JPH02165807A - Method for controlling sheet thickness in rolling mill for steel strip - Google Patents

Method for controlling sheet thickness in rolling mill for steel strip

Info

Publication number
JPH02165807A
JPH02165807A JP63316772A JP31677288A JPH02165807A JP H02165807 A JPH02165807 A JP H02165807A JP 63316772 A JP63316772 A JP 63316772A JP 31677288 A JP31677288 A JP 31677288A JP H02165807 A JPH02165807 A JP H02165807A
Authority
JP
Japan
Prior art keywords
control
steel strip
plate thickness
sheet thickness
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63316772A
Other languages
Japanese (ja)
Other versions
JPH0815608B2 (en
Inventor
Eisuke Kawasumi
河澄 英輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63316772A priority Critical patent/JPH0815608B2/en
Publication of JPH02165807A publication Critical patent/JPH02165807A/en
Publication of JPH0815608B2 publication Critical patent/JPH0815608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform sheet thickness control with quick response and stability by performing the Smith method of control in the time when a sheet thickness deviation exceeds preset range of a high or a low limit values and performing proportional-plus-integral control in the time when the deviation is within the range between the two limits. CONSTITUTION:For a sheet thickness deviation h, a high and a low limit values are previously set. A controller is constituded so that quick sheet thickness correction is performed by the Smith compensation method of control when a measured sheet thickness deviation h exceeds the range of the high and low limit values and when the deviation is within the range of the two limit values, proportional-plus-integral control is performed to do stable sheet thickness control. Hence, sheet thickness control having quick response and stability is performance in rolling a steel strip 10 by use of a rolling mill.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、鋼帯の圧延機における板厚制御方法に係り、
更に詳しくは、圧延機を用いた狽帯の圧延に際して、該
鋼帯の厚さを測定する板厚計から送出される板厚偏差信
号に基づき圧下装置を操作して前記鋼帯の厚さをフィー
ドバック制御する板厚制御方法に関する。
The present invention relates to a method for controlling the thickness of a steel strip in a rolling mill.
More specifically, when rolling a strip using a rolling mill, the thickness of the steel strip is measured by operating a rolling device based on a thickness deviation signal sent from a thickness gauge that measures the thickness of the steel strip. This invention relates to a plate thickness control method using feedback control.

【従来の技術】[Conventional technology]

