JPS5844762A - Integrated structure of high voltage complementary mos inverter array - Google Patents

Integrated structure of high voltage complementary mos inverter array

Info

Publication number
JPS5844762A
JPS5844762A JP56061993A JP6199381A JPS5844762A JP S5844762 A JPS5844762 A JP S5844762A JP 56061993 A JP56061993 A JP 56061993A JP 6199381 A JP6199381 A JP 6199381A JP S5844762 A JPS5844762 A JP S5844762A
Authority
JP
Japan
Prior art keywords
voltage
gate
transistor
circuit
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56061993A
Other languages
Japanese (ja)
Other versions
JPH0221174B2 (en
Inventor
Hiroshi Sakuma
啓 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56061993A priority Critical patent/JPS5844762A/en
Publication of JPS5844762A publication Critical patent/JPS5844762A/en
Publication of JPH0221174B2 publication Critical patent/JPH0221174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Abstract

PURPOSE:To obtain inexpensively an inverter array by integrating a circuit which is formed of a load side transistor, a shunt resistor and a diode on a semiconductor substrate and a circuit which is formed of a drive side transistor, a shunt resistor, a diode and a gate input condenser, and connecting them by external wirings. CONSTITUTION:Four high withstand voltage PMOS transistor circuits having integrated high resistors and a diode between a gate electrode and a source electrode on an N type semiconductor substrate as an integrated circuit element 19. Four integrated high withstand voltage NMOS transistor circuits are formed on a P type semiconductor substrate as an integrated circuit element 29, and the elements 19, 29 are connected to each other. In other words, the gate terminals 11, 13, 15, 17 of the element 19 are respectively connected via external wirings to the gate input condenser terminals 21, 23, 25, 27 of the element 29. The drain terminals 12, 14, 16, 18 of the element 19 are respectively connected by external wirings similarly to the drain terminals 22, 24, 26, 28 of the element 29.

Description

【発明の詳細な説明】 本発明は、MOS ICレベルの低電圧入力により。[Detailed description of the invention] The present invention uses low voltage input at the MOS IC level.

−逮・高電圧パルス金出力できる相補形MOI9(0M
O8)インバータアレイの*棟構造に関する。
- Complementary type MOI9 (0M
O8) Regarding the *building structure of the inverter array.

