JPH0218168B2 - - Google Patents

Info

Publication number
JPH0218168B2
JPH0218168B2 JP57023905A JP2390582A JPH0218168B2 JP H0218168 B2 JPH0218168 B2 JP H0218168B2 JP 57023905 A JP57023905 A JP 57023905A JP 2390582 A JP2390582 A JP 2390582A JP H0218168 B2 JPH0218168 B2 JP H0218168B2
Authority
JP
Japan
Prior art keywords
rolling
speed
rolling mill
agc
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57023905A
Other languages
Japanese (ja)
Other versions
JPS58141807A (en
Inventor
Keiichi Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57023905A priority Critical patent/JPS58141807A/en
Priority to KR1019830000256A priority patent/KR880002504B1/en
Priority to AU11439/83A priority patent/AU560048B2/en
Priority to US06/466,469 priority patent/US4512169A/en
Priority to GB08304112A priority patent/GB2118332B/en
Priority to DE19833305132 priority patent/DE3305132A1/en
Publication of JPS58141807A publication Critical patent/JPS58141807A/en
Publication of JPH0218168B2 publication Critical patent/JPH0218168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 この発明は上下ロール個別駆動方式の圧延機に
於て、上下圧延ロールの速度差を調整することに
より板厚を制御する異周速圧延による自動板厚制
御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic plate thickness control device using different circumferential speed rolling for controlling plate thickness by adjusting the speed difference between the upper and lower rolling rolls in a rolling mill with separate drive of upper and lower rolls. It is.

一般に厚板ミル、ホツトストリツプミル等の圧
延機に於ては材料の塑性変形特性の変化及び圧延
機の弾性変形、例えば伸びのために、圧延機ロー
ル開度の設定値は一定であつても材料の圧延機出
側板厚が変動することは広く知られている。第1
図は材料の塑性変形特性と圧延機の弾性変形特性
を示すグラフであり、P1,P2は材料塑性曲線、
M1,M2は圧延機弾性変形曲線である。
Generally, in rolling mills such as plate mills and hot strip mills, the set value of the rolling mill roll opening is constant due to changes in the plastic deformation characteristics of the material and elastic deformation of the rolling mill, such as elongation. It is widely known that the thickness of the material at the exit from the rolling mill fluctuates. 1st
The figure is a graph showing the plastic deformation characteristics of the material and the elastic deformation characteristics of the rolling mill, where P 1 and P 2 are the material plasticity curves,
M 1 and M 2 are rolling mill elastic deformation curves.

圧延材料の塑性変形特性は入側板厚H、出側板
厚h、平均変形抵抗k、材料板巾W等に依存し、
圧延荷重Fと、それらの変数との関数関係で表わ
される。((1)式) F=f(H、h、k、W) ……(1) 第1図の塑性曲線は(1)式を描いたものであるが
いま圧延時点1での入側板厚をH1とし塑性曲線
及び圧延機弾性曲線をP1,M1、ロール開度設定
値をS1とすると、圧延荷重はF1となり又出側板
厚はh1となる。(動作点) 圧延が進んだ時点2に於て(1)式の変数のうち入
側板厚がH2(t1<t2)、(H1<H2)に変化し、他の
パラメータが一定とすれば塑性曲線はほぼP2
変化しその結果圧延荷重はF2(F1<F2)に増大し
圧延機の伸びに従い出側板厚はh2となる。(動作
点) この様に材料の塑性特性変化を放置すると一定
厚みの製品が得られないため、何らかの手段で出
側板厚を一定とする機能が必要であるが従来の板
厚一定制御(AGC:Automatic Gagc Control)
として一般的に用いられるものにBISRA AGC
があつた。BISRA AGCは圧延荷重の変化によ
る圧延機の伸びを打消す様ロール開度を修正する
方法であり、以下に説明する原理に基いている。
The plastic deformation characteristics of the rolled material depend on the inlet side plate thickness H, outlet side plate thickness h, average deformation resistance k, material plate width W, etc.
It is expressed as a functional relationship between the rolling load F and those variables. (Equation (1)) F=f (H, h, k, W) ...(1) The plasticity curve in Figure 1 is a depiction of Equation (1), but the thickness at the entrance side at rolling point 1 is If H1 is the plasticity curve and the rolling machine elastic curve are P1 , M1 , and the roll opening setting value is S1 , then the rolling load is F1 and the exit plate thickness is h1 . (Operating point) At point 2 when rolling has progressed, the entry side plate thickness among the variables in equation (1) changes to H 2 (t 1 < t 2 ), (H 1 < H 2 ), and other parameters change. If it is held constant, the plasticity curve changes to approximately P 2 , and as a result, the rolling load increases to F 2 (F 1 <F 2 ), and the exit plate thickness becomes h 2 as the rolling mill elongates. (Operating point) If the plastic property changes of the material are left unattended in this way, a product with a constant thickness cannot be obtained, so a function to keep the exit side plate thickness constant is required by some means, but conventional plate thickness constant control (AGC) Automatic Gagc Control)
BISRA AGC is commonly used as
It was hot. BISRA AGC is a method of modifying the roll opening to counteract the elongation of the rolling mill due to changes in rolling load, and is based on the principle explained below.