従来、鋼帯の圧延機における板厚制御は、第7図に示す
ような方法で行なわれていた。即ち、第7図において、
鋼帯10の出側に設置された板厚計12で鋼帯10の厚
さを測定し、該板厚計12から送出される板厚偏差信号
Δhに基づき比例・積分制御回路14で比例・積分制御
を行ない、該制御回路14から送出される指令信号ΔS
で圧下装置16を操作して圧延ロール18a、18bの
位置を変化させ、究極的に鋼帯10の板厚をフィードバ
ック制御するようにしていた。 しかし、第7図のような従来例においては、圧延ロール
18cの直下(即ち、圧延ロール18b、18cが鋼帯
10を押圧する部分の中立点)から板厚計12まで一定
の距離があるため、その間の11%F移送時間が無駄時
間となっていた。又、このような無駄時間があるため、
上記比例・積分制御を開始してから、鋼帯10が目標の
板厚となるまで一定の時間を要し、この時間中に圧延さ
れる鋼帯10の板厚がオフゲージ(板厚外れ)になると
いう問題があった。しかも、上記無駄時間が制御系の応
答に及ぼす上述のような悪い影響は、特に、鋼帯10を
低速で圧延するときに蓮著に現われていた。 一方、上述のような無駄時間の制御系への影響を回避し
制御系の応答性を改善するため、第8図に示すようなス
ミス補償法による制御も試みられていた。即ち、スミス
補償法による制御のゲインをC,BI 5RA−AGC
(自動厚み制御)のチューニング率をα、ミル定数をM
、圧延材(#!J帯10)の塑性定数をQ、圧延ロール
18b、18Cと板厚計12の間の鋼帯移送時間をTL
、比例制御のゲインをKP、積分制御のゲインをXt、
比例項の一次遅れ時定数をT、ロードセル20によって
検出される圧延荷重をP、圧延荷重設定値をPo、圧延
ロール18b、18C間のギャップ設定値をSoとする
とき、スミス補償法による制御の構成は第8図のように
なり、板厚計12で鋼帯10の板厚偏差Δhが検出され
てから圧下装置16を指令信号ΔSが制御するまでの遅
れを予め見込んで一定の補正を加えることによって、リ
アルタイムな板厚制御を行なうようになっている。 然し乍ら、上記スミス補償法による制御には次のような
問題が存在していた。 即ち、第、1に、スミス補償法において使用されるミル
定数Mは実測可能であるが、圧延材の塑性定数Qは、材
料によって異なるにも拘らず圧延時に実測するのが不可
能なため、推定値を用いざるを得ない、しかし、この推
定値が塑性定数Qの実際の値と必ずしも一致せず、両者
の差(即ち、塑性定数Qの誤差)が存在すると、スミス
補償法による制御の誤差を招き、前記比例、積分制御の
場合よりも板厚精度に大きな誤差を生じさせるという問
題があった。 第2に、第8図における圧延ロール18b、18cの直
下から板厚計12までの鋼帯移送時間TLは下式(1)
から求められるが、鋼帯10の移送速度(収速)を実測
しない限り、先進率fを実測するのは不可能であり、推
定値を用いざるを得ない。 TL=L/V (1+f)   −(1)ここで、Lは
圧延ロール18b、18cと板厚計12の間の距離、■
は圧延ロールの周速、では先進率である。 しかしながら、圧延速度が変化すると、鋼帯10と圧延
ロール18b、18cの間の摩擦係数が変化し、これに
応じて先進率でも変化する。このため、先進率fの推定
値が実際の値と必ずしも一致せず、両者の差(即ち、先
進率fの誤差)がそのまま制御の誤差を招くという問題
もあった。
Conventionally, thickness control in a steel strip rolling mill has been carried out by a method as shown in FIG. That is, in FIG.
The thickness of the steel strip 10 is measured by a plate thickness gauge 12 installed on the outlet side of the steel strip 10, and the proportional/integral control circuit 14 measures the thickness of the steel strip 10 based on the plate thickness deviation signal Δh sent from the plate thickness gauge 12. A command signal ΔS that performs integral control and is sent out from the control circuit 14
The rolling down device 16 was operated to change the positions of the rolling rolls 18a and 18b, and ultimately the thickness of the steel strip 10 was controlled by feedback. However, in the conventional example shown in FIG. 7, there is a certain distance from just below the rolling roll 18c (that is, the neutral point of the part where the rolling rolls 18b, 18c press the steel strip 10) to the plate thickness gauge 12. The 11% F transfer time during that time was wasted time. Also, because of this wasted time,
It takes a certain amount of time from the start of the proportional/integral control until the steel strip 10 reaches the target thickness, and during this time the thickness of the steel strip 10 being rolled becomes off-gauge (out of thickness). There was a problem. Moreover, the above-mentioned bad influence of the dead time on the response of the control system was particularly noticeable when the steel strip 10 was rolled at low speed. On the other hand, in order to avoid the above-mentioned influence of dead time on the control system and improve the responsiveness of the control system, control using the Smith compensation method as shown in FIG. 8 has also been attempted. That is, the gain of control using the Smith compensation method is C, BI 5RA-AGC
(Automatic thickness control) tuning rate is α, mill constant is M
, the plastic constant of the rolled material (#!J strip 10) is Q, and the steel strip transfer time between the rolling rolls 18b, 18C and the plate thickness gauge 12 is TL.
, the proportional control gain is KP, the integral control gain is Xt,
When the first-order delay time constant of the proportional term is T, the rolling load detected by the load cell 20 is P, the rolling load setting value is Po, and the gap setting value between the rolling rolls 18b and 18C is So, the control by the Smith compensation method is The configuration is as shown in FIG. 8, and a certain amount of correction is made in anticipation of the delay from when the plate thickness deviation Δh of the steel strip 10 is detected by the plate thickness gauge 12 until the command signal ΔS controls the rolling down device 16. This enables real-time sheet thickness control. However, the control using the Smith compensation method has the following problems. That is, first, the Mill constant M used in the Smith compensation method can be measured, but the plastic constant Q of the rolled material cannot be measured at the time of rolling, although it varies depending on the material. However, if this estimated value does not necessarily match the actual value of the plastic constant Q, and there is a difference between the two (i.e., an error in the plastic constant Q), the control using the Smith compensation method will be difficult. There is a problem in that this method causes errors and causes a larger error in plate thickness accuracy than in the case of proportional and integral control. Second, the steel strip transfer time TL from directly below the rolling rolls 18b and 18c to the plate thickness gauge 12 in FIG. 8 is calculated using the following formula (1).
However, unless the transfer speed (collection speed) of the steel strip 10 is actually measured, it is impossible to actually measure the advance rate f, and an estimated value must be used. TL=L/V (1+f) - (1) Here, L is the distance between the rolling rolls 18b, 18c and the plate thickness gauge 12,
is the circumferential speed of the rolling roll, and is the advance rate. However, as the rolling speed changes, the friction coefficient between the steel strip 10 and the rolling rolls 18b, 18c changes, and the advance rate changes accordingly. For this reason, there is a problem in that the estimated value of the advance rate f does not necessarily match the actual value, and the difference between the two (that is, the error in the advance rate f) directly causes a control error.

