience, the vertical roll speed Va is equal to or thicker than the high roll speed VL. It is assumed that the lower roll speed becomes the standard rolling speed. 3 is a thickness deviation detection device, and the output is zero when the outlet side plate thickness matches the target plate thickness. The arithmetic device 4 is the main part of the present invention implementation section,
This is a calculation device that commands the speed difference between the upper and lower rolls that should be given when a plate thickness deviation occurs.The basic calculation formula calculated by this device is as shown below.

Δ■、は厚み計測差Δhが存在する時に、制御対象とし
て選ばれた上ロールの変更速度差であシ、方向は偏差板
厚が厚目の場合は速度を下げる方向薄目の場合は速度を
上げる方向である。(1)式中のCaP/θML)は、
低速側の速度を変更した場合の荷重変動の影響係数であ
シ、予めスケジュール毎算出しておく。荷重変化を圧延
機弾性係数にで除したものは厚み変化を示すから、(1
)式にて所要速度変更量が算出される。原理的には(1
)式の演算で良いが、実施上の細部について補足すると
、演算装置4に示した如く制御出力ΔvLは昇速及び降
速側に各々限界値ΔVIM)X +ΔVLMINを持た
せる。Δ■LMAxハ■t+ΔV Lwhx りV I
I 、ΔVLMtNはVt、−ΔVLMn+≧Vt、x
ts テ与えられ、VLmtst;1.、上ロールの中
立点が、接触弧表の入側限界に来るぎシぎシの速度とし
て設定する。同図の説明として、7は速度制御演算装置
、8は電流(=トルク)制御演算回路、9は正送サイリ
スタ変換装置、10は電流検出装置、11はロール駆動
直流電動機、12は指連発電磯を示す。
Δ■ is the change speed difference of the upper roll selected as the control target when there is a thickness measurement difference Δh, and the direction is the speed decrease if the deviation plate thickness is thick or the speed increase if the deviation plate thickness is thin. The direction is to raise it. (1) In the formula, CaP/θML) is
This is the influence coefficient of load fluctuation when changing the speed on the low speed side, and is calculated in advance for each schedule. Since the load change divided by the rolling mill elastic modulus indicates the thickness change, (1
) The required speed change amount is calculated using the formula. In principle (1
) may be used, but to add some details regarding implementation, the control output ΔvL has a limit value ΔVIM)X +ΔVLMIN on the speed-up and speed-down sides, respectively, as shown in the calculation device 4. Δ■LMAxha■t+ΔV Lwhx riVI
I, ΔVLMtN is Vt, -ΔVLMn+≧Vt, x
ts te given, VLmtst;1. , set as the speed at which the neutral point of the upper roll reaches the entry limit of the contact arc table. As an explanation of the figure, 7 is a speed control calculation device, 8 is a current (=torque) control calculation circuit, 9 is a forward feed thyristor conversion device, 10 is a current detection device, 11 is a roll drive DC motor, and 12 is a finger chain generator. Indicates a rocky shore.

発明の第二の実施例を第5図に示す。ロール駆動の制御
方式が、速度指令方式でなく、トルク指令方式である点
が異る。即ち一組の上下ロールを非対象に制御する方式
として、ロール周速で差を与える方式と圧延トルクで差
を与える方式が考えられる。いづれの方式も結果的には
圧延荷重を減少させている点では同じであると言えるが
、荷重に直接関係する電動機の出力トルクに差を与える
指令方式の方が、より直接的で正確である。図で1.2
L、2n、3については第4図と同じである。ロールを
駆動するサイリスタレオナード装置は、実施例1と同じ
く、Fロール速度を基準とし、速度差に基づく指令を電
流指令(−トルク指令)として各々上下ロールのサイリ
スタレオナード装置の電流制御演算回路8に与える。更
に電流制御演算回路8には、トールク設定装置5よシ、
上ロールでは減算方向に、下ロールでは加算方向に印加
され、対象圧延時に定まるトルク指令より上ロールから
は減算、下ロールには加算してトルク差を与えている。
A second embodiment of the invention is shown in FIG. The difference is that the roll drive control method is not a speed command method but a torque command method. That is, as methods for asymmetrically controlling a set of upper and lower rolls, there are two possible methods: one in which a difference is given by the circumferential speed of the rolls, and the other in which a difference is given by the rolling torque. Both methods can be said to be the same in that they reduce the rolling load, but the command method that gives a difference in the output torque of the electric motor, which is directly related to the load, is more direct and accurate. . 1.2 in figure
L, 2n, and 3 are the same as in FIG. 4. The thyristor Leonard device that drives the rolls uses the F roll speed as a reference, as in the first embodiment, and sends a command based on the speed difference as a current command (-torque command) to the current control calculation circuit 8 of the thyristor Leonard devices of the upper and lower rolls, respectively. give. Furthermore, the current control calculation circuit 8 includes a torque setting device 5,
The torque is applied to the upper roll in the subtraction direction and the lower roll in the addition direction, and the torque is subtracted from the upper roll and added to the lower roll from the torque command determined at the time of target rolling, giving a torque difference.