即ち圧延機の弾性特性を直線で近似し、その傾
き(以下ミル定数という)をM(Ton/mm)とす
れば、圧延機出側板厚hは第1図より下記とな
る。
That is, if the elastic properties of the rolling mill are approximated by a straight line and the slope (hereinafter referred to as Mill's constant) is M (Ton/mm), then the plate thickness h at the exit side of the rolling mill will be as follows from FIG.

h=S+F/M (2) 但し h:圧延機出側の材料板厚(mm) S:ロール開度設定値(mm) F:圧延荷重(Ton) M:ミル定数(Ton/mm) (2)式より出側板厚の変動は △h=△S+△F/M (3) 従つてロール開度設定値を次の(4)式により修正
すれば出側板厚変化は零に出来る。
h=S+F/M (2) However, h: Material plate thickness at the exit side of the rolling mill (mm) S: Roll opening setting value (mm) F: Rolling load (Ton) M: Mill constant (Ton/mm) (2 ) According to the equation, the variation in the thickness of the exit side plate is △h=△S+△F/M (3) Therefore, if the roll opening setting value is corrected using the following equation (4), the change in the thickness of the exit side plate can be made zero.

△S=−△F/M (4) 第2図はこの従来のBISRA AGCのブロツク
図であり図において、1は圧延機のワークロー
ル、2はバツクアツプロール、3は圧下スクリユ
ー、4は圧延機ハウジング、5はロール開度を調
整するため圧下電動機及びその連度制御装置、6
はロール開度自動位置決め装置(APC)、7はロ
ール開度検出器、8はロードセル(圧延荷重検出
器)、9は記憶装置、10は圧延機の伸び量の演
算ブロツク、11はチユーニング率、Sは被圧延
材料である。
△S=-△F/M (4) Figure 2 is a block diagram of this conventional BISRA AGC. In the figure, 1 is the work roll of the rolling mill, 2 is the back-up roll, 3 is the reduction screw, and 4 is the rolling mill. Machine housing, 5, a reduction motor and its connection control device, 6 for adjusting the roll opening degree;
is a roll opening automatic positioning device (APC), 7 is a roll opening detector, 8 is a load cell (rolling load detector), 9 is a memory device, 10 is a calculation block for elongation of the rolling mill, 11 is a tuning rate, S is the material to be rolled.

次に動作について説明する。材料Sが圧延機4
に噛込まれるとその時点での圧延荷重が記憶器9
にメモリーFoされBISRA AGCが開始される。
即ち圧延の進行に伴う圧延荷重Fの変化は記憶値
Foとの差として検出され10の伸び演算ブロツ
クにより(4)式の演算が行われAPC装置6に指令
値として与えられる。
Next, the operation will be explained. Material S is rolling mill 4
When the rolling load is bitten, the rolling load at that point is stored in the memory 9.
is stored in memory Fo and BISRA AGC is started.
In other words, the change in rolling load F as rolling progresses is a memorized value.
It is detected as a difference from Fo, the calculation of equation (4) is performed by the expansion calculation block 10, and the result is given to the APC device 6 as a command value.