表示城書や、プリンタ装置等の各櫨端末装置でqよ低電
圧−作のIIIII4stgI絡の他に、しばしば、高
電   圧、+4電流出力回路が請求される。従来、こ
の櫨の用達tCは、d4im圧のバイポーラトランジス
タが便用されて来たか、バイポーラ素子41#有の熱暴
走間層や、少数キャリアのtI横効果による動作周波l
!限界のため、装置−の要求性能を充分満たすには至っ
てい4い。−ガ、近ヰ、熱的に安定で、高速性に愛れた
尚耐l1tIVIIJ8 )ランジスタの開発が進めら
れているが、A子が新しいこともあり、IIflトラン
ジスタτ、助呆的に活用するための回路形成は、多く知
られCいIiかった。不出組番ら1、既に、xJO8I
Cレベルの低電圧入力で動作し、麺電比、大電流出力バ
ルスt、嶋周波数で発生できる回路として、6%1図に
1本回路を示す嫌なMOSイ/パータ1gI絡τ持顔昭
54−44014号、待願昭55−84750号、持l
Ii昭55−85367号で既に提案した。同図[4い
°r、l、2はそれぞれ相補形インバータを構成する高
耐圧の、NおよびPチャンネルMO8)ランジスタ、3
,5お′よび4,6は、それぞれゲート酸化膜保護とゲ
ート人77電圧クランプ用を兼ねえダイオードおよびゲ
ートチャージ7、プ防止用の−4抵抗、7は耐圧の高い
コンデンサを示す。本インバータ回路の前号人力48に
、今%第2図+a)にlバす如き低電圧のゲート人力信
号Viaが印加されると、同信号電圧変化會よ、ロード
側P1す08トランジスタ2のゲート人力#tCg と
、コンデンサCとの間で分割され、−一ドトランジスタ
2のゲート入力電圧τ発生する。ここで、コンデンサC
の静電容量を、Cg Kjt較して、充分大きく選んで
おけは、グイ、オード3のクランプ効果により入力端8
での電圧変化IVin Iが、はぼそのままの大きさで
、−一ドートランジスタ2のグートーンース4機関に現
われるから、本インバータは、低入力端子で効率良く駆
動される。j Iaゎち、貞amへ禦がる本インバータ
の出力端9がらは、人力信号Vinに対応して1.hs
vt圧V、に等しい大きさの高電圧パルスVolt  
(第2図1b) )が出力される。本インバータの特徴
は、負荷への光放電が共に、a@水素子行なわれるため
、極めて高い負荷m励鑓力を目−する点にある。本イン
バータ回路は、高耐圧のPおよびN+408トランジス
タと、1確亀圧を支℃られる耐圧と所望の4盪ft育す
るコンデンサ〃・め扛、・よ、あと4通常の4十薗路用
の抵抗およびダイオードで構成することができ、広く、
一連・高電圧パルスが心安な用途に活用できる。
In addition to the low-voltage IIII4stgI circuit, high-voltage, +4-current output circuits are often required in terminal devices such as display devices and printers. Conventionally, this tC has been conveniently used as a d4im pressure bipolar transistor, or the operating frequency l due to the thermal runaway interlayer of the bipolar element 41# or the tI transverse effect of minority carriers has been used.
! Due to the limitations, it has not been possible to fully satisfy the required performance of the device. -The development of transistors is progressing, but since the A element is new, the IIfl transistor τ is used as an aid. Much is known about circuit formation for this purpose. Fugakuban et al. 1, already xJO8I
As a circuit that operates with low voltage input of C level and can generate at noodle ratio, large current output pulse t, and island frequency, one circuit is shown in 6% 1 figure. No. 54-44014, Machigan No. 55-84750, Mochil
Ii was already proposed in No. 85367/1983. In the same figure, [4.
, 5' and 4, 6 are diodes and gate charges 7 which serve both to protect the gate oxide film and to clamp the gate voltage 77, respectively, a -4 resistor for preventing voltage leakage, and 7 a capacitor with high withstand voltage. When a low-voltage gate signal Via, such as that shown in Figure 2+a), is applied to the input voltage 48 of this inverter circuit, the signal voltage changes, and the load side P108 transistor 2 It is divided between the gate power #tCg and the capacitor C, and the gate input voltage τ of the negative transistor 2 is generated. Here, capacitor C
If the capacitance of Cg and Kjt is selected to be sufficiently large, the input terminal 8 will be
Since the voltage change IVin I appears in the -1 dome transistor 2's goo-tooth 4 engine with almost the same magnitude, the present inverter can be efficiently driven with a low input terminal. The output terminal 9 of this inverter, which is connected to the output terminal am, outputs 1.1 in response to the human power signal Vin. hs
A high voltage pulse Volt with a magnitude equal to the vt pressure V,
(Fig. 2 1b) ) is output. The feature of this inverter is that since the photodischarge to the load is also carried out by hydrogen atoms, an extremely high load m excitation force can be achieved. This inverter circuit uses high-voltage P and N+408 transistors, and a capacitor that can withstand a voltage of 1 cm and a capacitor that grows the desired 4ft. Can be widely composed of resistors and diodes,
A series of high voltage pulses can be used for safe applications.

とこりで、最近の・−木装置では、裟賑の小型化、^1
fI鵬性化、低1曲陽化τ目指して、便用鴫子回鮎の集
積化が通めらtしている。上記4電圧パルス発生回路t
&6用する表置し・(おいても、同回路を直列に多数心
安とする胸骨が少なくなく、同−路アレイの東横化要式
が傭い。
By the way, recent wooden devices are becoming increasingly smaller, ^1
Aiming to improve the quality of fI and to make low 1 song pronunciation τ, the accumulation of Ayu for convenience is progressing. The above 4 voltage pulse generation circuit t
In the table mounted for &6, there are quite a few sternums that have many of the same circuits connected in series, and the Toyoko style of the same circuit array is used.