此の様な状態で圧延されている状況で、出側板厚が目標
板厚から偏差を生じると、3の偏差出力は制御演算回路
4に与えられる。板厚偏差が厚目の場合は上ロールのト
ルクを更、に減らし、下ロールのトルクを更に増す方向
に制御指令を与え、薄目の場合は逆に与える。制御量の
演算式は次式で与えられる。
When the sheet thickness at the exit side deviates from the target sheet thickness under rolling conditions such as this, the deviation output No. 3 is given to the control calculation circuit 4. If the plate thickness deviation is thick, a control command is given to further reduce the torque of the upper roll and further increase the torque of the lower roll, and if the deviation is thin, the control command is given in the opposite direction. The calculation formula for the control amount is given by the following formula.

Δτは与えるべきトルク変更指令であシ、(aP/θτ
)はトルクを変えた場合の荷重変化の影響係数としてス
ケジュール毎、あらかじめ演算して与える(勿論、演算
速度が間に合えば、オンラインで計算しても良い)。制
御範囲Δτは無限でなく、4に示す如く上下限の制限を
与えるものとし、これは ΔτMAx<ΔτくΔτMIN で、ΔτMAxは上ロール中立点が接触弧表の入側限界
点に相当するトルクで与えられ、21M1’Hは、異ト
ルク指令装置の設定トルクに相当する。一点鎖線内61
1.6Lの各番号の説明は第4図の場合と同一である。
Δτ is the torque change command to be given, (aP/θτ
) is calculated and given in advance for each schedule as the influence coefficient of load change when torque is changed (of course, it may be calculated online if the calculation speed is fast enough). The control range Δτ is not infinite, but has upper and lower limits as shown in 4. This is ΔτMAx<Δτ×ΔτMIN, and ΔτMAX is the torque at which the neutral point of the upper roll corresponds to the entry limit point of the contact arc table. 21M1'H corresponds to the set torque of the different torque command device. Inside the dashed line 61
The explanation of each number of 1.6L is the same as in the case of FIG.