この結果圧延機ロール開度は第1図に示す動作
点の位置に修正される。第2図のブロツクにあ
る、チユーニング率の11は圧延機の伸びをどの
程度修正するかを決定する定数であり0≦α≦1
の範囲でセツトされる。α=1であれば伸び量を
100%補正することであり、α=0であればAGC
を動作させないことになる。
As a result, the rolling mill roll opening degree is corrected to the operating point shown in FIG. The tuning rate 11 in the block of Figure 2 is a constant that determines how much the elongation of the rolling mill is modified, and is 0≦α≦1.
is set within the range. If α=1, the amount of elongation
It is a 100% correction, and if α = 0, AGC
will not work.

従来のBISRA AGCは上記の様に構成されて
いる為まず第1にAGCの動作により圧延荷重の
変化を助長する欠点があつた。第1図でみると
AGCが動作しない場合の圧延荷重変化が△F2
F2−F1であるのに対しAGCを動作させると荷重
変化は△F3=F3−F1となり|△F2|<|△F3
である。
Since the conventional BISRA AGC is configured as described above, first of all, it has the disadvantage that the operation of the AGC promotes changes in the rolling load. Looking at Figure 1
The rolling load change when AGC does not operate is △F 2 =
F 2 −F 1 , whereas when AGC is operated, the load change becomes △F 3 =F 3 −F 1 , |△F 2 |<|△F 3
It is.

しかるに圧延荷重が変化すると圧延ロールのた
わみが変化するため、製品の平坦度が変動し、板
巾方向の製品品質が悪化してしまう。このため従
来の装置ではホツトストリツプミルに於ては薄
物、広巾材では最終スタンドのBISRA AGCは
適用出来ない場合が多く又厚板ミルに於ては
AGCを使用した最終パスの後に形状修正パスと
呼ばれる軽圧下の特殊パスを追加することを余儀
なくされる場合があつた。
However, when the rolling load changes, the deflection of the rolling rolls changes, which changes the flatness of the product and deteriorates the product quality in the width direction. For this reason, with conventional equipment, BISRA AGC at the final stand is often not applicable for thin materials and wide materials in hot strip mills, and in thick plate mills.
In some cases, it was necessary to add a special pass under light pressure called a shape correction pass after the final pass using AGC.

BISRA AGC・チユーニング率α=1とした
時の圧延荷重変化(△F3)とAGCを動作させな
い場合の圧延荷重変化(△F2)の比率は第1図
より求められ下記となる。
The ratio of rolling load change (△F 3 ) when BISRA AGC/tuning rate α=1 to rolling load change (△F 2 ) when AGC is not operated is determined from Fig. 1 and is as follows.

△F3/△F2=M+Q/M (5) 但し M:Mill定数(Ton/mm) Q:塑性定数(Ton/mm) (塑性曲線の動作点近傍での傾き) 通常のホツトストリツプミル最終スタンドを例
にとれば板巾1500mm、製品厚1.6mmの材料でQ=
3000Ton/mm、M=600Ton/mm程度であるから
(5)式の比率は△F3/△F2=6倍にも及ぶ。又当
該スケジユールでの実測データではα=1として
AGCを動作させた時の圧延荷重変化はスキツド
マーク部分で約300Ton程度であり、当該部分で
耳波を生じた。
△F 3 / △F 2 = M + Q / M (5) where M: Mill constant (Ton/mm) Q: Plasticity constant (Ton/mm) (Slope of plasticity curve near the operating point) Normal hot strip Taking the mill final stand as an example, for a material with a board width of 1500 mm and a product thickness of 1.6 mm, Q =
3000Ton/mm, M=about 600Ton/mm
The ratio of equation (5) is △F 3 /△F 2 = 6 times. Also, in the actual measurement data for the schedule, α = 1
The rolling load change when AGC was operated was about 300 tons at the skid mark area, and an ear wave was generated at that area.

又、第2の欠点としてBISRA AGCでは第2
図の様にミル伸び量の演算のためにミル(弾性)
定数Mをモデルとして持つ必要があるがミル定数
Mは板巾、ロール径、圧延反力等の複雑な関数と
なるため、その推定精度には限界があり従つて
AGC精度向上にも限界があつた。
Also, the second drawback is that BISRA AGC
As shown in the figure, mil (elastic) is used to calculate the amount of mil elongation.
It is necessary to have a constant M as a model, but since the mill constant M is a complex function of sheet width, roll diameter, rolling reaction force, etc., there is a limit to its estimation accuracy.
There were limits to the improvement of AGC accuracy.

この発明は上記のような従来のものの欠点を除
去するためなされたもので、圧延時の上下ワーク
ロールに速度差を与えることによつて圧延荷重を
操作し圧延する精度の高い圧延制御が行なえる自
動圧延制御装置を提供することを目的としてい
る。
This invention was made in order to eliminate the drawbacks of the conventional method as described above, and it is possible to perform highly accurate rolling control by manipulating the rolling load by giving a speed difference between the upper and lower work rolls during rolling. The purpose is to provide an automatic rolling control device.

先ず圧延時に上下ワークロール速度差を与える
ことにより圧延荷重が操作出来ることについて第
3図を用いて説明する。
First, it will be explained with reference to FIG. 3 that the rolling load can be controlled by giving a speed difference between the upper and lower work rolls during rolling.

第3図は異周速率と圧延荷重及び先進率の関係
を示すグラフであり、異周速率を変化させること
により圧延力を操作出来ることが示されている。
FIG. 3 is a graph showing the relationship between the different circumferential speed ratio, the rolling load, and the advance rate, and shows that the rolling force can be manipulated by changing the different circumferential speed rate.

ここに異周速率Xは高速側ロール速度VHと低
速側ロール速度VLとにより下記で定義される。
Here, the different circumferential speed ratio X is defined below by the high-speed side roll speed VH and the low-speed side roll speed VL .

X=VH−VL/VH ……(6) 異周速率Xが変化すると、材料の塑性特性が変
化する訳であるから(1)式の関数関係には新変数X
が導入され次の(7)式となる。
X=V H −V L /V H ...(6) When the different circumferential speed rate X changes, the plastic properties of the material change, so a new variable X is added to the functional relationship in equation (1).
is introduced, resulting in the following equation (7).

F=F(H、h、k、W、X) ……(7) (7)式を動作点近傍で一次展開すれば △F=∂F/∂H・△H+∂F/∂h・△
h+∂F/∂k・△k+∂F/∂W・△W+∂F/∂X・△X
……(8) (2)式よりロール開度Sを固定すれば △h=△F/M ……(9) 従つて板厚偏差△hを零にするには(9)式より△
F=0とすれば良くそのためには(8)式より △X=−1/∂F/∂X(∂F/∂H・
△H+∂F/∂h・△h+∂F/∂k・△k+∂F/∂W・△
W)……(10) (10)式右辺のカツコ内は外記による圧延力変化で
あるからこれを△FDとすると △X=−1/∂F/∂X・△FD ……(11) 即ち(11)式により異周速率を制御すれば板厚偏差
を零に出来る。
F=F(H, h, k, W,
h+∂F/∂k・△k+∂F/∂W・△W+∂F/∂X・△X
...(8) From equation (2), if the roll opening degree S is fixed, △h=△F/M ...(9) Therefore, to make the plate thickness deviation △h zero, from equation (9), △
It is sufficient to set F=0, and for that purpose, from equation (8), △X=-1/∂F/∂X(∂F/∂H・
△H+∂F/∂h・△h+∂F/∂k・△k+∂F/∂W・△
W)...(10) Since the inside of the box on the right side of equation (10) is the rolling force change due to the external expression, if this is △F D , then △X=-1/∂F/∂X・△F D ... 11) That is, by controlling the different circumferential speed rates using equation (11), the plate thickness deviation can be made zero.

以下、第4図に示すこの発明の一実施例を説明
する。第4図において、41は上下のワークロー
ル、42は上下のバツクアツプロール、43は上
下のロールを駆動する電動機、44はその速度制
御装置、45はロードセル、46は記憶器、47
はゲイン調整ブロツク、48は上下ロールへの異
周速分配器、49,50は検出器、51はタイミ
ング演算器、52は上下ロール速度検出器、53
は異周速率演算器、54は圧延機ハウジング、5
5は上下圧延ロールの初期速度設定器、Sは被圧
延材料である。
An embodiment of the present invention shown in FIG. 4 will be described below. In FIG. 4, 41 is an upper and lower work roll, 42 is an upper and lower backup roll, 43 is an electric motor that drives the upper and lower rolls, 44 is a speed control device thereof, 45 is a load cell, 46 is a memory device, 47
48 is a gain adjustment block, 48 is a different circumferential speed distributor for upper and lower rolls, 49 and 50 are detectors, 51 is a timing calculator, 52 is an upper and lower roll speed detector, 53
54 is a rolling mill housing; 5 is a different circumferential speed rate calculator;
5 is an initial speed setting device for the upper and lower rolling rolls, and S is a material to be rolled.