たと(、よ、−一としC,軍高電圧ML)8インバータ
を文字又は凶形六示用ACリフレワシュ形プラズマディ
スプレイ装置の駆−回路に応用することを考える。この
場合、所要4圧、J、、約150v“で、bるが、ディ
スプレイパネルが、信号入力端224列、走奮@80行
のマトリ、クス駆動屋であって本MCJ8インバータを
、列反び行の−のおのに個別↓ζ接続するとすれば、全
部で304個のIti1i区圧インバータが必要となる
。ディスプレイの表示−積を省やせば1行および列の数
が更に増加し、必屓インバータの個数も増える。このよ
うな献の篩4圧インバータ7レイ忙すべで個別部品で組
み立てCいてqよ、―品代および組立で工数が増加して
、ディスプレイ装置−動回路の価格が上昇するばlJ)
す!なく、該、砺1Ihl路の占有体積の増加、阿顧性
の低下などを来たす恐れがある。こルらの問題は、本−
電圧相補形M08インバータアレイの集積化が実現でき
れば、解消される。し70)シ、^電圧数の菓子分離、
配線の蟻し場や、相輪形特有のラッチア、プ4’llk
為ら、いわゆるPN巌甘せ子分隠咎、女・  価な方法
での駅高電圧4111葡形1v08インバータのモノリ
ン、り兼職化Vユ、極めて1離である。結局、この集積
他国111性が、これまで本Ik域圧インバータアレイ
のプラズマディスプレイ−動−一への実用化を妨げCい
た。
Let us consider applying an 8 inverter to the drive circuit of an AC refresh type plasma display device for displaying characters or characters. In this case, the required 4 voltages, J, is approximately 150 V, but the display panel is a matrix driver with 224 columns and 80 rows of signal input terminals, and the present MCJ8 inverter is connected to the column counters. If each ↓ζ connection is made individually for each row and row, a total of 304 Iti1i voltage inverters will be required.If the display product is omitted, the number of rows and columns will further increase; Inevitably, the number of inverters will also increase.Assembling these 4-pressure inverters with 7 layers of individual parts increases the cost of goods and the number of man-hours for assembly, and the price of display devices and dynamic circuits increases. rises (if J)
vinegar! This may lead to an increase in the volume occupied by the 1Ihl tract and a decrease in attention. The problem with these is the book-
This problem can be solved if the integration of voltage complementary M08 inverter arrays can be realized. 70) C, ^ Voltage number confectionery separation,
Ant field of wiring, latch peculiar to phase ring type, pu4'llk
Because of this, the so-called PN Iwao's spoiled henchman's secret crime, the station's high voltage 4111 葡形 1v08 inverter monolin in a way that is too expensive, and the V-yu, which is extremely one-sided. In the end, this integration in other countries has so far prevented the practical application of this Ik range pressure inverter array to plasma display drives.

訴@明の目的りよ、該高4圧相桶形MOSインバータア
レイへの*積回−^子の過用を実現するところにあり、
本発明の東積構慮によれは、扁電圧果禎回路素子を率に
外部配線するだけで、腋高電圧インバータアレイが構成
できるから、従来の集積化i4J娠性による尚電圧イン
バータアレイ実用化の問題点がすべて解決されることに
なる。本発明によれVよ、ゲート ソース蒐命間VC、
シャント抵抗−よびゲート人力電圧を保持する向きのダ
イオードが数列接続されC/、l: 4 iNおよびP
形^耐圧MO8トランジスタを泪禰tt構戎とし、崗荷
側ム櫨08トラ//スタのゲート1南しこ該M08トラ
ンジスタのゲート人力容量より大きな靜g谷駿のゲート
人力コンデンサt−直列偵幌しCなる11Im屯正相補
形MOSインバータアレイにおいC1それぞれのインバ
ータの職荷闘トランジスタお上びそル用シャント抵抗と
ダイオード同士を同−半導体基楓上に、駆動側トランジ
スタおよびそれ用シャント抵抗とダイオ−ド、差びにゲ
ート人力用コンデンサ同士を他の同−半導体4&上に集
積化゛したこと′t−持倣とする高電圧相補形MO8・
fンバータアレイの染61i#造が得らルる。
The purpose of the lawsuit is to realize the overuse of *multiplying times in the high four-voltage phase bucket type MOS inverter array.
According to the design of the present invention, an armpit high voltage inverter array can be constructed simply by externally wiring the flat voltage output circuit elements, so that a high voltage inverter array can be put into practical use using conventional integrated i4j functionality. All problems will be resolved. According to the present invention, V, gate source, and VC,
Several series of shunt resistors and diodes oriented to hold the gate voltage are connected: C/, l: 4 iN and P
The type MO8 transistor with withstand voltage is used in the configuration. In the 11Im positive complementary MOS inverter array with the top C1, the transistors for each inverter and the shunt resistors and diodes for each inverter are placed on the same semiconductor substrate, and the drive side transistor and the shunt resistor for it are placed on the same semiconductor substrate. High voltage complementary type MO8 with diodes, differential capacitors, and gate power capacitors integrated on other same semiconductors.
A dye 61i # structure of the f inverter array is obtained.

