JPH04182019A - Device for controlling sheet thickness on rolling mill - Google Patents

Device for controlling sheet thickness on rolling mill

Info

Publication number
JPH04182019A
JPH04182019A JP2310007A JP31000790A JPH04182019A JP H04182019 A JPH04182019 A JP H04182019A JP 2310007 A JP2310007 A JP 2310007A JP 31000790 A JP31000790 A JP 31000790A JP H04182019 A JPH04182019 A JP H04182019A
Authority
JP
Japan
Prior art keywords
roll
tension
pass filter
signal
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2310007A
Other languages
Japanese (ja)
Other versions
JP2794934B2 (en
Inventor
Hiroaki Kuwano
博明 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2310007A priority Critical patent/JP2794934B2/en
Publication of JPH04182019A publication Critical patent/JPH04182019A/en
Application granted granted Critical
Publication of JP2794934B2 publication Critical patent/JP2794934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/02Feeding or supporting work; Braking or tensioning arrangements, e.g. threading arrangements
    • B21B39/08Braking or tensioning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture the products with good accuracy in sheet thickness by providing the tension adjusting device capable of adjusting the tension of the rolled stock. CONSTITUTION:The variation of tension which is generated at a result of changing the roll gap of the rolling mill for controlling sheet thickness is adjusted with the press roll 38 by elongating or contracting the hydraulic cylinder 46 so as to make the tension constant by adjusting the position of the press roll of the moving side. The low-pass filter 49 removes the composition over the contact frequency from the variation detecting signal of roll, and obtains the signal of the deviation of roll position. And the high-pass filter 60 removes the composition under the contact frequency from the tension detecting signal of the rolled stock 1, obtains the variation signal, and the roll movement instruction is obtained from the tension control gain.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、油圧圧下方式を採用した圧延機において、
高応答の板厚制御を実現した圧延機の板厚制御装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a rolling mill that employs a hydraulic rolling method.
This invention relates to a plate thickness control device for a rolling mill that achieves highly responsive plate thickness control.

[従来の技術] 第6図に油圧圧下方式を採用した従来の圧延機として入
側、出側にリールを配したジングルスタンドの可逆式冷
間圧延機の例を示す。この図において、圧延材lは巻戻
し用リール2から送り出されて、デフレクタロール3か
らワークロール4,5間を通り、ここで所定の圧延か行
なわれた後、デフレクタロール6を通って巻取り用リー
ル7に巻取られる。巻戻し用リール2及び巻取り用リー
ル7は各々モータ8,9で駆動されており、さらに圧延
機10の入出側で圧延材1に働く張力を一定に保つため
のり一ルモータ張力制御装置11.12が設けられてい
る。張力制御装置t11゜12は一般にモータ電流を張
力に比例させるように制御している。またラインの圧延
速度は、圧延機10のワークロール駆動用モータ13の
速度を速度制御装置14でコントロールして、所定の値
に制御している。
[Prior Art] Fig. 6 shows an example of a jingle stand reversible cold rolling mill with reels arranged on the entry and exit sides as a conventional rolling mill employing a hydraulic rolling method. In this figure, a rolled material 1 is sent out from an unwinding reel 2, passes from a deflector roll 3 to between work rolls 4 and 5, is subjected to a predetermined rolling process, and then passes through a deflector roll 6 and is wound up. It is wound up on the reel 7 for use. The unwinding reel 2 and the take-up reel 7 are driven by motors 8 and 9, respectively, and a rolling motor tension control device 11. 12 are provided. The tension control device t11-12 generally controls the motor current to be proportional to the tension. Further, the rolling speed of the line is controlled to a predetermined value by controlling the speed of the work roll drive motor 13 of the rolling mill 10 by a speed control device 14.

第6図において、15は圧延荷重を検出するロードセル
、16は上バツクアップロール、17は下バツクアツプ
ロールである。18はワークロール4.5間のロールギ
ャップを設定する油圧シリンダ、19は油圧シリンダ1
8とサーボ弁20間の配管、21は油圧シリンダ18内
に装着された圧下ラム22の変位を検出する変位計であ
る。23はサーボ弁20へ開度指令(電流信号)を送る
サーボアンプ、24は加減算器25の出力信号を増幅す
る制御ゲインに6を与える係数器で、圧下ラム22の圧
下位置S′を制御する。
In FIG. 6, 15 is a load cell for detecting rolling load, 16 is an upper back-up roll, and 17 is a lower back-up roll. 18 is a hydraulic cylinder that sets the roll gap between work rolls 4.5, 19 is a hydraulic cylinder 1
8 and the servo valve 20, and 21 is a displacement meter that detects the displacement of the reduction ram 22 installed in the hydraulic cylinder 18. 23 is a servo amplifier that sends an opening command (current signal) to the servo valve 20; 24 is a coefficient unit that gives a control gain of 6 to amplify the output signal of the adder/subtractor 25, and controls the reduction position S' of the reduction ram 22; .

基本的な位置制御ループは、指令信号Rと変位計21の
出力信号Sとを比較演算し、その偏差信号eに係数器2
4でゲインKcを乗算し、この信号によりサーボアンプ
23を介してサーボ弁20の開度を制御して、配管19
から油圧シリンダ18に供給する圧油の量を調節するこ
とにより、圧下ラム22の位置S′を制御する。その結
果、下バツクアツプロール17、下ワークロール5が昇
降して上下ワークロール4.5間の開度(ロールギャッ
プ)が所定の値に調節される。これを油圧圧下装置26
という。
The basic position control loop compares and calculates the command signal R and the output signal S of the displacement meter 21, and applies the coefficient multiplier to the deviation signal e.
4 by the gain Kc, and this signal controls the opening degree of the servo valve 20 via the servo amplifier 23, and the piping 19
The position S' of the reduction ram 22 is controlled by adjusting the amount of pressure oil supplied from the hydraulic cylinder 18 to the hydraulic cylinder 18. As a result, the lower back-up roll 17 and the lower work roll 5 move up and down, and the opening degree (roll gap) between the upper and lower work rolls 4.5 is adjusted to a predetermined value. This is carried out by the hydraulic pressure lowering device 26.
That's what it means.

又、圧下ラム22の位置S′を制御するだけでは上下ワ
ークロール4.5間のロールギャップに圧延荷重を受け
た圧延機10の伸び分だけの誤差が発生する。そのため
、通常は圧延開始後のあるタイミングで基準圧延荷重P
 refを記憶し、ロードセル15で検出した圧延中の
圧延荷重を表わす信号Pとの差ΔPを加減算器27で求
め、それを係数器28においてミル常数Km(圧延機1
0のバネ常数に当たるもので、予め求めておく)で除算
してミルの伸びを求め、更にそれに何割り補正するかを
決める補正ゲインCを乗算して、圧下ラム22の位Is
’を修正する修正信号CPを求め、これを先の油圧圧下
装置26における基本位置制御ループへの指令とするた
め加算器29に与え、圧下ラム22の位置S′を補正さ
せるようにしている。これを一般にミル常数制御装置3
0と言う。
Furthermore, simply controlling the position S' of the reduction ram 22 causes an error in the roll gap between the upper and lower work rolls 4.5 corresponding to the elongation of the rolling mill 10 under rolling load. Therefore, the standard rolling load P is usually set at a certain timing after the start of rolling.
ref is stored, and the difference ΔP between the signal P representing the rolling load during rolling detected by the load cell 15 is obtained by the adder/subtractor 27, and the difference ΔP is calculated by the coefficient unit 28 as the mill constant Km (rolling machine 1
(This corresponds to a spring constant of 0 and is determined in advance) to find the elongation of the mill, and then further multiplies it by the correction gain C that determines the percentage to be corrected to obtain the position Is of the reduction ram 22.
A correction signal CP for correcting ' is obtained, and this signal is applied to an adder 29 in order to be used as a command to the basic position control loop in the hydraulic lowering device 26, so that the position S' of the lowering ram 22 is corrected. Generally, this is called mill constant control device 3.
Say 0.