次に動作について説明する。材料Sが圧延機5
4に接近すると上・下ロール速度は所定の初期異
周速率Xoを与える様な速度VpH、VpLに設定され
る。
Next, the operation will be explained. Material S is rolling mill 5
4, the upper and lower roll speeds are set to speeds V pH and V pL that give a predetermined initial different circumferential speed rate Xo.

Xo=VpH−VpL/VpH ……(12) 材料S先端が圧延機出側に設けられた検出器4
9に到達すると、その時の圧延荷重Foが記憶器
46に記憶される。材料に入側板厚変動等の外乱
があると、荷重変化△F=F−Foが検出されゲ
イン調整ブロツク47に与えられる。ゲイン調整
ブロツク47は圧延スケジユールと異周速率によ
り定まる(∂F/∂X)-1の値を異周速率Xの関数とし て記憶したものであり、予め圧延スケジユール
(入・出側板厚、鋼種等)により、最適値を求め
層別化しし記憶しておく。ゲイン調整ブロツク4
7の出力として異周速率修正量△Xが得られると
異周速分配器48により上・下ロール速度修正量
を定め上・下ロール速度制御装置44により、
上・下ロール速度を修正する。異周速分配器48
は材料Sの圧延機出側速度を所定の値としたまま
異周速率を変更する様演算する装置であり、タン
デム圧延機である。ホツトストリツプミル等に於
ては特に重要である。材料の圧延機出側速度VS
と高速側、低速側の各ワークロール速度VH、VL
との関係は VS=(1+fH)VH=(1+fL)VL
……(13) 材料速度が不変であるためには(13)式より △fH・VHp+(1+fH)△VH=0 ……(14) △fL・VLp+(1+fL)△VL=0 ……(15) 第3図よりわかる様に先進率は異周速率Xによ
り変化するから一次変化分を求めると △fH=∂fH/∂X・△X ……(16) △fL=∂fL/∂X・△X ……(17) (14)〜(17)式より下記の比率でVH、VL
修正すればストリツプ速度はそのままにして異周
速率を修正出来る。
Xo=V pH −V pL /V pH ……(12) Detector 4 whose tip of material S is installed on the exit side of the rolling machine
9, the rolling load Fo at that time is stored in the memory 46. When there is a disturbance in the material, such as a change in the entrance side plate thickness, a load change ΔF=F−Fo is detected and applied to the gain adjustment block 47. The gain adjustment block 47 stores the value of (∂F/∂X) -1 determined by the rolling schedule and the different peripheral speed rate as a function of the different peripheral speed rate X. ) to find the optimal value, stratify it, and store it. Gain adjustment block 4
When the different circumferential speed rate correction amount ΔX is obtained as the output of step 7, the different circumferential speed distributor 48 determines the upper and lower roll speed correction amounts, and the upper and lower roll speed control device 44 determines,
Correct up/down roll speed. Different peripheral speed distributor 48
is a tandem rolling mill that performs calculations to change the peripheral speed rate while keeping the rolling mill exit speed of the material S at a predetermined value. This is particularly important in hot strip mills and the like. Rolling machine exit speed of material V S
and each work roll speed V H , V L on the high speed side and low speed side
The relationship is V S = (1 + f H ) V H = (1 + f L ) V L
...(13) In order for the material speed to remain unchanged, from equation (13) △f H・V Hp + (1+f H )△V H =0 ......(14) △f L・V Lp + (1+f L ) △V L = 0 ... (15) As can be seen from Figure 3, the advance rate changes depending on the different circumferential speed rate X, so finding the first order change is △f H = ∂f H /∂X・△X ... ( 16 ) △f L = ∂f L / ∂X · △ You can modify the circumferential speed rate.