以ド1本発明を図−を用いて#P細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

まず第一の実施例きしC,高耐圧1’MJ8 )ランジ
スタt%g4荷−とし、^耐圧Nr11IO8)ランジ
スタを14JII111に用いた高域圧Ch10Bイン
バータの場合について、dlする。lli 31d(a
) 、 tb) 、 (c)は、それぞれ本@明にかρ
)る実旙例の主4戎−4でめる尚耐圧PMO8渠債回路
Uよび^耐圧z’JzJ(J &貞横1包路の回4模式
図である。点繊は集積化の範囲をボtつすなわち、同@
(a)は、i’1lfi半4体4板上lこ蝿槓化喝れ友
114ia仇とダイオードをゲート ンース′−−閾に
有する401の尚耐圧PMUS )ランジスタの1回路
図であり、同図1b)葛よび−c)yよ、P雄牛¥体4
板上に集積化された4個の高−圧N5vlOB )ラン
レスタの回路図である。不夷厖例ではNMOi9 )ラ
ンジスタのソースτ媛地して用いるために、後述の4由
により、ゲート一台用コンデンサC1〜C4をNMO8
集積回路−に集積化rる:又、同図fc)に不す如く、
インバーター励のためのt磁圧Nr4US論理回路を、
+1llI+耐圧N1%408トランジスタ回路と共に
P虚字4体層板上gC過償化して用いることができる。
First, let us consider the case of a high-range voltage Ch10B inverter in which a high voltage resistance 1'MJ8) transistor is used as 14JII111, and a high voltage resistance Nr11IO8) transistor is used for 14JII111. lli 31d(a
), tb), and (c) are book @ Ming ni or ρ, respectively.
) This is a schematic diagram of the current example of the current example of the current PMO 8 channel bond circuit U and ^ withstand voltage z'JzJ (J & Sada Yoko 1 package. The dots indicate the range of integration. That is, the same @
(a) is a circuit diagram of a 401 high-voltage PMUS) transistor with a diode at the gate and threshold. Figure 1b) Kuzuyo-c) yyo, P bull\ body 4
FIG. 4 is a circuit diagram of four high-voltage N5vlOB) run restors integrated on a board. In this example, NMOi9) In order to use the transistor as the source τ, the capacitors C1 to C4 for one gate are replaced with NMO8 for the four reasons described below.
Integration into an integrated circuit: Also, as shown in the same figure fc),
t magnetic pressure Nr4US logic circuit for inverter excitation,
+1llI+withstanding voltage N1% It can be used with a 408 transistor circuit on a P-shaped four-layer board with gC overcompensation.

講4図よ、本砥明VC4)かる繭嶌圧相補形ML)8イ
ンバータ7レイの嚇偵構造の一実施例倉示す。
Figure 4 shows an example of the structure of 8 inverters and 7 lays.

すなわち、第3図1a)の高耐圧PtJ08集積回路上
の高耐圧PMO8)ランジスタのダート端子11゜13
.15,178工びドレイン端子12,14゜16.1
8i、tAI A lc)の高耐圧NML)8貞横回路
上の置耐圧N、V10B )ラノンスタのゲート入力用
コンデンサ端子2’l、23,25.27およびドレイ
ン端子22,24,26,28とそれぞれ図り碩く外鄭
配線で結線することにより、!(正相補形nviu8イ
/バータアヒイの来′槓4#1が実現できる。
That is, the dirt terminal 11°13 of the high voltage PMO8) transistor on the high voltage PtJ08 integrated circuit in Figure 3 1a)
.. 15,178 machined drain terminal 12,14°16.1
8i, tAI A lc) high withstand voltage NML) 8-side horizontal circuit with high withstand voltage N, V10B) Lanonstar's gate input capacitor terminals 2'l, 23, 25.27 and drain terminals 22, 24, 26, 28 By carefully connecting each wire with sophisticated external wiring,! (The positive complementary form nviu8i/vertahii's 4#1 can be realized.

重層44造に6いでは、制#回路4エリ各高′(圧ML
)8インバータへ低電圧グートーー浦号Vial〜Vi
Q41i−人力しC−Pat工、出力端子Voutl〜
Vout4工り、電誰鑞圧VDWζ等しい大きさのIi
&電圧電圧パルス倉出すことができる。この場合、 P
1d08 )ランジスタのソース電極lOは正の高電圧
($1こ。
For multi-layer 44 construction and 6, control # circuit 4 area each height' (pressure ML
) 8 Low voltage goo to inverter - Ura No. Vial ~ Vi
Q41i-Manual C-Pat work, output terminal Voutl~
Vout4 machining, electric solder pressure VDWζ equal size Ii
& Voltage voltage pulse can be taken out. In this case, P
1d08) The source electrode lO of the transistor is at a positive high voltage ($1).