第3の実施例は前記第1〜2の実施例と適用目的が異る
。即ち第1〜2の実施例では、本来真速または異トルク
圧延を実施している状態での板厚制御として、ロール開
度または前後方張力を制御するのでなく、真速の程度、
異トルクの程度を調整することによって板厚制御が可能
なる方法を提供したが、本実施例では本来対象圧延を実
施している状況で、加工硬化が進んでロール間隙による
板厚制御が困難になった状況で、尚板厚を一定に保ちな
がら圧延を続行する為の手段として、真速または異トル
クを板厚制御手段として積極的に取υ入れるものである
。即ち第6図に於いて、圧延ロール2H,2Lは前述の
実施例で示した同一番号のサイリスクレオナード装置に
て対称駆動されているものとし、自動板厚制御も厚み針
信号3によシ従来形の油圧々子装置21〜22にてロー
ル開度を調整して行っているものとする。此の場合、ハ
・fカーボン材や非鉄符殊合金で硬い材質を圧延してい
たり、スキンパス圧延時には、材料の変形抵抗が大きい
ためロール開度を締めて圧延荷重を増しても、荷重はロ
ール変形にのみ消費され材料の変形には殆ど使われない
場合がある。此の状況が予めわかっていれば、真速また
は異トルク圧延を予め設定すれば良い訳だが、対象圧延
を開始して制御を進めていってもロール開度の制御のみ
では所定板厚を保つことが困難な場合が生ずる。これを
救うために本実施例を提案するもので、通常の自動板厚
制御の演算装置24の出力が荷重を増す方向で一方的に
進んでいき限界値に達した場合には、通常の従来形自動
板厚制御を飽和中断させる論理演算を行い、飽和した信
号を別の演算装置25に与える。演算装置25では、前
述の実施例で示したのと全く同様の演算を行い、演算装
置24の飽和後からの板厚偏差に従って、(1)式また
は(2)式の演算を実行し、その結果に基づいて、制御
対象側の速度、または両方のトルクを制御して板厚制御
を行う。この制御によって圧延荷重が下るため24は飽
和領域から外れて再び制御可能領域に戻ってくるが、制
御のハンチングを防止するため若干のヒステリシス特性
を持たせる等の工夫が必要である。
The third embodiment is different from the first and second embodiments in its application purpose. That is, in the first and second embodiments, as plate thickness control in a state where true speed or different torque rolling is originally performed, the roll opening degree or longitudinal tension is not controlled, but the degree of true speed,
Although we have provided a method that enables plate thickness control by adjusting the degree of different torque, in this example, work hardening progressed and it became difficult to control plate thickness using the roll gap in a situation where target rolling was originally performed. In this situation, in order to continue rolling while keeping the plate thickness constant, true speed or different torque is actively used as a plate thickness control means. That is, in FIG. 6, it is assumed that the rolling rolls 2H and 2L are symmetrically driven by the same-numbered Silis-Screonard devices shown in the above-mentioned embodiment, and the automatic plate thickness control is also controlled by the thickness needle signal 3. It is assumed that the roll opening degree is adjusted using conventional hydraulic valve devices 21 and 22. In this case, when hard materials such as carbon materials and non-ferrous special alloys are being rolled, or during skin pass rolling, the deformation resistance of the material is large, so even if the roll opening is tightened and the rolling load is increased, the load is In some cases, it is consumed only for deformation and is hardly used for deforming the material. If this situation was known in advance, it would be sufficient to set the true speed or different torque rolling in advance, but even if the target rolling is started and the control is advanced, the specified thickness cannot be maintained by controlling only the roll opening degree. There are cases where it is difficult to do so. In order to solve this problem, this embodiment is proposed, and when the output of the calculation device 24 for normal automatic plate thickness control progresses unilaterally in the direction of increasing the load and reaches the limit value, the normal automatic plate thickness control A logical operation is performed to saturate and interrupt the automatic plate thickness control, and a saturated signal is provided to another arithmetic unit 25. The arithmetic device 25 performs the same calculation as that shown in the above embodiment, and executes the calculation of equation (1) or (2) according to the plate thickness deviation after saturation of the arithmetic device 24. Based on the results, plate thickness control is performed by controlling the speed of the controlled object side or the torque of both. This control lowers the rolling load so that the rolling force 24 goes out of the saturation region and returns to the controllable region, but it is necessary to take measures such as providing a slight hysteresis characteristic to prevent control hunting.

〔発明の効果〕〔Effect of the invention〕

本発明の効果は、最近実用化が始った真速または異トル
ク圧延において、従来のロール開度または前後方の張力
調整による板厚+tilJ御法とは別に、真速または異
トルク圧延の効果原理そのものを用いた新らしい板厚制
御法を提供する。本発明は特に硬い材料を薄く圧延する
場げに特に有効である。
The effect of the present invention is that in true speed or different torque rolling, which has recently been put into practical use, the effect principle of true speed or different torque rolling is different from the conventional method of controlling plate thickness + til J by adjusting the roll opening or front and rear tension. We provide a new plate thickness control method using this material. The present invention is particularly effective in rolling hard materials into thin sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は圧延現象を説明するだめの図、第3図
は本発明の詳細な説明するだめの図、第4図〜第6図は
本発明の実施例を示す図である。 2L、2+1・・・ロール、3・・・厚み偏差検出装置
、4・・・演算装置、5L、5n・・・速度指令装置、
6L。 6H・・・モータ開側1部、5・・・トルク設定装置、
21と22・・・油圧圧下装置、23・・・荷重検出器
、24弔17
Figures 1 and 2 are diagrams for explaining the rolling phenomenon, Figure 3 is a diagram for explaining the present invention in detail, and Figures 4 to 6 are diagrams showing embodiments of the present invention. . 2L, 2+1...Roll, 3...Thickness deviation detection device, 4...Arithmetic device, 5L, 5n...Speed command device,
6L. 6H...Motor open side 1 part, 5...Torque setting device,
21 and 22... Hydraulic lowering device, 23... Load detector, 24 Funeral 17