更に、圧延機10出側の圧延材lの絶対板厚を目標値h
refと一致させるために、圧延機10の出側に設けた
厚み計31(逆方向走行時は厚み計32を使用する)に
よって検出された信号りと目標値hrefとを加減算器
33で比較演算して偏差Δhを求め、それを積分制御器
34を通した後、係数器35において実際の圧下位置に
直す補正ゲイン1 + (M/Ke)を乗算して圧下ラ
ム22の位置S′を修正する修正信号chを求め、これ
をやはり先の油圧圧下装置26における基本位置制御ル
ープへの指令とするため前記加算器29に与え、圧下ラ
ム22の位置S′を補正させるようにしている。これを
モニタAGC装置36という。
Furthermore, the absolute thickness of the rolled material l on the exit side of the rolling mill 10 is set to a target value h.
In order to match the target value href, an adder/subtractor 33 compares the signal detected by the thickness gauge 31 provided at the exit side of the rolling mill 10 (thickness gauge 32 is used when running in the reverse direction) and the target value href. to find the deviation Δh, pass it through the integral controller 34, and then use the coefficient unit 35 to correct the position S' of the reduction ram 22 by multiplying it by a correction gain 1 + (M/Ke) to correct it to the actual reduction position. A correction signal ch is obtained, which is also applied to the adder 29 in order to be used as a command to the basic position control loop in the hydraulic pressure reduction device 26, so that the position S' of the reduction ram 22 is corrected. This is called a monitor AGC device 36.

ここで、Mは圧延材1の堅さを表わす定数で予め求めて
おく。Keは制御されたミル常数でKe=Km/ (1
−c)の関係がある。
Here, M is a constant representing the hardness of the rolled material 1 and is determined in advance. Ke is a controlled Mill constant, and Ke=Km/ (1
-c) relationship.

[発明が解決しようとする課題] 前記第6図の圧延機10において圧延材1の板厚を制御
するために、圧下ラム22の位置S′を変えロールギャ
ップを変更すると、圧延材1に作用している入出側の張
力も変化する。例えば、板厚を薄くするためにワークロ
ール4,5間のロールギャップを狭くすると、圧延材l
が伸び、入出側の張力が減少する。張力の変化は入出側
の大きな慣性を持つ巻戻し用リール2及び巻取り用リー
ル7の周速か変わることにより吸収されるが、一般にそ
の応答は油圧圧下装置26よりも1桁以上遅いため、ロ
ールギャップが変更され、張力が変わっても、油圧圧下
装置26並の速さで張力を設定値に戻せない。このため
、入出側の張力が減少し、その結果、見掛は上圧延材l
の変形抵抗か大きくなったかのような効果が生じ、ロー
ルギャップは狭くならない。即ち、板厚が薄くならない
。つまり、高速の油圧圧下装置26で板厚を薄くしよう
としても、入出側のモータ8,9のリール2,7の周速
変化の応答以上の速さでは板厚を薄くできないというこ
とになる。
[Problems to be Solved by the Invention] In order to control the thickness of the rolled material 1 in the rolling mill 10 shown in FIG. The tension on the input and output sides also changes. For example, if the roll gap between the work rolls 4 and 5 is narrowed in order to reduce the plate thickness, the rolled material l
expands, and the tension on the entry and exit sides decreases. Changes in tension can be absorbed by changing the circumferential speeds of the unwinding reel 2 and the take-up reel 7, which have large inertia on the input and unloading sides, but the response is generally an order of magnitude slower than that of the hydraulic pressure reduction device 26. Even if the roll gap is changed and the tension is changed, the tension cannot be returned to the set value as quickly as the hydraulic lowering device 26. Therefore, the tension on the entry and exit sides decreases, and as a result, the apparent top-rolled material l
The effect is as if the deformation resistance has increased, and the roll gap does not become narrower. In other words, the plate thickness does not become thinner. In other words, even if an attempt is made to reduce the thickness of the plate using the high-speed hydraulic reduction device 26, the thickness cannot be reduced faster than the response of the circumferential speed change of the reels 2 and 7 of the motors 8 and 9 on the input and output sides.

従って、特に2〜3Hz以上の速い入側板厚外乱に対し
ては、先のミル常数制御装置30がミル常数制御を行な
ってこれを除去しようとしても上述の理由により、板厚
制御が応答しないので除去できなかった。
Therefore, even if the mill constant control device 30 attempts to remove this by performing mill constant control, the plate thickness control will not respond to a fast entrance plate thickness disturbance of 2 to 3 Hz or more for the reasons mentioned above. Could not be removed.

油圧圧下装置26を使って、どんなに速く圧下ラム22
の位置S′を制御しても、板厚制御の精度が思った以上
に良くならないということを圧延現場でしばしば耳にす
るか、それは上述の理由による。
Using the hydraulic reduction device 26, the reduction ram 22 can be moved as quickly as possible.
It is often heard at the rolling site that even if the position S' is controlled, the accuracy of plate thickness control is not as good as expected, and this is because of the above-mentioned reasons.

第7図は本発明者による計算機を使ったシミュレーショ
ンの例で、以上のことを明らかにするものである。シミ
ュレーションを行った対象は第6図に示したジングルス
タンドの可逆式冷間圧延機で、入側設定張力1.36 
)ン、出側設定張力2.35 )ン、入側板厚0.52
mm、板幅1800mmの材料を圧延速度1800m 
/分で目標板厚0.3mmにするという条件下で、途中
ロールギャップをステップ状に10μm減少させた例で
ある。油圧圧下装置26の応答は周波数応答で90度位
相遅れ20Hzを想定しており、ステップ応答では(1
04秒以下で目標値に到達するという高速なものである
FIG. 7 is an example of a simulation performed by the present inventor using a computer, which clarifies the above. The object of the simulation was the jingle stand reversible cold rolling mill shown in Figure 6, with the tension set at the entry side being 1.36.
)n, exit side set tension 2.35 )n, entrance side plate thickness 0.52
mm, plate width 1800mm material at rolling speed 1800m
This is an example in which the roll gap was reduced by 10 μm in steps under the condition that the target plate thickness was 0.3 mm at a speed of 0.3 mm. The response of the hydraulic lowering device 26 is assumed to have a 90 degree phase delay of 20 Hz in the frequency response, and a step response of (1
It is a high-speed device that reaches the target value in less than 0.4 seconds.

シミュレーション結果を見ると、ロールギャップを10
μm変えると、出側板厚変化Δhはほぼ1秒で定常値に
到達している。実際の油圧圧下は0.04秒で目標値に
到達するのに、板厚が時間的に25倍も遅くしか変化し
ないのは、先に述べたように、入出側のリール2,7の
周速変化の応答が遅いからである。すなわち、一般にリ
ール2.7の張力はモータ電流を一定にすることにより
制御されるか、モータ8,9を含むリール2,7の慣性
はかなり大きく、リール2.7の周速がテンション変動
を抑える次の定常値に達するまでに1秒程度かかるから
である。
Looking at the simulation results, the roll gap was set to 10.
When changing μm, the exit side plate thickness change Δh reaches a steady value in approximately 1 second. Although the actual hydraulic pressure reduction reaches the target value in 0.04 seconds, the reason why the plate thickness changes only 25 times slower is because the circumference of reels 2 and 7 on the input and output side This is because the response to speed changes is slow. In other words, the tension on the reel 2.7 is generally controlled by keeping the motor current constant, or the inertia of the reels 2 and 7 including the motors 8 and 9 is quite large, and the circumferential speed of the reel 2.7 is controlled by keeping the tension fluctuations constant. This is because it takes about 1 second to reach the next steady-state value.

本発明は、上述の点に鑑みてなされたもので、板厚を制
御するために圧延機のロールギャップを変更した結果生
じる圧延機の入り出側の張力変動を速やかに抑制させる
ことにより、板厚制御の応答性を高めて、精度のよい製
品板厚を得ることができる圧延機の板厚制御装置を提供
しようとするものである。
The present invention has been made in view of the above-mentioned points, and by quickly suppressing tension fluctuations on the entry and exit sides of the rolling mill that occur as a result of changing the roll gap of the rolling mill in order to control the board thickness, It is an object of the present invention to provide a plate thickness control device for a rolling mill that can improve the responsiveness of thickness control and obtain a highly accurate product plate thickness.