ISJMO8)ランジスタのソース′wt廟30は接地
レベルにIIkMされ、出力パルスは、比重性となる。
ISJMO8) The source 30 of the transistor is brought to ground level IIkM, and the output pulse is specific.

lsa凶(c)の高耐圧NMO8集積回路の代りVC1
同図tb)の高耐圧NMO8襄積1gITNt用いても
、まったく同様な高電圧インバータアレイの蟻槓構造が
実現できる。
VC1 instead of the high voltage NMO8 integrated circuit of lsa (c)
Exactly the same dovetail structure of a high voltage inverter array can be realized by using the high voltage NMO 8 stacks 1 g ITNt shown in tb) in the same figure.

不4廟例の特徴は、集積化が国電で、コスト媚となる高
4圧CMtJS 4gl路のモノリシック乗積1−を使
わず、・従来のmos 4積回路疲術′のみによりr、
実現できる^耐圧PnliO8#よびNMOM m積回
路を組み合わせて、−電圧相補形ML)8インバータ7
シイの呆槓構造を夾魂し九−とこりycめる。ナなわら
、不am構造でσ、集積回路素子同士を外―配−するだ
けで、個別単体m品tf!わない・コ・ら、LI11品
代、組立て1欽を、大巾rcM減でき、 +4−電圧M
山イノバータフレイ′回路の低価格化が町−となる。
The feature of the non-4-meter example is that the integration is a national electric power system, and it does not use the monolithic multiplication product 1- of the high-voltage CMtJS 4Gl circuit, which is cost-friendly, and only uses the conventional MOS 4-product circuit fatigue technique.
By combining the voltage-resistant PnliO8# and NMOM m-product circuit, -voltage complementary type ML)8 inverter 7 can be realized.
I am sorry for the stupid structure of the ship. However, with the non-AM structure, σ, and just by externally disposing the integrated circuit elements, it is possible to create an individual single m-product TF! Wanai Co., Ltd. can reduce the cost of LI11 items, 1 cm of assembly, and the width rcM, +4-voltage M
The low price of Yamaha Innovator Frey's circuit becomes popular.

さて、今までの夾S例は、−耐圧PMt)J )う/ジ
スタをインバータの貴411111とした、正#!筐ハ
ルス発生回−であったが、高耐圧N、dOti )う/
ジスタを負僑側トラノジスタとした負億性パルス発生回
路も、まったく同様、構成できる。すなわち、第j凶、
#!4図V(ρいC1pおLびNMOM )ランジスタ
を人r′LIlえ、曾わせで、ダイオード等の極性で入
れ替えれ、ば、tAI−性パルス1を発生する高′−相
補葡形MOSインバータアレイの集積構造が実現できる
Now, the previous example is - withstand voltage PMt) J) U/The positive #! It was the time when the housing Hals occurred, but the high withstand voltage N, dOti ) U/
A negative pulse generation circuit using a negative transistor as a negative transistor can also be constructed in exactly the same manner. In other words, the jth worst,
#! Figure 4: By replacing the transistors (ρ, C1p, and NMOM) with the polarities of diodes, etc., we can create a high-complementary MOS inverter array that generates a tAI-type pulse 1. An integrated structure can be realized.