△VH=−1/1+fH・∂fH/∂X・VHp・△X ……(18) △VL=−1/1+fL・∂fL/∂X・VLp・△X ……(19) 但し {VH、VL:高速、低速側ロール速度 VS:出側材料速度 1+fH、1+fL:出側材料速度ロールに対する先
進率 ∂fH/∂X、∂fL/∂X:各先進率の異周速率に対する変
化 分} 上記の構成により圧延力Fが変化すると圧延力
変化分△Fを打消し、零に近づける様異周速率X
が調整されるため圧延力は一定となり、従つて材
料Sの出側板厚は一定に制御される。この板厚制
御は材料S尾端が圧延機直前に配置される検出器
50に達すると制御完了とされる。
△V H = -1/1 + f H・∂f H /∂X・V Hp・△X ... (18) △V L = -1/1+f L・∂f L /∂X・V Lp・△X ... ...(19) However, {V H , V L : High speed, low speed side roll speed V S : Output side material speed 1+f H , 1+f L : Output side material speed Advance ratio to roll ∂f H /∂X, ∂f L / ∂X: Change of each advance rate with respect to different circumferential speed rates} With the above configuration, when the rolling force F changes, the different circumferential speed rates X cancel out the rolling force change △F and approach zero.
is adjusted, the rolling force remains constant, and therefore the thickness of the exit side of the material S is controlled to be constant. This plate thickness control is completed when the tail end of the material S reaches the detector 50 placed just before the rolling mill.

なお以上の実施例においては出側板厚偏差の検
出端として圧延荷重を用いているが、検出端とし
て圧延機出側に厚み計を設けその信号を用いても
良く、検出端の如何は特に問題にされない。
In the above embodiments, the rolling load is used as the detection end for the thickness deviation on the exit side, but a thickness gauge may be provided on the exit side of the rolling mill as the detection end and its signal may be used, and the detection end is not a particular problem. Not be left behind.

また本発明の具体的制御装置として小形計算
器、アナログ演算増幅器等を使用することができ
その手段は特に問題とされない。
Moreover, a small calculator, an analog operational amplifier, etc. can be used as a specific control device of the present invention, and the means thereof are not particularly problematic.

以上のようにこの発明によれば、異周速の調整
を行なうことにより圧延荷重の変化が極小に保た
れる為、成品形状に悪影響を及ぼすことなく
AGCを行うことが可能であり、又制御方式がフ
イードバツク制御となるためBISRA AGCに於
る、ミル定数推定誤差等に伴う制御残差(=板厚
偏差)は存在せず成品板厚、形状等の面で効果の
高いAGCとすることが出来る。また、上下の圧
延ロール間の異周速率を変更しても材料の圧延機
出側速度は一定に保たれる。従つて、本方式の
AGCを適用すればホツトストリツプミルに於る
最終スタンドでのAGCが可能となり、又、厚板
ミルに於ては、形状調整パスが不要となる等品質
改善、操業度向上の両面で改善することが出来る
等効果がある。
As described above, according to the present invention, changes in rolling load are kept to a minimum by adjusting different circumferential speeds, so there is no adverse effect on the shape of the product.
AGC can be performed, and since the control method is feedback control, there is no control residual (= plate thickness deviation) due to Mill constant estimation error, etc. in BISRA AGC, and the finished plate thickness, shape, etc. AGC can be highly effective in terms of Further, even if the different circumferential speed rates between the upper and lower rolling rolls are changed, the speed at which the material exits the rolling mill is kept constant. Therefore, this method
If AGC is applied, it will become possible to perform AGC at the final stand of hot strip mills, and in plate mills, improvements will be made in terms of both quality improvement and operational efficiency, such as eliminating the need for shape adjustment passes. It is effective because it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は材料の塑性変形特性と圧延機の弾性変
形特性を示すグラフ図、第2図は従来のBISRA
AGCのブロツク図、第3図は異周速圧延時の圧
延荷重、先進率の例を示すグラフ図、第4図は本
発明の一実施例を示すブロツク図である。 図において、41はワークロール、42はバツ
クアツプロール、43は電動機、44は速度制御
装置、45はロードセル、46は記憶器、47は
ゲイン調整ブロツク、48は異周速分配器、4
9,50は検出器、51はタイミング演算器、5
2は速度検出器、53は異周速演算器、55は初
期速度設定器である。
Figure 1 is a graph showing the plastic deformation characteristics of the material and the elastic deformation characteristics of the rolling mill, and Figure 2 is the conventional BISRA.
A block diagram of AGC, FIG. 3 is a graph diagram showing an example of rolling load and advance ratio during rolling at different circumferential speeds, and FIG. 4 is a block diagram showing an embodiment of the present invention. In the figure, 41 is a work roll, 42 is a backup roll, 43 is an electric motor, 44 is a speed control device, 45 is a load cell, 46 is a memory device, 47 is a gain adjustment block, 48 is a different circumferential speed distributor, 4
9 and 50 are detectors, 51 is a timing calculator, 5
2 is a speed detector, 53 is a different peripheral speed calculator, and 55 is an initial speed setter.