[課題を解決するための手段] 請求項1の発明は、上下ワークロール間のロールギャッ
プを設定する油圧圧下装置を備えた圧延機の入側、もし
くは入出側の両方に、油圧シリンダに接続された押えロ
ールによって圧延材の張力を調節可能とした張力調整装
置を設けると共に、前記押えロールの変位量を検出する
変位計と、該変位計が検出したロール変位信号及びロー
ル位置設定器に設定したロール位置設定信号の偏差を取
ってロール位置偏差信号を求める加減算器と、該加減算
器からのロール位置偏差信号に位置制御ゲインを掛けて
ロール定常位置制御指令を求める係数器とを備えたロー
ル定常位置制御装置を設け、又、圧延材に加えられる張
力を検出する張力計と、該張力計が検出した張力検出信
号に張力制御ゲインを掛けてロール移動指令を求める係
数器とを備えた張力制御装置を設け、更に、前記各係数
器からのロール定常位置制御指令及びロール移動指令を
加算してロール位置制御指令を求める加算器と、該加算
器からのロール位置制御指令に基づいて前記油圧シリン
ダに作動機体を給排するサーボ弁に開度調整指令を送る
サーボアンプとを備えた油圧シリンダ制御装置を設けた
ことを特徴とする圧延機の板厚制御装置にかかるもので
ある。
[Means for Solving the Problem] The invention according to claim 1 is a rolling mill equipped with a hydraulic rolling device that sets a roll gap between upper and lower work rolls. A tension adjustment device that can adjust the tension of the rolled material using a presser roll is provided, and a displacement meter that detects the amount of displacement of the presser roll, and a roll displacement signal detected by the displacement meter and a roll position setting device are provided. A roll steady state controller comprising an adder/subtractor for obtaining a roll position deviation signal by taking the deviation of a roll position setting signal, and a coefficient unit for multiplying the roll position deviation signal from the adder/subtractor by a position control gain to obtain a roll steady position control command. A tension control system that includes a position control device, a tension meter that detects the tension applied to the rolled material, and a coefficient unit that multiplies the tension detection signal detected by the tension meter by a tension control gain to obtain a roll movement command. an adder for adding the roll steady position control command and roll movement command from each of the coefficient units to obtain a roll position control command; This invention relates to a plate thickness control device for a rolling mill, characterized in that a hydraulic cylinder control device is provided with a servo amplifier that sends an opening adjustment command to a servo valve that supplies and discharges an operating body.

請求項2の発明は、変位計が検出したロール変位信号か
ら折点周波数以上の成分を取除いて加減算器へ送るロー
ル定常変位信号を求めるローパスフィルタと、張力計か
検出した張力検出信号から折点周波数以下の成分を取除
いて張力制御装置の係数器へ送る張力変動信号を求める
ハイパスフィルタとを備えた圧延機の板厚制御装置にか
かるものである。
The invention of claim 2 includes a low-pass filter that removes components higher than the corner frequency from the roll displacement signal detected by the displacement meter to obtain a roll steady displacement signal to be sent to the adder/subtractor; and The present invention relates to a plate thickness control device for a rolling mill, which is equipped with a high-pass filter that removes components below the point frequency and obtains a tension fluctuation signal to be sent to the coefficient unit of the tension control device.

請求項3の発明は、ハイパスフィルタとローパスフィル
タのうち少なくともハイパスフィルタを折点周波数変更
可能とした圧延機の板厚制御装置にかかるものである。
The invention according to claim 3 relates to a plate thickness control device for a rolling mill in which the corner frequency of at least the high-pass filter of the high-pass filter and the low-pass filter can be changed.

請求項4の発明は、圧延速度設定器からの圧延速度に基
づいて、ハイパスフィルタとローパスフィルタのうち少
くともハイパスフィルタへ送る折点周波数変更信号を求
める折点周波数演算器を設けた圧延機の板厚制御装置に
かかるものである。
The invention of claim 4 provides a rolling mill equipped with a corner frequency calculator for determining a corner frequency change signal to be sent to at least one of a high-pass filter and a low-pass filter, based on the rolling speed from a rolling speed setting device. This is related to a plate thickness control device.

請求項5の発明は、速度計からの圧延速度検出値に基づ
いて、ハイパスフィルタとローパスフィルタのうち少な
くともハイパスフィルタへ送る折点周波数変更信号を求
める折点周波数演算器を設けた圧延機の板厚制御装置に
かかるものである。
The invention according to claim 5 provides a rolling mill plate provided with a corner frequency calculator for calculating a corner frequency change signal to be sent to at least one of a high-pass filter and a low-pass filter, based on a rolling speed detected value from a speedometer. This is related to the thickness control device.

[作   用] 請求項1の発明は以下のように作用する。[For production] The invention of claim 1 operates as follows.

先ず、ロール定常位置制御装置において、ロール位置設
定器にロール位置設定信号を設定すると、加減算器がロ
ール位置設定信号をそのままロール位置偏差信号として
係数器へ送り、係数器が加減算器からのロール位置偏差
信号に位置制御ゲインを掛けてロール定常位置制御指令
を求める。
First, in the roll steady position control device, when a roll position setting signal is set in the roll position setter, the adder/subtractor sends the roll position setting signal as it is as a roll position deviation signal to the coefficient unit, and the coefficient unit calculates the roll position from the adder/subtractor. Multiply the deviation signal by the position control gain to obtain the roll steady position control command.

すると、油圧シリンダ制御装置の加算器がロール定常位
置制御装置の係数器からのロール定常位置制御指令をそ
のままロール位置制御指令としてサーボアンプへ送り、
サーボアンプが加算器からのロール位置制御指令に基づ
いて油圧シリンダのサーボ弁に開度調整指令を送る。
Then, the adder of the hydraulic cylinder control device sends the roll steady position control command from the coefficient unit of the roll steady position control device as it is to the servo amplifier as a roll position control command.
The servo amplifier sends an opening adjustment command to the servo valve of the hydraulic cylinder based on the roll position control command from the adder.

これによって、サーボ弁が張力調整装置の油圧シリンダ
へ開度調整指令に応じて作動機体の給排を行ない、油圧
シリンダが伸縮動して前記押さえロールの位置がロール
位置設定信号通りとなるよう押えロールを移動する。
As a result, the servo valve supplies and discharges the operating body to the hydraulic cylinder of the tension adjustment device in accordance with the opening adjustment command, and the hydraulic cylinder expands and contracts to hold the presser roll so that its position matches the roll position setting signal. Move the roll.

そして、変位計が押えロールの変位量を検出して加減算
器へロール変位信号を送り、加減算器がロール変位信号
とロール位置設定器に設定したロール位置設定信号との
偏差を取ってロール位置偏差信号とすることにより、押
えロールの位置がロール位置設定信号通りに保たれるよ
うフィードバック制御が行なわれる。
Then, the displacement meter detects the displacement amount of the presser roll and sends a roll displacement signal to the adder/subtractor, and the adder/subtractor calculates the deviation between the roll displacement signal and the roll position setting signal set in the roll position setting device to calculate the roll position error. By using the signal, feedback control is performed so that the position of the presser roll is maintained according to the roll position setting signal.

ここで、圧延材の板厚を制御するために、油圧圧下装置
により圧延機の上下ワークロール間のロールギャップを
変更すると、圧延材にかかる張力が変化する。
Here, in order to control the thickness of the rolled material, when the roll gap between the upper and lower work rolls of the rolling mill is changed using a hydraulic reduction device, the tension applied to the rolled material changes.

すると、張力制御装置の張力計が圧延材に加えられる張
力を検出して張力検出信号を係数器へ送り、係数器が張
力検出信号に張力制御ゲインを掛けてロール移動指令を
求める。
Then, the tension meter of the tension control device detects the tension applied to the rolled material and sends a tension detection signal to the coefficient unit, and the coefficient unit multiplies the tension detection signal by the tension control gain to obtain a roll movement command.

該ロール移動指令が油圧シリンダ制御装置の加算器へ送
られて前記ロール定常位置制御指令に加算されてロール
位置制御指令を補正し、補正されたロール位置制御指令
に基づいて前記と同様に張力調整装置の油圧シリンダを
伸縮動させ、圧延材にかかる張力か一定となるよう押え
ロールを移動させる。
The roll movement command is sent to the adder of the hydraulic cylinder control device and added to the roll steady position control command to correct the roll position control command, and the tension is adjusted in the same manner as above based on the corrected roll position control command. The hydraulic cylinder of the device is moved to extend and retract, and the presser roll is moved so that the tension on the rolled material remains constant.