ところで、繊荷開トランジスタにゲート木刀を伝えるた
めのゲート人力用コンデンサC1〜C4ハ、いづれも、
−切開トランジスタを集積化する側の#−4体j体上板
上置丁ゐ必要がある。以Fに、その]由に4明する。第
5図+1)は、円形プレーナ型の高耐圧m08 トラン
ジスタと、そのまわり゛に礒積化しで設げらjしたゲー
ト人力用コンデンサC0を例ボTるlこめの′P−關凶
、同図+b)は、mn線に沿っCの同トランジスタdよ
びコンデンサの哨聞図でめる。ゲート人力用コンデンサ
C6は、電源電圧以上の耐圧がなげれ、!/1″ら/、
1″いり)ら、この場合、半導体基直上の厚い姑−一4
2をはさんで、^−を鉱蚊層41と、3tJ4゛≦億4
3との間で構成されている。一方、同コンデンサの容量
は、1荷−トランジスタのゲート人力容量より充分大き
くなけ11ばr(らないから、その占有Ii[l積は、
トランジスタと比較して大きなものとなる。従うで、ゲ
ートI!L−につながる高mIf拡蚊M41の回槓ンよ
広い必要があり、同拡紋層と相異な4)褥′#を型の半
導体基板40との閏のPN−合4@C,が大となる。こ
のCP は、ゲート ンース嵯−間に奇生じで発生する
から、外−ρ)らみた、HM(Mトランジスタのゲート
人力vl*μC2が大きくなれば見掛は上大きくなる。
By the way, the gate manual capacitors C1 to C4 for transmitting the gate signal to the open transistor are all
- It is necessary to place #4 body on the upper plate on the side where the cutting transistor is integrated. In the following, I will explain the reasons for this. Figure 5+1) is an example of a circular planar type high-voltage m08 transistor and a gate power capacitor C0 that is integrated around it. Figure +b) is a surveillance diagram of the same transistor d and capacitor of C along the mn line. The gate power capacitor C6 must have a withstand voltage higher than the power supply voltage! /1″ et al/,
1", in this case, the thick layer directly above the semiconductor base - 14
2, ^- is the mineral mosquito layer 41, and 3tJ4゛≦4 billion
It is composed of 3. On the other hand, the capacitance of the same capacitor must be sufficiently larger than the gate power capacitance of the single load transistor (11 bar), so its occupied Ii[l product is
It is larger than a transistor. Follow me, Gate I! It is necessary to widen the convergence of the high mIf spread mosquito M41 connected to L-, and the PN-coupling 4@C of the leap with the semiconductor substrate 40 of the type 4), which is different from the same diffusion layer, is large. becomes. Since this CP occurs by chance between the gate and the ground, the appearance becomes larger as the gate force vl*μC2 of the HM(M transistor increases) from the perspective of external ρ.

さて、前述のように1爾1図に8いて、ゲー)人力用コ
ンデンサ7の容量は、貞侑−トランジスタ2のゲート人
力#ff1c、、より充分大きく11ければならないか
ら、bL、咳ゲート人力用コンデンサーが織#側PMO
B )ランジスタと同−早導体轟板上に設けられ、繭m
1C1が増加すれば、該PMO8)う/ジスタのゲート
人力容XC,,が増加し、従ってコンデンサ7の容11
をより大きく選ばねばならないことになる。これは又、
CP の増加を招くから、M1614循壌に祷ち入る。
Now, as mentioned above, the capacitance of the gate power capacitor 7, which is 8 in Figure 1, must be sufficiently larger than the gate power #ff1c of the transistor 2, 11, so bL, the gate power capacitor 7. The capacitor for woven # side PMO
B) The same as the transistor - provided on the fast conductor plate, and the cocoon m
If 1C1 increases, the gate force capacity XC, , of the PMO 8) increases, and therefore the capacitance 11 of the capacitor 7 increases.
This means that we have to choose a larger value. This is also
I pray for M1614 circulation as it will lead to an increase in CP.

こf′Lを−ぐには、ゲート人力用コンデンサを、d@
@MO&トランジスタと同一の半導体基板上に設けるよ
うにすればよい。もちろん、との場合、駆動−M08ト
ランジスタの見掛は五のゲート人力容量は増大するが、
ゲート人力用コンデンサの大きさには影響し1jい。
To obtain this f′L, connect the gate human power capacitor to d@
It may be provided on the same semiconductor substrate as @MO&transistor. Of course, in the case of , the apparent gate power capacity of the drive-M08 transistor increases, but
It will affect the size of the gate human power capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1.!firi、低−圧ゲート人力により高速・高電
圧パルスを発生できる+14i″It圧相補形MO8イ
ンバータの基本IgIRI凶、第2図ta) + tb
)はそれぞれ、同インバータの人力信号と出力パルスの
関係を示す波e凶、43図は、本発明ンこθ1かる高成
相補桶形MO8イ/バータアレイの東横構造を実現する
ための集積化誦耐圧rys08 トランジスタおよびゲ
ート入力用コンデ/すの」名漠武図、第4図は、本発明
VC力)かる実施例をボす11路接続図、46図(暑)
 、 (b)lよそルぞれ、尚耐圧MO8)ランジスタ
とゲート人力用コンデンサの一体化東横構造を示す平面
図jよヒ11#rIaI図を、そルぞル示す、谷・凶に
おいて、l。 2はそれぞれ4耐圧NgよびPMO8)ランジスタ。 3.5はダイオード、4,6は砿抗、7rよゲート人力
用コンデンサ、8,9はそrLぞれ入力および出力端子
、19,29.39は巣積回路素子、−10,20,3
0は集積回路素子のソース端子、11.13,15.1
?、21,23,25゜27.31,33,35.37
は各トランジスタのゲート入力端子、12,14,16
,114゜22.24,26,28,32,34,36
゜38は同ドレイン端子、4Gは半導体基板、41はゲ
ート電極に繋がるII!li磯廣拡畝、層、42は絶縁
層、43は金4寛it、それぞれ示す。 才  1rg:J D オ 2 ロ 73 凹 矛 3 図 才 4 四 巧 f 5 図 CQ) (b) 手続補正書昧式) 57.10.21 昭和  年  月  日 特許庁長官 殿 1−6事件の表示  昭和56年 特 許 願第619
93号2、発明の名称   高電圧相補WiMOBイン
バータアレイの菓植構造 3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 4、代理人 瓢補正命令の日付 昭和s7都9月28日(発送日)亀
捕正の対重 @副書の属菌の簡単な説明の橢 y、w正の内置 (1)@副書の第12夏16行厘に1111611 (
a) 。 (b)」とあるのを「嬉5m (a)、(b)Jと補正
する。 一丁7′ 化1人弁理士内 原  蕾67.′”ノー+、−〆
1st. ! firi, low-voltage gate The basics of the +14i''It pressure complementary MO8 inverter that can generate high-speed, high-voltage pulses manually, Figure 2 ta) + tb
) are the waves showing the relationship between the human input signal and the output pulse of the inverter, respectively, and Figure 43 is the integration diagram for realizing the east-horizontal structure of the high-forming complementary bucket MO8 inverter array according to the present invention. Withstand voltage rys08 Transistor and gate input capacitor/suno's nameless map, Figure 4 is an 11-way connection diagram showing the embodiment of the present invention (VC power), Figure 46 (heat)
, (b) A plan view showing an integrated Toyoko structure of a resistor and a capacitor for gate manpower, with a withstand voltage MO8) l . 2 are 4 withstand voltage Ng and PMO8) transistors respectively. 3.5 is a diode, 4 and 6 are resistors, 7r is a gate power capacitor, 8 and 9 are input and output terminals respectively, 19, 29.39 are integrated circuit elements, -10, 20, 3
0 is the source terminal of the integrated circuit element, 11.13, 15.1
? , 21, 23, 25° 27.31, 33, 35.37
are the gate input terminals of each transistor, 12, 14, 16
,114°22.24,26,28,32,34,36
゜38 is the drain terminal, 4G is the semiconductor substrate, and 41 is connected to the gate electrode II! 42 is an insulating layer, and 43 is a gold layer. Sai 1rg: J D O 2 Ro 73 Concave Spear 3 Illustration Sai 4 Four Skills f 5 Illustration CQ) (b) Procedural Amendment Form) 57.10.21 Showa Year Month Date Director General of the Patent Office Representation of Cases 1-6 1981 Patent Application No. 619
No. 93 No. 2, Title of the invention: High-voltage complementary WiMOB inverter array structure 3, Person making the amendment Relationship to the case: Applicant: 5-33-1-4 Shiba, Minato-ku, Tokyo, Attorney: Date of amendment order Showa S7, September 28th (shipment date) Kametori Masa's counterweight @ subscript with a simple explanation of the genus bacteria (1) @ subscript of the 12th summer, 16th line 1111611 (
a). (b)" should be corrected to "5m (a), (b) J. 1-cho 7' 1 patent attorney HARA 67.'" No +, -〆

Claims (1)

【特許請求の範囲】[Claims] ゲート ンース゛jIE−間VC,シャント抵抗および
ゲート入力電圧を保持する向きのダイオードが並列接続
されてなるNおよびP形高耐圧m09 )ランジスタを
相補形構成とし、負侑d1MO8)ランジスタのゲート
電極に該M08 )、ランジスタのゲート人力容倉より
大きな靜電谷量のゲート人力コンデンサt−直列*Mし
てなる軸電圧相補形MOSインバータアレイに8いて、
それぞれのインバータの貴艙―トランジスタ8よびそれ
Jdシャント愼抗とダイオード同士を同一半導体基板上
に、駆動側トランジスタ箸りびそれ用シャント億抗°と
ダイオード、並びにゲート人力用コンデンサ同士tmの
同一半導体基板上に果槓化したこと′を持値とする尚゛
1圧相補形MUflイ/パータフレイの襖槓綱造。゛
N and P type high voltage withstand voltage m09) transistors are connected in parallel with VC, shunt resistor, and a diode oriented to hold the gate input voltage between the gate and the gate input voltage. M08), in an axial voltage complementary MOS inverter array consisting of a gate power capacitor t-series*M with a static voltage larger than the gate power capacity of the transistor,
The transistor 8 of each inverter, its Jd shunt resistor and diode are on the same semiconductor substrate, and the drive side transistor, the shunt resistor and diode, and the gate human power capacitor are on the same semiconductor. It is a 1-pressure complementary MUfl/Parter Frey sliding frame structure whose value is that it is formed on the substrate.゛
JP56061993A 1981-04-24 1981-04-24 Integrated structure of high voltage complementary mos inverter array Granted JPS5844762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56061993A JPS5844762A (en) 1981-04-24 1981-04-24 Integrated structure of high voltage complementary mos inverter array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56061993A JPS5844762A (en) 1981-04-24 1981-04-24 Integrated structure of high voltage complementary mos inverter array

Publications (2)

Publication Number Publication Date
JPS5844762A true JPS5844762A (en) 1983-03-15
JPH0221174B2 JPH0221174B2 (en) 1990-05-14

Family

ID=13187228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56061993A Granted JPS5844762A (en) 1981-04-24 1981-04-24 Integrated structure of high voltage complementary mos inverter array

Country Status (1)

Country Link
JP (1) JPS5844762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010565A (en) * 1983-06-30 1985-01-19 Fuji Electric Corp Res & Dev Ltd Seal structure for fuel cell
JPS6051322A (en) * 1983-08-31 1985-03-22 Toshiba Corp Cmos voltage converting circuit
JPS61160449A (en) * 1984-12-29 1986-07-21 東洋紡績株式会社 Polyester thick-and-thin fabric
JPH04333614A (en) * 1991-02-22 1992-11-20 Kuraray Co Ltd Polyester yarn and fiber product
US5227655A (en) * 1990-02-15 1993-07-13 Nec Corporation Field effect transistor capable of easily adjusting switching speed thereof
JP2002251174A (en) * 2000-11-22 2002-09-06 Hitachi Ltd Display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010565A (en) * 1983-06-30 1985-01-19 Fuji Electric Corp Res & Dev Ltd Seal structure for fuel cell
JPH0421988B2 (en) * 1983-06-30 1992-04-14 Fuji Denki Sogo Kenkyusho Kk
JPS6051322A (en) * 1983-08-31 1985-03-22 Toshiba Corp Cmos voltage converting circuit
JPS61160449A (en) * 1984-12-29 1986-07-21 東洋紡績株式会社 Polyester thick-and-thin fabric
US5227655A (en) * 1990-02-15 1993-07-13 Nec Corporation Field effect transistor capable of easily adjusting switching speed thereof
JPH04333614A (en) * 1991-02-22 1992-11-20 Kuraray Co Ltd Polyester yarn and fiber product
JP2002251174A (en) * 2000-11-22 2002-09-06 Hitachi Ltd Display device

Also Published As

Publication number Publication date
JPH0221174B2 (en) 1990-05-14

Similar Documents

Publication Publication Date Title
US4727266A (en) LSI gate array having reduced switching noise
US4827368A (en) Semiconductor integrated circuit device
JPS6220362A (en) Signal transmission circuit for laminated electric circuit
JPS5844762A (en) Integrated structure of high voltage complementary mos inverter array
US5854497A (en) Semiconductor memory device
US5012143A (en) Integrated delay line
US4677317A (en) High voltage signal output circuit provided with low voltage drive signal processing stages
US4230951A (en) Wave shaping circuit
US3323071A (en) Semiconductor circuit arrangement utilizing integrated chopper element as zener-diode-coupled transistor
US4072937A (en) MOS transistor driver circuits for plasma panels and similar matrix display devices
US5479112A (en) Logic gate with matched output rise and fall times and method of construction
JPS6155962A (en) Charge coupled device having divided drive clock input
US4583012A (en) Logical circuit array
EP3570422B1 (en) Charge pump circuit arrangement
JPS63292647A (en) Semiconductor integrated circuit device
JPH02304963A (en) Semiconductor integrated circuit
JP2980142B2 (en) Semiconductor capacitive element and circuit using the same
US3718780A (en) Active pulse transmission circuit for an integrated circuit
JP3040885B2 (en) Voltage booster circuit
JPH01114077A (en) Semiconductor device
JPH04116850A (en) Semiconductor device
JPH03231462A (en) Semiconductor integrated circuit
Nishimura et al. A three dimensional static RAM
Vanstraelen et al. Design implications of a p-well CMOS technology for the realization of monolithic integrated pixel arrays
USRE38545E1 (en) Semiconductor memory device