【発明が達成しようとする課題】[Problem to be achieved by the invention]

本発明は、かかる従来例の間窟に鑑みてなされたもので
あり、その課題は、圧延機を用いて鋼帯の圧延を行なう
に際して、応答が早く且つ安定的に板厚を制御できるよ
うな板厚制御方法を提供することにある。
The present invention has been made in view of the gaps in the conventional methods, and its object is to provide a method that can quickly respond and stably control the thickness of a steel strip when rolling a steel strip using a rolling mill. The object of the present invention is to provide a method for controlling plate thickness.

【課題を解決するための手段】[Means to solve the problem]

本発明は、圧延機を用いた鋼帯の圧延に際し、該鋼帯の
厚さを測定する板厚計から送出される板厚清差信号に基
づき圧下装置を操作して前記鋼帯の厚さをフィードバッ
ク制御する板厚制御方法において、前記板厚偏差が予め
設定された上下限値を越えたときはスミス補償法による
制卸を行ない、前記板厚偏差が前記上限値と下限値の間
にあるときは比例・積分制御を行なうことにより、前記
課題を解決したものである。
In the present invention, when rolling a steel strip using a rolling mill, the thickness of the steel strip is measured by operating a rolling device based on a plate thickness difference signal sent from a plate thickness gauge that measures the thickness of the steel strip. In a plate thickness control method that performs feedback control, when the plate thickness deviation exceeds preset upper and lower limits, control is performed using the Smith compensation method, and the plate thickness deviation is between the upper and lower limits. In some cases, the above problem is solved by performing proportional/integral control.

【作用】[Effect]

本発明は、鋼帯の圧延に際して板厚偏差の上下限値を予
め設定しておき、板厚偏差が上限値より大きい値となっ
たり、下限値より小さい値となった場合は、スミス補償
法による制御を行なって、上記上下限値内に板厚を早期
に修正すると共に、前記板厚偏差が上記上下限値内の値
となった場合は比例・積分H′lIJを行なって、板厚
の安定した制御を行なうものである。 即ち、鋼帯の圧延機における板厚制御方法において、ス
ミス補償法による制御の方が比例・積分制御よりも応答
が速いことに着目し、板厚計で検出される鋼帯の板厚偏
差が予め設定された上下限値を越えた場合はスミス補償
法による制御を行ない、該板厚偏差が上下限値内に入っ
ている場合には比例・積分制御を行なうことにより応答
が早くしかも安定的に板厚制御を行なう。
In the present invention, the upper and lower limits of the plate thickness deviation are set in advance when rolling a steel strip, and when the plate thickness deviation becomes a value larger than the upper limit value or smaller than the lower limit value, the Smith compensation method is applied. control is carried out to quickly correct the plate thickness to within the above upper and lower limit values, and when the plate thickness deviation becomes a value within the above upper and lower limit values, proportional/integral H'lIJ is performed to adjust the plate thickness. This provides stable control. In other words, in the thickness control method for steel strip rolling mills, we focused on the fact that control using the Smith compensation method has a faster response than proportional/integral control. If the thickness deviation exceeds the upper or lower limits set in advance, control is performed using the Smith compensation method, and if the plate thickness deviation is within the upper or lower limits, proportional/integral control is performed to ensure a fast and stable response. The plate thickness is controlled accordingly.

【実施例】【Example】

以下、本発明の実施例について図を用いて詳しく説明す
る。 第1図は、本発明の詳細な説明するための構成説明図で
ある。 この図において、板厚計12をセンサとして含む、例え
ばD D C(Direct Digital Con
trol)のような板厚制御装置(装置の外形は図示せ
ず)内に、比例・積分制御回路14とスミス補償法制御
回路20が並列的に設けられると共に、板厚計12から
送出される板厚偏差信号Δhを受けて板厚偏差の判定を
行なう判定回路22が設けられている。 該判定回路22の出力によってスイッチ回路24a、2
4bのいずれか一方がオンとされ、比例・積分制御回路
14若しくはスミス補償法i9J御回路20の出力ΔS
が圧下装置16に送出されるようになっている。 第2図及び第3図は、上記判定回路22のロジックを示
す論理回路図及びその動作説明図である。 この図において、第1図の板厚計12から送出された板
厚偏差Δhの値が予め設定される上々限値Δhu1と下
々限値ΔhL1の間の値となっている場合は、上記板厚
薄着Δhにより、論理積回路100の一方(図の上方)
に入力される論理信号が高レベルとなり、後述の論理積
回路106の出力が反転された信号との間で論理積演算
され、その後、比例・積分制御を行うための回路108
(更に詳しくは第1図のスイッチ回路24a)に送出さ
れて比例・積分制御を行なわせる。ここで、スミス補償
法による制御を行わせるための論理積回路106の出力
の否定との論理積をとっているのは、第3図に示した如
く、板厚偏差Δhが上々限値Δhulと下々限値ΔhL
1の間の値であっても、スミス補償法による制御を実行
中であれば、これを優先してヒステリシスを持たせ、制
御の切換えが過度に頻繁に行われるのを防止するためで
ある。 一方、上記板厚偏差Δhの値が上々限値ΔhU1より大
きい値となっている場合、又は、下々限値ΔhL1より
小さい値となっている場合には、板厚偏差Δhにより論
理和回路102に入力される論理信号のいずれか一方が
高レベルとなり、該論理和回路102の出力が論理和回
路104に入力されて、後述の論理積回路106の出力
が反転された信号との間で論理S演算される。これによ
って、板厚偏差Δhが上々限値ΔhU1より大きいか、
下々@値ΔhL1より小さい場合には、比例・積分制御
の実行中の如何を問わず、スミス補償法による制御への
切換えが行われる。 更に、板厚偏差Δhの値が上限値hu2と下限値hL2
の間の値となっている場合は、板厚偏差Δhにより、論
理積回路106の一方(図の下方)に反転入力される理
論信号が低レベルとなり、上記論理和回路104の出力
との間で論理積演算される。この論理積回路106の出
力は論理和回路104に入力されると共に、・論理積回
路100に反転入力され、且つ、スミス補償法による制
御を行うための回路110(更に詳しくは第1図のスイ
ッチ回路24b)に送出されてスミス補償法による制御
を行なわせる。 即ち、第2図を用いて詳述した第1図の判定回路22は
、制御開始時に比例・積分制御回路108に比例・積分
制御を行なわせ、鋼帯10の板厚偏差Δhが上々限値Δ
hu1より大きい値となったり下々限値ΔhLiより小
さい値となった場合、スミス補償法制御回路110に切
換えてスミス補償法制御を行なわせる。又、このような
スミス補償法制御によって鋼帯10の板厚偏差Δhが上
限値Δhu2と下限値ΔhL2の間に入ると、再び比例
・積分制御回路108に切換えて比例・積分制御を行な
わせる。 上述のような実施例において、第1図の板厚計12から
送出される板厚偏差Δhにステップ状の外乱を与えた場
合、比例・積分制御回路14による比例・積分制御のス
テップ応答は例えば第4図のようになり、スミス補償法
制御回路20によるスミス補償法制御のステップ応答は
例えば第5図のようになる。この第4図と第5図を比較
すれば明らかなように、スミス補償法による制御の方が
比例・積分制御よりも応答が速いことが分る。従って、
本実施例のように、鋼帯10の板厚偏差Δhが上限値Δ
hu2  (Δhu1)より大きい値となったとき(若
しくは下限値ΔhL2  (ΔhL1 )より小さい値
となったとき)に、比例・積分制御からスミス補償法制
御に切換えれば、比例・積分制御単独の場合よりも応答
性が向上し、第6図に示す如く、全体を通じて制御の応
答性が早く且つ安定的となることがわかる。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a configuration explanatory diagram for explaining the present invention in detail. In this figure, a sensor including a plate thickness gauge 12 as a sensor, for example, a DDC (Direct Digital Conn.
A proportional/integral control circuit 14 and a Smith compensation method control circuit 20 are provided in parallel in a thickness control device (the external shape of the device is not shown) such as a thickness control device such as trol, and the thickness is sent from the thickness meter 12. A determination circuit 22 is provided which receives the thickness deviation signal Δh and determines the thickness deviation. The output of the determination circuit 22 causes the switch circuits 24a, 2
4b is turned on, the output ΔS of the proportional/integral control circuit 14 or the Smith compensation method i9J control circuit 20
is sent to the reduction device 16. FIGS. 2 and 3 are logic circuit diagrams showing the logic of the determination circuit 22 and explanatory diagrams of its operation. In this figure, if the value of the plate thickness deviation Δh sent out from the plate thickness meter 12 of FIG. 1 is between the preset upper limit value Δhu1 and lower limit value ΔhL1, One side of the AND circuit 100 (upper part of the figure) due to thick and thin clothing Δh
The logic signal input to becomes a high level, and the output of the AND circuit 106 (to be described later) is ANDed with the inverted signal, and then the circuit 108 for proportional/integral control is operated.
(More specifically, the signal is sent to the switch circuit 24a in FIG. 1) to perform proportional/integral control. Here, the reason for performing the logical product with the negation of the output of the logical product circuit 106 to perform control using the Smith compensation method is that the plate thickness deviation Δh is the upper limit value Δhul, as shown in FIG. Lower limit value ΔhL