請求項2の発明によれば、ローパスフィルタは変位計が
検出したロール変位信号から折点周波数以上の成分を取
除いてロール定常変位信号を求め、該ロール定常変位信
号に加減算器でロール位置設定信号が加えられてロール
位置偏差信号が求められ、且つ、ハイパスフィルタは張
力計が検出した張力検出信号から折点周波数以下の成分
を取除いて張力変動信号を求め、該張力変動信号に係数
器で張力制御ゲインが掛けられてロール移動指令が求め
られる。
According to the second aspect of the invention, the low-pass filter removes components higher than the corner frequency from the roll displacement signal detected by the displacement meter to obtain a steady roll displacement signal, and sets the roll position using an adder/subtractor to the steady roll displacement signal. The signal is added to obtain a roll position deviation signal, and the high-pass filter removes components below the corner frequency from the tension detection signal detected by the tension meter to obtain a tension fluctuation signal, and a coefficient multiplier is applied to the tension fluctuation signal. The tension control gain is multiplied by , and the roll movement command is obtained.

請求項3の発明によれば、ハイパスフィルタとローパス
フィルタのうち少なくともハイパスフィルタの折点周波
数か必要に応じて変更される。
According to the third aspect of the present invention, the corner frequency of at least the high-pass filter of the high-pass filter and the low-pass filter is changed as necessary.

請求項4の発明によれば、折点周波数演算器が圧延速度
設定器からの圧延速度設定値に基づいて折点周波数変更
信号を求め、該折点周波数変更信号をハイパスフィルタ
とローパスフィルタのうち少なくともハイパスフィルタ
へ送って折点周波数を変更させる。
According to the invention of claim 4, the corner frequency calculator calculates the corner frequency change signal based on the rolling speed setting value from the rolling speed setter, and passes the corner frequency change signal to one of the high-pass filter and the low-pass filter. It is sent to at least a high-pass filter to change the corner frequency.

請求項5の発明によれば、折点周波数演算器か速度計か
らの圧延速度検出値に基づいて折点周波数変更信号を求
め、該折点周波数変更信号をハイパスフィルタとローパ
スフィルタのうち少なくともハイパスフィルタへ送って
折点周波数を変更させる。
According to the invention of claim 5, the corner frequency change signal is obtained based on the rolling speed detection value from the corner frequency calculator or the speedometer, and the corner frequency change signal is passed through at least a high pass filter of a high pass filter and a low pass filter. Send it to a filter to change the corner frequency.

[実 施 例コ 以下、本発明の実施例を図面を参照しつつ説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例である。FIG. 1 shows an embodiment of the present invention.

図中第6図と同一の符号を付した部分は同一物を表わし
ているので説明を省略する。又、油圧圧下装置26及び
ミル常数制御装置30並びにモニタAGC装置36は第
6図と同様のものが設けられるが、図面及び説明の簡略
化のため第1図からは省略している。
Portions in the figure that are denoted by the same reference numerals as in FIG. 6 represent the same parts, and therefore their explanation will be omitted. Further, the hydraulic pressure lowering device 26, the mill constant control device 30, and the monitor AGC device 36 are similar to those shown in FIG. 6, but are omitted from FIG. 1 to simplify the drawing and explanation.

圧延機10の入側に圧延材1が千鳥状に通過し得るよう
5本の押えロール37.38,39.40.41を略水
平に配列し、該5本の押えロール37,38,39゜4
0.41のうち中央と両端に位置する押えロール37.
39.41を固定とし、残る押えロール38.40を昇
降アーム42により支持し、該昇降アーム42をサーボ
弁43からの作動機体の給排によって上下方向へ伸縮動
する油圧シリンダ44で支持することにより、押えロー
ル38.40を昇降可能とし、張力調整装置45を構成
する。
Five presser rolls 37, 38, 39, 40, 41 are arranged approximately horizontally so that the rolled material 1 can pass in a staggered manner on the entrance side of the rolling mill 10.゜4
Presser rolls 37 located at the center and both ends of 0.41.
39 and 41 are fixed, the remaining presser rolls 38 and 40 are supported by an elevating arm 42, and the elevating arm 42 is supported by a hydraulic cylinder 44 that expands and contracts in the vertical direction by supplying and discharging an operating body from a servo valve 43. This allows the presser rolls 38 and 40 to be moved up and down, and constitutes a tension adjustment device 45.

尚、張力調整装置45は圧延機10の入側と出側の両方
に設けるようにしても良い。
Incidentally, the tension adjusting device 45 may be provided on both the inlet side and the outlet side of the rolling mill 10.

前記昇降アーム42に変位計46を取り付け、該変位計
46が検出したロール変位信号47から変動の高周波成
分を除去してロール定常変位信号48を求めるローパス
フィルタ49を設け、該ローパスフィルタ49が出力す
るロール定常変位信号48とロール位置設定器50に設
定されたロール位置設定信号51との偏差を取ってロー
ル位置偏差信号52を求める加減算器53を設け、該加
減算器53が出力するロール位置偏差信号52に位置制
御ゲインKpを掛けてロール定常位置制御指令54を求
める係数器55を設けて、ロール定常位置制御装置56
を構成する。
A displacement meter 46 is attached to the lifting arm 42, and a low-pass filter 49 is provided to remove high frequency components of fluctuation from the roll displacement signal 47 detected by the displacement meter 46 to obtain a steady roll displacement signal 48, and the low-pass filter 49 outputs An adder/subtracter 53 is provided to obtain a roll position deviation signal 52 by taking the deviation between the roll steady displacement signal 48 and the roll position setting signal 51 set in the roll position setting device 50. A coefficient unit 55 for multiplying the signal 52 by a position control gain Kp to obtain a roll steady position control command 54 is provided, and a roll steady position control device 56 is provided.
Configure.

一方、張力調整装置45の固定側の押えロール37に張
力計57を取り付け、該張力計57か検出した張力検出
信号58から変動の低周波成分を除去して張力変動信号
59を求めるハイパスフィルタ60を設け、該ハイパス
フィルタ60が出力する張力変動信号59に張力をロー
ル移動量に換算するための張力制御ゲインKtを掛けて
ロール移動指令61を求める係数器62を設けて、張力
制御装置63を構成する。
On the other hand, a tension meter 57 is attached to the presser roll 37 on the fixed side of the tension adjustment device 45, and a high-pass filter 60 removes low frequency components of fluctuation from the tension detection signal 58 detected by the tension meter 57 to obtain a tension fluctuation signal 59. and a coefficient unit 62 for multiplying the tension fluctuation signal 59 output by the high-pass filter 60 by a tension control gain Kt for converting the tension into a roll movement amount to obtain a roll movement command 61. Configure.

そして、前記係数器55が出力するロール定常位置制御
指令54と係数器62が出力するロール移動指令61と
を加算してロール位置制御指令64を求める加算器67
を設け、加算器67が出力するロール位置制御指令64
を基に前記サーボ弁43へ出力する開度調整指令65を
求めるサーボアンプ66を設けて、油圧シリンダ制御装
置81を構成する。
An adder 67 adds the roll steady position control command 54 output from the coefficient unit 55 and the roll movement command 61 output from the coefficient unit 62 to obtain a roll position control command 64.
is provided, and the roll position control command 64 outputted by the adder 67
A hydraulic cylinder control device 81 is provided with a servo amplifier 66 that obtains an opening adjustment command 65 to be output to the servo valve 43 based on the above.

尚、Gはロールギャップである。In addition, G is a roll gap.

次に作動について説明する。Next, the operation will be explained.

圧延機10により圧延材1を圧延する過程及び、圧延中
に図示しない油圧圧下装置26及びミル常数制御装置3
0並びにモニタAGC装置36により圧延材1の板厚を
制御する過程については、第6図と同様なので説明を省
略する。
The process of rolling the rolled material 1 by the rolling mill 10, and the hydraulic reduction device 26 and mill constant control device 3 (not shown) during rolling.
The process of controlling the plate thickness of the rolled material 1 by the monitor AGC device 36 and the monitor AGC device 36 is the same as that shown in FIG. 6, so a description thereof will be omitted.