Claims (1)

【特許請求の範囲】 1 圧延機の上下一対の圧延ロールの速度差を調
整する第1調整装置と、前記圧延ロールの圧延荷
重の変化を検出することにより前記圧延機の出側
における被圧延材料の板厚偏差を検出する検出装
置とを備え、 前記検出装置の検出信号に応じて前記第1調整
装置を制御して前記上下圧延ロールの前記速度差
を調整することにより、前記板厚偏差を軽減させ
る自動板厚制御装置において、 前記圧延機の前記出側における前記被圧延材料
の速度を一定に保つように上下圧延ロールの速度
を調整する第2調整装置を備えたことを特徴とす
る自動板圧制御装置。
[Scope of Claims] 1. A first adjustment device that adjusts the speed difference between a pair of upper and lower rolls of a rolling mill, and a rolling material on the exit side of the rolling mill by detecting a change in the rolling load of the rolls. a detection device for detecting a plate thickness deviation, and controlling the first adjustment device according to a detection signal of the detection device to adjust the speed difference between the upper and lower rolling rolls, thereby controlling the plate thickness deviation. An automatic sheet thickness control device for reducing thickness, characterized by comprising a second adjusting device for adjusting the speed of the upper and lower rolling rolls so as to keep the speed of the material to be rolled on the outlet side of the rolling mill constant. Plate pressure control device.
JP57023905A 1982-02-15 1982-02-15 Equipment for automatically controlling sheet thickness Granted JPS58141807A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57023905A JPS58141807A (en) 1982-02-15 1982-02-15 Equipment for automatically controlling sheet thickness
KR1019830000256A KR880002504B1 (en) 1982-02-15 1983-01-24 Automatic plate thickness control device
AU11439/83A AU560048B2 (en) 1982-02-15 1983-02-15 Automatic thickness control device
US06/466,469 US4512169A (en) 1982-02-15 1983-02-15 Automatic plate thickness control device
GB08304112A GB2118332B (en) 1982-02-15 1983-02-15 Automatic plate thickness control device for a rolling mill
DE19833305132 DE3305132A1 (en) 1982-02-15 1983-02-15 DEVICE FOR AUTOMATICALLY CONTROLLING THE PLATE THICKNESS DURING THE ROLLING PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023905A JPS58141807A (en) 1982-02-15 1982-02-15 Equipment for automatically controlling sheet thickness

Publications (2)

Publication Number Publication Date
JPS58141807A JPS58141807A (en) 1983-08-23
JPH0218168B2 true JPH0218168B2 (en) 1990-04-24

Family

ID=12123477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023905A Granted JPS58141807A (en) 1982-02-15 1982-02-15 Equipment for automatically controlling sheet thickness

Country Status (6)