Even if the value is between 1, if control based on the Smith compensation method is being executed, hysteresis is given priority to this to prevent control switching from being performed too frequently. On the other hand, if the value of the plate thickness deviation Δh is larger than the upper limit value ΔhU1 or smaller than the lower limit value ΔhL1, the plate thickness deviation Δh causes the OR circuit 102 to One of the logic signals input to the logic circuit becomes high level, the output of the logic sum circuit 102 is input to the logic sum circuit 104, and the output of the logic product circuit 106 (described later) is logically connected to the inverted signal. S is calculated. This determines whether the plate thickness deviation Δh is greater than the upper limit value ΔhU1 or not.
If it is smaller than the value ΔhL1, switching to control using the Smith compensation method is performed regardless of whether proportional/integral control is being executed. Furthermore, the value of the plate thickness deviation Δh is the upper limit value hu2 and the lower limit value hL2.
If the value is between, the theoretical signal that is inverted and input to one side of the AND circuit 106 (lower part of the figure) becomes low level due to the plate thickness deviation Δh, and the difference between the output of the AND circuit 104 and the output of the OR circuit 104 becomes low. The logical AND operation is performed. The output of the AND circuit 106 is input to the OR circuit 104, and is also inverted and input to the AND circuit 100, and a circuit 110 for controlling according to the Smith compensation method (more specifically, the switch shown in FIG. The signal is sent to circuit 24b) to perform control using the Smith compensation method. That is, the determination circuit 22 shown in FIG. 1, which was explained in detail using FIG. Δ
When the value becomes larger than hu1 or smaller than the lower limit value ΔhLi, the Smith compensation method control circuit 110 is switched to perform Smith compensation method control. Further, when the thickness deviation Δh of the steel strip 10 falls between the upper limit value Δhu2 and the lower limit value ΔhL2 by such Smith compensation method control, the proportional/integral control circuit 108 is switched again to perform proportional/integral control. In the embodiment described above, when a step-like disturbance is applied to the plate thickness deviation Δh sent from the plate thickness gauge 12 in FIG. 1, the step response of the proportional/integral control by the proportional/integral control circuit 14 is, for example, The response is as shown in FIG. 4, and the step response of the Smith compensation method control by the Smith compensation method control circuit 20 is as shown in FIG. 5, for example. As is clear from a comparison between FIG. 4 and FIG. 5, control based on the Smith compensation method has a faster response than proportional/integral control. Therefore,
As in this embodiment, the plate thickness deviation Δh of the steel strip 10 is the upper limit value Δ
When the value becomes larger than hu2 (Δhu1) (or when the value becomes smaller than the lower limit value ΔhL2 (ΔhL1)), if you switch from proportional/integral control to Smith compensation method control, the case of proportional/integral control alone It can be seen that the responsiveness is improved, and as shown in FIG. 6, the responsiveness of the control is quick and stable throughout.