本発明では、圧延開始時において、油圧シリンダ44に
より昇降アーム42を介して移動側の押えロール38.
40を固定側の押えロール37,39.41に対して上
方へ移動させることにより、張力調整装置45を開放状
態としておき、ここへ圧延材1を通す。
In the present invention, at the start of rolling, the presser roll 38 on the moving side is moved by the hydraulic cylinder 44 via the lifting arm 42.
40 is moved upward relative to the fixed presser rolls 37, 39, 41, the tension adjusting device 45 is kept open, and the rolled material 1 is passed therethrough.

圧延材1が張力調整装置45の5本の押えロール37.
3g、39,40.41間に通されたら、ロール位置設
定器50にロール位置設定信号51を設定することによ
り、該ロール位置設定信号51を加減算器53を通して
そのままロール位置偏差信号52として係数器55へ送
り、該係数器55でロール位置偏差信号52に位置制御
ゲインKpを掛けてロール定常位置制御指令54を求め
、該ロール定常位置制御指令54を加算器67を通して
そのままロール位置制御指令64としてサーボアンプ6
6へ送り、該サーボアンプ66でロール位置制御指令6
4を開度調整指令65に変換して該開度調整指令65を
サーボ弁43へ送る。すると、サーボ弁43は開度調整
指令65に応じて油圧シリンダ44への作動機体の量及
び方向を調整して油圧シリンダ44を収縮動させ、昇降
アーム42を介して押えロール38゜40を設定位置ま
で下降させる。
The rolled material 1 is transferred to the five presser rolls 37 of the tension adjustment device 45.
3g, 39, 40.41, the roll position setting signal 51 is set in the roll position setting device 50, and the roll position setting signal 51 is passed through the adder/subtractor 53 as it is as the roll position deviation signal 52. 55, the coefficient unit 55 multiplies the roll position deviation signal 52 by the position control gain Kp to obtain the roll steady position control command 54, and the roll steady position control command 54 is passed through the adder 67 as it is as the roll position control command 64. Servo amplifier 6
6, and the servo amplifier 66 outputs the roll position control command 6.
4 into an opening adjustment command 65 and sends the opening adjustment command 65 to the servo valve 43. Then, the servo valve 43 adjusts the amount and direction of the actuating body to the hydraulic cylinder 44 in accordance with the opening adjustment command 65, causes the hydraulic cylinder 44 to contract, and sets the presser roll 38° 40 via the lifting arm 42. lower to position.

その結果、圧延材1が5本の押えロール37.38゜3
9.40.41間を千鳥状に通されるようになるので圧
延材1に初期張力が掛けられる。
As a result, the rolled material 1 was rolled at 37.38°3 with five presser rolls.
9, 40, and 41 in a staggered manner, initial tension is applied to the rolled material 1.

同時に、昇降アーム42に取り付けられた変位計46が
押えロール38.40の上下方向の位置を検出してロー
ル変位信号47をローパスフィルタ49へ送る。ローパ
スフィルタ49は、縦軸に入力に対する出力の比を取り
、横軸に周波数を取った第2図に示すような、折点周波
数ωc1以上の周波数成分を急激に減衰させる特性を持
っているので、変位計46が検出したロール変位信号4
7は高周波成分が除去されて、押えロール38.40の
ゆっくりとした動きのみを示すロール定常変位信号48
となる。該ロール定常変位信号48は加減算器53にフ
ィードバックされてロール位置設定器50からのロール
位置設定信号51との間で偏差が取られ新しいロール位
置偏差信号52が求められる。こうして求められたロー
ル位置偏差信号52は前記と同様にして係数器55へ送
られ、該係数器55でロール位置偏差信号52に位置制
御ゲインKpを掛けられてロール定常位置制御指令54
が求められ、該ロール定常位置制御指令54が加算器6
7を通してそのままロール位置制御指令64としてサー
ボアンプ66へ送られ、該サーボアンプ66でロール位
置制御指令64が開度調整指令65に変換されてサーボ
弁43へ送られる。これにより、サーボ弁43は開度調
整指令65に応じて油圧シリンダ44への作動機体の量
及び方向を調整して油圧シリンダ44を伸縮動させ、昇
降アーム42を介して押えロール38.40を設定位置
に調整する。こうして、移動側の押えロール38.40
の固定側の押えロール37,39.41に対する相対変
位か抑えられ、圧延材1にかかる張力か一定に保たれる
。又、押えロール38.40が設定位置となった時に、
ロール定常変位信号48の値がロール位置設定信号51
の値と一致してロール位置偏差信号52の値がゼロにな
るので、サーボ弁43は閉じ、押えロール38.40か
静止する。
At the same time, a displacement meter 46 attached to the lifting arm 42 detects the vertical position of the presser roll 38 , 40 and sends a roll displacement signal 47 to a low-pass filter 49 . The low-pass filter 49 has the characteristic of rapidly attenuating frequency components above the corner frequency ωc1, as shown in Figure 2, where the vertical axis represents the ratio of output to input and the horizontal axis represents frequency. , the roll displacement signal 4 detected by the displacement meter 46
7 is a roll steady displacement signal 48 from which high frequency components have been removed and which shows only the slow movement of the presser roll 38.40.
becomes. The roll steady displacement signal 48 is fed back to the adder/subtractor 53, and the deviation from the roll position setting signal 51 from the roll position setting device 50 is calculated to obtain a new roll position deviation signal 52. The roll position deviation signal 52 obtained in this way is sent to the coefficient multiplier 55 in the same manner as described above, and the roll position deviation signal 52 is multiplied by the position control gain Kp in the coefficient multiplier 55 to generate a roll steady position control command 55.
is determined, and the roll steady position control command 54 is sent to the adder 6.
7, the roll position control command 64 is sent as it is to the servo amplifier 66, and the servo amplifier 66 converts the roll position control command 64 into an opening degree adjustment command 65, which is then sent to the servo valve 43. As a result, the servo valve 43 adjusts the amount and direction of the actuating body to the hydraulic cylinder 44 according to the opening adjustment command 65, moves the hydraulic cylinder 44 to extend and contract, and moves the presser roll 38, 40 via the lifting arm 42. Adjust to the set position. In this way, the moving side presser roll 38.40
The relative displacement of the presser rolls 37, 39, 41 on the fixed side is suppressed, and the tension applied to the rolled material 1 is kept constant. Also, when the presser roll 38.40 is at the set position,
The value of the roll steady displacement signal 48 is the roll position setting signal 51
Since the value of the roll position deviation signal 52 becomes zero in agreement with the value of , the servo valve 43 closes and the presser roll 38, 40 comes to rest.

圧延中にサーボ弁43からの作動機体の漏れやサーボア
ンプ66が出力する開度調整指令65の温度ドリフト等
により押えロール38.40の位置か変化すると、上記
のようにして押えロール38゜40の位置が設定位置と
なるよう調整され、圧延材1にかかる張力が変化するの
を防止する。
During rolling, if the position of the presser rolls 38, 40 changes due to leakage of the operating body from the servo valve 43 or temperature drift of the opening adjustment command 65 output from the servo amplifier 66, the presser rolls 38, 40 are changed as described above. is adjusted so that the position is the set position, and the tension applied to the rolled material 1 is prevented from changing.

尚、サーボ弁43からの作動機体の漏れやサーボアンプ
66が出力する開度調整指令65の温度ドリフト等によ
る押えロール38.40の位置の変化は非常にゆっくり
しているので、ローパスフィルタ49の折点周波数ωe
1を適切に選定することにより、押えロール38.40
にかかる圧延材1の張力変動の影響を受けずに上述の位
置制御を行なうことができる。
Note that the position of the presser rolls 38 and 40 changes very slowly due to leakage of the operating body from the servo valve 43 and temperature drift of the opening adjustment command 65 output from the servo amplifier 66, so the low-pass filter 49 is Breaking point frequency ωe
By appropriately selecting 1, the presser roll 38.40
The above-described position control can be performed without being affected by tension fluctuations in the rolled material 1.