Country Link
US (1) US4512169A (en)
JP (1) JPS58141807A (en)
KR (1) KR880002504B1 (en)
AU (1) AU560048B2 (en)
DE (1) DE3305132A1 (en)
GB (1) GB2118332B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148608A (en) * 1984-01-11 1985-08-05 Hitachi Ltd Set up method in control of different peripheral-speed rolling
JP2562011B2 (en) * 1984-05-10 1996-12-11 三菱電機株式会社 Shape control method for continuous rolling mill
JPS6133708A (en) * 1984-07-26 1986-02-17 Mitsubishi Electric Corp Determining method of drafting schedule of continuous rolling mill
GB2237239B (en) * 1989-10-27 1993-09-01 Reifenhaeuser Masch A process for the production of a ribbon of synthetic thermoplastic material in sheet form
DE4011410C2 (en) * 1990-04-09 1994-06-09 Troester Maschf Paul Calender for the production of sealing sheets
DE59103518D1 (en) * 1990-04-09 1994-12-22 Troester Maschf Paul Device for controlling a calender for the production of sealing plates.
GB2280395B (en) * 1992-03-27 1996-05-01 Kawasaki Steel Co Method for detecting setting errors of clearance between rollers in universal rolling mill, and method for rolling h-shaped steel having favourable flange dim
ITMI20060666A1 (en) * 2006-04-05 2007-10-06 Danieli Off Mecc LAMINATION PLANT
US20100206033A1 (en) * 2007-05-01 2010-08-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Driving device of motors for rolling rolls
BRPI0903494A2 (en) * 2008-03-14 2015-09-22 Nippon Steel Corp Hot Rolling Lamination Load Prediction Learning Method
CN103302109B (en) * 2013-06-13 2015-04-15 南京钢铁股份有限公司 Method for controlling head and tail size amplifying rates dynamically based on different width expansion ratios

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564918A (en) * 1978-11-13 1980-05-16 Toshiba Corp Method and apparatus for automatic thickness control
JPS5577921A (en) * 1978-12-11 1980-06-12 Toshiba Corp Method and apparatus for automatic thickness control
JPS55122617A (en) * 1979-03-14 1980-09-20 Hitachi Ltd Method and apparatus for gauge control in different peripheral speed rolling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106369A (en) * 1977-02-28 1978-09-16 Ishikawajima Harima Heavy Ind Co Ltd Automatic plate thickness controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564918A (en) * 1978-11-13 1980-05-16 Toshiba Corp Method and apparatus for automatic thickness control
JPS5577921A (en) * 1978-12-11 1980-06-12 Toshiba Corp Method and apparatus for automatic thickness control
JPS55122617A (en) * 1979-03-14 1980-09-20 Hitachi Ltd Method and apparatus for gauge control in different peripheral speed rolling

Also Published As

Publication number Publication date
AU1143983A (en) 1983-08-25
KR880002504B1 (en) 1988-11-26
US4512169A (en) 1985-04-23
KR840003047A (en) 1984-08-13
DE3305132A1 (en) 1983-08-25
GB2118332A (en) 1983-10-26
GB8304112D0 (en) 1983-03-16
GB2118332B (en) 1986-04-03
JPS58141807A (en) 1983-08-23
AU560048B2 (en) 1987-03-26
DE3305132C2 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
JPH0218168B2 (en)
JPH04187315A (en) Method for controlling strip thickness and tension between stands of continuous rolling mill
JPS5852724B2 (en) Metal rolling machine and setting method
JPH0246284B2 (en)
JP2535690B2 (en) Thickness control method for tandem rolling mill
JPH04305305A (en) Method for controlling elongation percentage of skinpass rolling mill
JP2907419B2 (en) Method of controlling elongation of rolled sheet material in rolling equipment
JP3241585B2 (en) Plate thickness control device
JPH07204722A (en) Method for controlling strip position by automatic level adjusting device
JPS5825808A (en) Controlling method of sheet thickness at pass-through and run-out in rolling mill
JPS5851770B2 (en) Tension control method and device
JPH0212647B2 (en)
JPS63260614A (en) Device for controlling shape in cluster mill
JP2763490B2 (en) Method of controlling tension between stands of rolling mill
JP3079913B2 (en) Rolling control method for cold tandem rolling mill
RU2075358C1 (en) Method of controlling metal speed in multistand mill for continuous hot rolling with provision of minimum traction efforts in metal taking into account non-uniform heating of metal by its length
JPH05337531A (en) Automatic plate thickness controlling method for rolling machine whose speed is accelerated/decelerated
KR20020050848A (en) Rolling speed control apparatus using the degrees of looper and its control method
JPH06285524A (en) Automatic plate thickness controlling method for mill
JPS5932206B2 (en) Lock-on timing determination method for automatic thickness control of rolled steel plates
JPH0144403B2 (en)
JPH0318963B2 (en)
JPS631131B2 (en)
JPS6230042B2 (en)
JPS62224413A (en) Control method for plate crown in hot rolling mill