【発明の効果】【Effect of the invention】

以上詳しく説明したような本発明によれば、板厚偏差に
予め上下限値を設定しておき、実測された板厚層差が該
上下限値の範囲外となったときはスミス補償法による*
1flJを行なって早急に板厚を修正し、該板厚備差が
上下限値の範囲内に入ると比例・積分制御を行なって安
定した板厚制御を行なうような構成であるため、圧延機
を用いて鋼帯の圧延を行なうに際し、応答が早く且つ安
定的に板厚を制御できるようになる。 ちなみに、本発明を完全連続式冷間タンデム圧延機の第
1スタンドに適用したところ、走間板厚変更後の早期オ
ンゲージ化が可能となり、Δ5i/コイル程度のオフゲ
ージ減少を達成することができた。 又、本発明をバッチ式冷間タンデム圧延機の第1スタン
ドに適用したところ、コイル先後端の低速圧延部のオフ
ゲージ発生を防止することによって、Δ1311/コイ
ル程度のオフゲージ減少を達成することができた。
According to the present invention as explained in detail above, the upper and lower limits are set in advance for the plate thickness deviation, and when the actually measured plate thickness layer difference is outside the range of the upper and lower limits, the Smith compensation method is used. *
The rolling mill is configured to perform 1flJ to quickly correct the plate thickness, and when the plate thickness difference falls within the upper and lower limit values, proportional/integral control is performed to achieve stable plate thickness control. When rolling a steel strip using this method, the thickness can be controlled stably and with a quick response. By the way, when the present invention was applied to the first stand of a fully continuous cold tandem rolling mill, it became possible to change the on-gauge quickly after changing the running plate thickness, and it was possible to achieve an off-gauge reduction of approximately Δ5i/coil. . Furthermore, when the present invention is applied to the first stand of a batch-type cold tandem rolling mill, it is possible to achieve a reduction in off-gauge of about Δ1311/coil by preventing the occurrence of off-gauge in the low-speed rolling section at the front and rear ends of the coil. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実・雄側を説明するための構成説明
図、 第2図゛は、板厚計から送出される板厚漏差信号を判定
する判定回路のロジックを示す論理回路図、第3図は、
前記判定回路の動作説明図、第4図は、従来の比例・積
分制御のステップ応答の例を示す線図、 第5図は、スミス補償法による制御のステップ応答の例
を示す線区、 第6図は、本発明の実施例による板厚制御のステップ応
答の例を示す線図、 第7図は、板厚制御の従来例を説明するための構成説明
図、 第8図は、スミス補償法による制御を説明するための構
成説明図である。 第7図 10・・・鋼帯、     12・・・板厚計、14・
・・比例・積分制御回路、 16・・・圧下装置、 18a〜18d・・・圧延ロール、 20・・・スミス補償法制御回路、 22・・・判定回路、 24a、24b・・・スイッチ回路。
Fig. 1 is a configuration explanatory diagram for explaining the actual/male side of the present invention, and Fig. 2 is a logic circuit showing the logic of a judgment circuit that judges a plate thickness error signal sent from a plate thickness gauge. Figure 3 is
4 is a diagram showing an example of a step response of conventional proportional/integral control; FIG. 5 is a line diagram showing an example of a step response of control using the Smith compensation method; Fig. 6 is a diagram showing an example of step response of plate thickness control according to an embodiment of the present invention, Fig. 7 is a configuration explanatory diagram for explaining a conventional example of plate thickness control, and Fig. 8 is Smith compensation. FIG. 2 is a configuration explanatory diagram for explaining control based on the law. Fig. 7 10... Steel strip, 12... Plate thickness gauge, 14.
. . . Proportional/integral control circuit, 16 .

Claims (1)

【特許請求の範囲】[Claims] (1)圧延機を用いた鋼帯の圧延に際し、該鋼帯の厚さ
を測定する板厚計から送出される板厚偏差信号に基づき
圧下装置を操作して前記鋼帯の厚さをフィードバック制
御する板厚制御方法において、前記板厚偏差が予め設定
された上下限値を越えたときはスミス補償法による制御
を行ない、前記板厚偏差が前記上限値と下限値の間にあ
るときは比例・積分制御を行なうことを特徴とする鋼帯
の圧延機における板厚制御方法。
(1) When rolling a steel strip using a rolling mill, the thickness of the steel strip is fed back by operating a rolling device based on a thickness deviation signal sent from a thickness gauge that measures the thickness of the steel strip. In the plate thickness control method, when the plate thickness deviation exceeds preset upper and lower limit values, control is performed using the Smith compensation method, and when the plate thickness deviation is between the upper and lower limit values, control is performed. A method for controlling plate thickness in a steel strip rolling mill, which is characterized by carrying out proportional/integral control.
JP63316772A 1988-12-15 1988-12-15 Plate thickness control method for steel strip rolling mill Expired - Lifetime JPH0815608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63316772A JPH0815608B2 (en) 1988-12-15 1988-12-15 Plate thickness control method for steel strip rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63316772A JPH0815608B2 (en) 1988-12-15 1988-12-15 Plate thickness control method for steel strip rolling mill

Publications (2)

Publication Number Publication Date
JPH02165807A true JPH02165807A (en) 1990-06-26
JPH0815608B2 JPH0815608B2 (en) 1996-02-21

Family

ID=18080750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63316772A Expired - Lifetime JPH0815608B2 (en) 1988-12-15 1988-12-15 Plate thickness control method for steel strip rolling mill

Country Status (1)

Country Link
JP (1) JPH0815608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081970A (en) * 2011-10-06 2013-05-09 Kobe Steel Ltd Method of controlling plate thickness in rolling mill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990615B (en) * 2021-10-20 2024-04-05 宁德时代新能源科技股份有限公司 Control method and device of roller press and roller press

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081970A (en) * 2011-10-06 2013-05-09 Kobe Steel Ltd Method of controlling plate thickness in rolling mill

Also Published As

Publication number Publication date
JPH0815608B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
JP2000312909A (en) Plate width controller
JPH03238112A (en) Control method and device to compensate speed effect in tandem cold roll device
JPH02165807A (en) Method for controlling sheet thickness in rolling mill for steel strip
JPH0218168B2 (en)
JP2002018506A (en) Method and device for controlling thickness, method for calculating pass schedule in continuous rolling mill
JPH04182019A (en) Device for controlling sheet thickness on rolling mill
JP3241585B2 (en) Plate thickness control device
JPH02165806A (en) Method for controlling sheet thickness in rolling mill for steel strip
JPH1177132A (en) Reduction control device for rolling mill
JP2846143B2 (en) Control device for hot rolling mill
JPH0246284B2 (en)
JPS6316806A (en) Method for controlling shape of sheet for multi-stage cluster rolling mill
JPH04305305A (en) Method for controlling elongation percentage of skinpass rolling mill
JPH01186208A (en) Automatic plate thickness control device for rolling mill
JPH06269821A (en) Controller for flat shape of rolling mill
JP3079913B2 (en) Rolling control method for cold tandem rolling mill
JPH11319929A (en) Control method and its device for roll gap of rolling mill
JPS62289307A (en) Sheet width controlling method in rolling mill
JPH06182417A (en) Controller for meandering of rolled stock
KR20020050848A (en) Rolling speed control apparatus using the degrees of looper and its control method
JP2001001020A (en) Method for controlling mass flow in hot strip finishing mill
JPS6372416A (en) Thickness compensation method for bited end part of rolled stock
JPH05337531A (en) Automatic plate thickness controlling method for rolling machine whose speed is accelerated/decelerated
JPH05285519A (en) Method for controlling tension between stands in continuous rolling
JPS62192206A (en) Method and device controlled tension between stands for hot strip continuous finishing rolling mill