一方、圧延中に圧延材1の板厚を制御するために、第6
図に示す油圧圧下装置26を用いてワークロール4.5
間のロールギャップGを変更した場合、リールモータ張
力制御装置11.12が応答するまでの間に、ロールギ
ャップGの変更による圧延材1の張力の変動を押えロー
ル37に設けた張力計57が検出して張力検出信号58
をハイパスフィルタ60へ送る。ハイパスフィルタ60
は、縦軸に入力に対する出力の比を取り、横軸に周波数
を取った第3図に示すような、折点周波数ω、以下の周
波数成分を急激に減衰させる特性を持っているので、張
力計57が検出した張力検出信号58は低周波成分を除
去されて張力変動による押えロール38.40の素早い
動きのみを示す張力変動信号59となる。
On the other hand, in order to control the thickness of the rolled material 1 during rolling, the sixth
Using the hydraulic lowering device 26 shown in the figure, the work roll 4.5 is
When the roll gap G between the rolls is changed, the tension gauge 57 provided on the presser roll 37 measures the fluctuation in the tension of the rolled material 1 due to the change in the roll gap G until the reel motor tension control device 11.12 responds. Detection and tension detection signal 58
is sent to the high-pass filter 60. high pass filter 60
has the characteristic of rapidly attenuating frequency components below the corner frequency ω, as shown in Figure 3, where the vertical axis represents the ratio of output to input and the horizontal axis represents frequency. The tension detection signal 58 detected by the total tension detection signal 57 has its low frequency components removed, and becomes a tension fluctuation signal 59 indicating only the quick movement of the presser roll 38, 40 due to tension fluctuation.

該張力変動信号59は係数器62で張力をロール移動量
に換算するための張力制御ゲインKtを掛けられてロー
ル移動指令61となり、該ロール移動指令61は加算器
67で前記ロール定常位置制御指令54に加算されて前
記ロール位置制御指令64か補正され、補正されたロー
ル位置制御指令64に基づいて前記と同様の制御が行な
われる。
The tension fluctuation signal 59 is multiplied by a tension control gain Kt for converting the tension into a roll movement amount in a coefficient unit 62 to become a roll movement command 61, and the roll movement command 61 is multiplied by an adder 67 as the roll steady position control command. 54 and the roll position control command 64 is corrected, and the same control as described above is performed based on the corrected roll position control command 64.

これにより、押えロール38.40は設定位置を中心と
して張力の変動分を抑制するように動いて、圧延材lに
かかる張力を一定に保持する。
As a result, the presser rolls 38 and 40 move around the set position so as to suppress fluctuations in tension, thereby maintaining the tension applied to the rolled material l constant.

尚、本発明の張力制御装置63は、高速の油圧圧下装置
26を用いて板厚制御を行なってからリールモータ張力
制御装置11.12が応答するまでの間の素早い張力の
変動を対象としているので、ハイパスフィルタ60の折
点周波数ωc2を適切に選定することにより、前記位置
制御の影響を受けずに急激な張力変動だけを除去するこ
とができる。
It should be noted that the tension control device 63 of the present invention is intended for quick tension fluctuations from the time when the plate thickness is controlled using the high-speed hydraulic reduction device 26 until the reel motor tension control device 11, 12 responds. Therefore, by appropriately selecting the corner frequency ωc2 of the high-pass filter 60, it is possible to remove only rapid tension fluctuations without being affected by the position control.

第4図は張力調整装置45の他の例であって、2本の押
えロール68.69を上下に配列して、下方の押えロー
ル69に水平方向へ伸縮動する油圧シリンダ70を接続
している。このようにしても、下方の押えロール69を
水平方向へ動かすことにより圧延材1の張力を調整する
ことができる。
FIG. 4 shows another example of the tension adjustment device 45, in which two presser rolls 68 and 69 are arranged one above the other, and a hydraulic cylinder 70 that extends and contracts in the horizontal direction is connected to the lower presser roll 69. There is. Even in this case, the tension of the rolled material 1 can be adjusted by moving the lower presser roll 69 in the horizontal direction.

第5図は本発明の他の実施例であり、折点周波数ω。□
を変更可能なローパスフィルタ71と、折点周波数ωc
2を変更可能なハイパスフィルタ72とを設け、圧延速
度設定器73からの圧延速度設定値74と、圧延ライン
に設けられた速度計75からの圧延速度検出値76のど
ちらか一方が切換えスイッチ77により切換えられて折
点周波数演算器78へ入力されると、折点周波数演算器
78が適正な折点周波数ω。□及びω。2を求めてロー
パスフィルタ71及びハイパスフィルタ72へ折点周波
数変更信号79.80を送って折点周波数ωc1及びω
。2を変更し得るようにした他は前記第1図の実施例と
同様の構成を備えている。
FIG. 5 shows another embodiment of the present invention, in which the corner frequency ω. □
and a low-pass filter 71 that can change the corner frequency ωc.
A changeover switch 77 is provided to select either the rolling speed set value 74 from the rolling speed setting device 73 or the rolling speed detected value 76 from the speedometer 75 provided in the rolling line. When the signal is switched and inputted to the corner frequency calculator 78, the corner frequency calculator 78 selects the appropriate corner frequency ω. □ and ω. 2 and sends a corner frequency change signal 79.80 to the low-pass filter 71 and high-pass filter 72 to obtain the corner frequencies ωc1 and ω.
. The structure is similar to that of the embodiment shown in FIG. 1, except that 2 can be changed.

本実施例によれば、圧延速度に伴って変化する張力変動
の周波数に応じて、常に最適な折点周波数ω6、及びω
c2を設定することができる他は前記第1図の実施例と
同様の作用効果を得ることができる。但し、押えロール
38.40の定常的な変位を対象とするローパスフィル
タ71における圧延速度の影響はハイパスフィルタ72
程ではないので、ローパスフィルタ71は折点周波数ω
。□を固定としても良い。
According to this embodiment, the optimal corner frequency ω6 and ω are always set according to the frequency of tension fluctuation that changes with the rolling speed.
The same functions and effects as the embodiment shown in FIG. 1 can be obtained except that c2 can be set. However, the influence of the rolling speed on the low-pass filter 71, which targets the steady displacement of the presser rolls 38 and 40, is affected by the high-pass filter 72.
Therefore, the low-pass filter 71 has a corner frequency ω
. □ may be fixed.

尚、上記実施例では、本発明をジングルスタンドの可逆
式冷間圧延機に適用した場合についてのみ述べたが、一
方向に圧延する非可逆式の圧延機や2スタンド以上のタ
ンデム圧延機等、前記従来技術で述べた問題が生ずる全
ての圧延機に本発明を適用できること、又、本発明の各
制御装置はローパスフィルタ及びハイパスフィルタを含
めて電子回路で構成してもコンピュータやシーケンサを
含めたデジタル演算装置で構成しても良いこと、その他
、本発明の要旨を逸脱しない範囲内において種々変更を
加え得ることは勿論である。
In the above embodiments, only the case where the present invention was applied to a reversible cold rolling mill with jingle stands was described, but it can also be applied to irreversible rolling mills that roll in one direction, tandem rolling mills with two or more stands, etc. The present invention can be applied to all rolling mills in which the problems described in the above-mentioned prior art occur, and each control device of the present invention can be configured with an electronic circuit including a low-pass filter and a high-pass filter. It goes without saying that it may be configured with a digital arithmetic unit, and that various other changes may be made without departing from the gist of the present invention.

[発明の効果コ 以上説明したように、本発明によれば、圧延機の入側、
もしくは入出側の両方に張力調整装置を設けてロール定
常位置制御装置及び張力制御装置並びに油圧シリンダ制
御装置で制御するようにしたので、以下のような種々の
優れた効果を奏し得る。
[Effects of the Invention] As explained above, according to the present invention, the entrance side of the rolling mill,
Alternatively, tension adjustment devices are provided on both the input and output sides, and control is performed by a roll steady position control device, a tension control device, and a hydraulic cylinder control device, so that various excellent effects such as those described below can be achieved.

■ 請求項1によれば、板厚を制御するために圧延機の
ロールギャップを変更した結果生ずる圧延機入側または
入出側の張力変動を、張力調整装置によって速やかに抑
制することができる。
(2) According to the first aspect, the tension adjustment device can quickly suppress tension fluctuations on the entrance side or the entrance/exit side of the rolling mill that occur as a result of changing the roll gap of the rolling mill in order to control the plate thickness.