Claims (1)

【特許請求の範囲】[Claims] 1、−組のロール間に圧延材を通板し圧延を行なう圧延
機における圧延材の寸法を制御する制御方法において、
目標寸法と実測寸法との偏差信号に基づいて前記−組の
ロールを駆動するモータの制御指令を修正することを特
徴とする圧延機における寸法制御方法。
1. In a control method for controlling the dimensions of a rolled material in a rolling mill that passes a rolled material between a set of rolls and performs rolling,
1. A method for controlling dimensions in a rolling mill, comprising modifying a control command for a motor that drives the set of rolls based on a deviation signal between a target dimension and an actual dimension.
JP58115911A 1983-06-29 1983-06-29 Method for controlling dimension in rolling mill Pending JPS609511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115911A JPS609511A (en) 1983-06-29 1983-06-29 Method for controlling dimension in rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115911A JPS609511A (en) 1983-06-29 1983-06-29 Method for controlling dimension in rolling mill

Publications (1)

Publication Number Publication Date
JPS609511A true JPS609511A (en) 1985-01-18

Family

ID=14674259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115911A Pending JPS609511A (en) 1983-06-29 1983-06-29 Method for controlling dimension in rolling mill

Country Status (1)

Country Link
JP (1) JPS609511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221121A1 (en) * 2007-11-02 2010-08-25 Nippon Steel Corporation Strip rolling mill and its control method
JP2023017105A (en) * 2021-07-19 2023-02-03 燕山大学 Roll gap control method based on dynamic parameter of rolling contact interface segmented model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680311A (en) * 1979-12-05 1981-07-01 Toshiba Corp Controlling method for rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680311A (en) * 1979-12-05 1981-07-01 Toshiba Corp Controlling method for rolling mill

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221121A1 (en) * 2007-11-02 2010-08-25 Nippon Steel Corporation Strip rolling mill and its control method
EP2221121A4 (en) * 2007-11-02 2013-07-03 Nippon Steel & Sumitomo Metal Corp Strip rolling mill and its control method
US8720242B2 (en) 2007-11-02 2014-05-13 Nippon Steel & Sumitomo Metal Corporation Rolling mill for a plate or a sheet and its control technique
JP2023017105A (en) * 2021-07-19 2023-02-03 燕山大学 Roll gap control method based on dynamic parameter of rolling contact interface segmented model

Similar Documents

Publication Publication Date Title
EP0130551B1 (en) Control method and apparatus for rolling mill
JP3121471B2 (en) Rolling mill and rolling method
JPS605373B2 (en) rolling mill
JPS609511A (en) Method for controlling dimension in rolling mill
JPS6051923B2 (en) advanced rate controller
KR100514093B1 (en) control method for buckle and meandering prevention in annealing furnace
JPS6199511A (en) Control method of different-torques of upper and lower roll in rolling mill
KR100328930B1 (en) The hot rolling method for controlling the thickness and in the top end of strip
JPH0347613A (en) Thickness control device for cold tandem mill
JPS59110410A (en) Method and device for controlling tension of rolling material and position of looper in continuous hot mill
JPH11319929A (en) Control method and its device for roll gap of rolling mill
JP3433581B2 (en) Meandering control method in continuous hot rolling mill
JPS5844907A (en) Controlling method for tension of finishing mill in hot strip mill
JP2605546B2 (en) Shape control method in cold continuous rolling
JPH0246284B2 (en)
JPH0292411A (en) Method for controlling cold tandem rolling mill
JPH03264109A (en) Method for controlling side guides
JPH07204722A (en) Method for controlling strip position by automatic level adjusting device
JPH03138002A (en) Wet rolling method
JPS59169614A (en) Forward slip controlling device
JPH03169417A (en) Flatness controller
JPH05337531A (en) Automatic plate thickness controlling method for rolling machine whose speed is accelerated/decelerated
JPH03169418A (en) Method for controlling looper driving motor
JPS6462205A (en) Control method for rolling mill in continuous rolling of metal stock
JPS5853320A (en) Controlling method for wall thickness in mandrel mill