又、ロール定常位置制御装置で移動側の押えロールの位
置制御を行ないつつ張力制御装置で張力制御を実施でき
るので、移動側の押えロールを初期設定位置に保った状
態で張力の変動分のみを抑制することができる。
In addition, since the roll steady position control device can control the position of the presser roll on the moving side and the tension can be controlled using the tension controller, only the variation in tension can be controlled while the presser roll on the moving side is maintained at the initial setting position. Can be suppressed.

以上の結果、移動側の押えロールの位置が外乱の影響を
受けることなく圧延中も安定に維持でき、ロールギャッ
プを操作した結果発、生ずる張力変動を速やかに制御す
るので、板厚制御の応答を速めて精度の良い製品板厚を
得ることができる。
As a result of the above, the position of the presser roll on the moving side can be maintained stably during rolling without being affected by disturbances, and tension fluctuations that occur as a result of manipulating the roll gap can be quickly controlled, resulting in a response to thickness control. It is possible to speed up the process and obtain accurate product thickness.

■ 請求項2によれば、ローパスフィルタを設けたので
、変位計が検出したロール変位信号から折点周波数以上
の成分を取除いてロール定常的変位信号を求めることが
でき、且つ、ハイパスフィルタを設けたので、張力計が
検出した張力検出信号から折点周波数以下の成分を取除
いて張力変動信号を求めることができる。
According to claim 2, since a low-pass filter is provided, a steady-state roll displacement signal can be obtained by removing components higher than the break point frequency from the roll displacement signal detected by the displacement meter, and the high-pass filter is also provided. With this arrangement, the tension fluctuation signal can be obtained by removing the component below the corner frequency from the tension detection signal detected by the tension meter.

■ 請求項3によれば、ハイパスフィルタとローパスフ
ィルタのうち少なくともハイパスフィルタの折点周波数
を変更することができる。
(2) According to claim 3, the corner frequency of at least the high-pass filter of the high-pass filter and the low-pass filter can be changed.

■ 請求項4によれば、圧延速度設定器からの圧延速度
設定値に基づいてハイパスフィルタとローパスフィルタ
のうち少なくともハイパスフィルタの折点周波数を変更
することができる。
(2) According to claim 4, the corner frequency of at least the high-pass filter of the high-pass filter and the low-pass filter can be changed based on the rolling speed setting value from the rolling speed setting device.

■ 請求項5によれば、速度計からの圧延速度検出値に
基づいてハイパスフィルタとローパスフィルタのうち少
なくともハイパスフィルタの折点周波数を変更すること
ができる。
(2) According to claim 5, the corner frequency of at least the high-pass filter of the high-pass filter and the low-pass filter can be changed based on the rolling speed detection value from the speedometer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の制御系統図、第2図は第1
図のローパスフィルタの特性を示す線図、第3図は第1
図のハイパスフィルタの特性を示す線図、第4図は張力
調整装置の他の実施例を示す図、第S図は本発明の他の
実施例の制御系統図、第6図は従来例における板厚制御
装置の制御系統図、第7図は第6図の板厚制御装置の応
答性を示す線図である。 図中1は圧延材、4.5はワークロール、10は圧延機
、26は油圧圧下装置、37.3g、39,40,41
,68゜69は押えロール、43はサーボ弁、44.7
0は油圧シリンダ、45は張力調整装置、46は変位計
、47はロール変位信号、48はロール定常変位信号、
49.71はローパスフィルタ、50はロール位置設定
器、51はロール位置設定信号、52はロール位置偏差
信号、53は加減算器、54はロール定常位置制御指令
、55.62は係数器、56はロール定常位置制御装置
、57は張力計、58は張力検出信号、59は張力変動
信号、60.72はハイパスフィルタ、61はロール移
動指令、63は張力制御装置、64はロール位置制御指
令、65は開度調整指令、66はサーボアンプ、67は
加算器、油圧シリンダ制御装置、73は圧延速度設定器
、74は圧延速度設定値、75は速度計、76は圧延速
度検出値、78は折点周波数演算器、79.80は折点
周波数変更信号、Kpは位置制御ゲイン、Ktは張力制
御ゲイン、ω。□はローパスフィルタ49.71の折点
周波数、ω。2はハイパスフィルタ60.72の折点周
波数、Gはロールギャップを示す。
Fig. 1 is a control system diagram of one embodiment of the present invention, and Fig. 2 is a control system diagram of an embodiment of the present invention.
A diagram showing the characteristics of the low-pass filter shown in Figure 3.
4 is a diagram showing another embodiment of the tension adjusting device, FIG. S is a control system diagram of another embodiment of the present invention, and FIG. A control system diagram of the plate thickness control device, FIG. 7 is a diagram showing the responsiveness of the plate thickness control device of FIG. 6. In the figure, 1 is a rolled material, 4.5 is a work roll, 10 is a rolling machine, 26 is a hydraulic rolling device, 37.3g, 39, 40, 41
, 68° 69 is a presser roll, 43 is a servo valve, 44.7
0 is a hydraulic cylinder, 45 is a tension adjustment device, 46 is a displacement meter, 47 is a roll displacement signal, 48 is a roll steady displacement signal,
49.71 is a low-pass filter, 50 is a roll position setter, 51 is a roll position setting signal, 52 is a roll position deviation signal, 53 is an adder/subtractor, 54 is a roll steady position control command, 55.62 is a coefficient unit, 56 is a Roll steady position control device, 57 is a tension meter, 58 is a tension detection signal, 59 is a tension fluctuation signal, 60.72 is a high pass filter, 61 is a roll movement command, 63 is a tension control device, 64 is a roll position control command, 65 is an opening adjustment command, 66 is a servo amplifier, 67 is an adder, a hydraulic cylinder control device, 73 is a rolling speed setter, 74 is a rolling speed setting value, 75 is a speedometer, 76 is a rolling speed detection value, and 78 is a folding point frequency calculator, 79.80 is the corner frequency change signal, Kp is the position control gain, Kt is the tension control gain, ω. □ is the corner frequency of the low-pass filter 49.71, ω. 2 indicates the corner frequency of the high-pass filter 60.72, and G indicates the roll gap.

Claims (1)

【特許請求の範囲】 1)上下ワークロール間のロールギャップを設定する油
圧圧下装置を備えた圧延機の入側、もしくは入出側の両
方に、油圧シリンダに接続された押えロールによって圧
延材の張力を調節可能とした張力調整装置を設けると共
に、前記押えロールの変位量を検出する変位計と、該変
位計が検出したロール変位信号及びロール位置設定器に
設定したロール位置設定信号の偏差を取ってロール位置
偏差信号を求める加減算器と、該加減算器からのロール
位置偏差信号に位置制御ゲインを掛けてロール定常位置
制御指令を求める係数器とを備えたロール定常位置制御
装置を設け、又、圧延材に加えられる張力を検出する張
力計と、該張力計が検出した張力検出信号に張力制御ゲ
インを掛けてロール移動指令を求める係数器とを備えた
張力制御装置を設け、更に、前記各係数器からのロール
定常位置制御指令及びロール移動指令を加算してロール
位置制御指令を求める加算器と、該加算器からのロール
位置制御指令に基づいて前記油圧シリンダに作動機体を
給排するサーボ弁に開度調整指令を送るサーボアンプと
を備えた油圧シリンダ制御装置を設けたことを特徴とす
る圧延機の板厚制御装置。 2)変位計が検出したロール変位信号から折点周波数以
上の成分を取除いて加減算器へ送るロール定常変位信号
を求めるローパスフィルタと、張力計が検出した張力検
出信号から折点周波数以下の成分を取除いて張力制御装
置の係数器へ送る張力変動信号を求めるハイパスフィル
タとを備えた請求項1記載の圧延機の板厚制御装置。 3)ハイパスフィルタとローパスフィルタのうち少なく
ともハイパスフィルタを折点周波数変更可能とした請求
項2記載の圧延機の板厚制御装置。 4)圧延速度設定器からの圧延速度設定値に基づいて、
ハイパスフィルタとローパスフィルタのうち少くともハ
イパスフィルタへ送る折点周波数変更信号を求める折点
周波数演算器を設けた請求項3記載の圧延機の板厚制御
装置。 5)速度計からの圧延速度検出値に基づいて、ハイパス
フィルタとローパスフィルタのうち少くともハイパスフ
ィルタへ送る折点周波数変更信号を求める折点周波数演
算器を設けた請求項3記載の圧延機の板厚制御装置。
[Claims] 1) The tension of the rolled material is controlled by a presser roll connected to a hydraulic cylinder on the entry side or both the entry and exit sides of a rolling mill equipped with a hydraulic rolling device that sets the roll gap between the upper and lower work rolls. A tension adjustment device capable of adjusting the pressure is provided, and a displacement meter detects the amount of displacement of the presser roll, and the deviation between the roll displacement signal detected by the displacement meter and the roll position setting signal set in the roll position setting device is taken. a roll steady position control device comprising: an adder/subtracter for obtaining a roll position deviation signal using the adder/subtractor; and a coefficient unit for multiplying the roll position deviation signal from the adder/subtractor by a position control gain to obtain a roll steady position control command; A tension control device is provided that includes a tension meter that detects the tension applied to the rolled material, and a coefficient unit that multiplies the tension detection signal detected by the tension meter by a tension control gain to obtain a roll movement command, and further includes an adder that adds the roll steady position control command and the roll movement command from the coefficient unit to obtain a roll position control command; and a servo that supplies and discharges the actuating body to the hydraulic cylinder based on the roll position control command from the adder. A plate thickness control device for a rolling mill, comprising a hydraulic cylinder control device equipped with a servo amplifier that sends an opening adjustment command to a valve. 2) A low-pass filter that removes components above the break point frequency from the roll displacement signal detected by the displacement meter to obtain a steady roll displacement signal to be sent to the adder/subtractor, and a component below the break point frequency from the tension detection signal detected by the tension meter. 2. The plate thickness control device for a rolling mill according to claim 1, further comprising a high-pass filter for obtaining a tension fluctuation signal to be sent to a coefficient unit of the tension control device. 3) The plate thickness control device for a rolling mill according to claim 2, wherein at least the high-pass filter among the high-pass filter and the low-pass filter is capable of changing the corner frequency. 4) Based on the rolling speed setting value from the rolling speed setting device,
4. The plate thickness control device for a rolling mill according to claim 3, further comprising a corner frequency calculator for determining a corner frequency change signal to be sent to at least one of the high-pass filter and the low-pass filter. 5) The rolling mill according to claim 3, further comprising a corner frequency calculator for calculating a corner frequency change signal to be sent to at least one of a high pass filter and a low pass filter based on the rolling speed detected value from the speedometer. Plate thickness control device.
JP2310007A 1990-11-15 1990-11-15 Rolling mill thickness control device Expired - Fee Related JP2794934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310007A JP2794934B2 (en) 1990-11-15 1990-11-15 Rolling mill thickness control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310007A JP2794934B2 (en) 1990-11-15 1990-11-15 Rolling mill thickness control device

Publications (2)

Publication Number Publication Date
JPH04182019A true JPH04182019A (en) 1992-06-29
JP2794934B2 JP2794934B2 (en) 1998-09-10

Family

ID=18000029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310007A Expired - Fee Related JP2794934B2 (en) 1990-11-15 1990-11-15 Rolling mill thickness control device

Country Status (1)

Country Link
JP (1) JP2794934B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027454A1 (en) * 1995-03-07 1996-09-12 Davy Mckee (Poole) Limited Rolling mill vibration control
EP1464415A2 (en) * 2003-04-03 2004-10-06 Muhr und Bender KG Method and installation for rolling metal strip
WO2006021324A1 (en) * 2004-08-26 2006-03-02 Sms Demag Ag Rolling mill for rolling a metallic strip
CN104772348A (en) * 2015-04-02 2015-07-15 浙江大学 Online sheet thickness detecting and adjusting system based on laser ultrasonic
WO2016011148A1 (en) * 2014-07-15 2016-01-21 Novelis Inc. Process damping of self-excited third octave mill vibration
US10065225B2 (en) 2014-07-25 2018-09-04 Novelis Inc. Rolling mill third octave chatter control by process damping
DE102008035738B4 (en) 2007-07-31 2020-06-18 Danieli Germany GmbH Rolling device
EP4257256A4 (en) * 2020-12-07 2024-05-22 JFE Steel Corporation Cold rolling method and method for producing cold-rolled steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110340154B (en) * 2019-07-22 2020-10-30 镇江龙源铝业有限公司 Constant tension control method for small multi-stand cold continuous rolling unit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027454A1 (en) * 1995-03-07 1996-09-12 Davy Mckee (Poole) Limited Rolling mill vibration control
EP1464415A2 (en) * 2003-04-03 2004-10-06 Muhr und Bender KG Method and installation for rolling metal strip
EP1464415A3 (en) * 2003-04-03 2006-08-16 Muhr und Bender KG Method and installation for rolling metal strip
US7185523B2 (en) 2003-04-03 2007-03-06 Muhr Und Bender Kg Rolling process and rolling system for rolling metal strip
WO2006021324A1 (en) * 2004-08-26 2006-03-02 Sms Demag Ag Rolling mill for rolling a metallic strip
JP2008510624A (en) * 2004-08-26 2008-04-10 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Rolling mill for rolling metal strip
KR101139305B1 (en) * 2004-08-26 2012-04-26 에스엠에스 지마크 악티엔게젤샤프트 Rolling mill for rolling metallic band
DE102008035738B4 (en) 2007-07-31 2020-06-18 Danieli Germany GmbH Rolling device
WO2016011148A1 (en) * 2014-07-15 2016-01-21 Novelis Inc. Process damping of self-excited third octave mill vibration
CN106488810A (en) * 2014-07-15 2017-03-08 诺维尔里斯公司 The process damping of self-excitation the 3rd octave rolling mill vibration
KR20170031221A (en) * 2014-07-15 2017-03-20 노벨리스 인크. Process damping of self-excited third octave mill vibration
JP2017524537A (en) * 2014-07-15 2017-08-31 ノベリス・インコーポレイテッドNovelis Inc. 1/3 octave mill self-excited vibration damping process
US10166584B2 (en) 2014-07-15 2019-01-01 Novelis Inc. Process damping of self-excited third octave mill vibration
US10065225B2 (en) 2014-07-25 2018-09-04 Novelis Inc. Rolling mill third octave chatter control by process damping
CN104772348B (en) * 2015-04-02 2017-01-04 浙江大学 A kind of sheet metal thickness on-line checking based on laser-ultrasound and the system of adjustment
CN104772348A (en) * 2015-04-02 2015-07-15 浙江大学 Online sheet thickness detecting and adjusting system based on laser ultrasonic
EP4257256A4 (en) * 2020-12-07 2024-05-22 JFE Steel Corporation Cold rolling method and method for producing cold-rolled steel sheet

Also Published As

Publication number Publication date
JP2794934B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JP2000312909A (en) Plate width controller
JPH03238112A (en) Control method and device to compensate speed effect in tandem cold roll device
JP2005095975A (en) Method and device for controlling thickness of rolled product
JPH04182019A (en) Device for controlling sheet thickness on rolling mill
US3618348A (en) Method of controlling rolling of metal strips
JP2902383B2 (en) Control method of elongation in temper rolling
JP3121942B2 (en) Rolling mill thickness control device
JP3531744B2 (en) Thickness control method of tandem rolling mill
JP2653128B2 (en) Control method of cold tandem rolling mill
JP3348540B2 (en) Control method of tandem mill
JPH07100519A (en) Device and method for rolling mill control
JP2811926B2 (en) Rolling mill thickness control device
JP3079913B2 (en) Rolling control method for cold tandem rolling mill
JP3345101B2 (en) Method and apparatus for controlling cold tandem rolling of metal strip
JPS63238917A (en) Tension correcting automatic plate thickness controller
JPH04305305A (en) Method for controlling elongation percentage of skinpass rolling mill
JPH11123427A (en) Method for controlling shape of rolled stock and device therefor
JP2001293510A (en) Method for controlling flying thickness change in continuous hot-rolling mill
JP2763490B2 (en) Method of controlling tension between stands of rolling mill
JP3348538B2 (en) Control method of tandem mill
JPS63286209A (en) Method for controlling initial drafting position of rolling mill
JPH10202308A (en) Method and device for controlling plate thickness in continuous rolling mill
JPS6150685B2 (en)
JPS6226844B2 (en)
JPS62166010A (en) Shape controlling method for cluster rolling mill

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees