JPS5844709B2 - Resin composition for printed wiring boards - Google Patents

Resin composition for printed wiring boards

Info

Publication number
JPS5844709B2
JPS5844709B2 JP52055790A JP5579077A JPS5844709B2 JP S5844709 B2 JPS5844709 B2 JP S5844709B2 JP 52055790 A JP52055790 A JP 52055790A JP 5579077 A JP5579077 A JP 5579077A JP S5844709 B2 JPS5844709 B2 JP S5844709B2
Authority
JP
Japan
Prior art keywords
component
parts
printed wiring
resin
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52055790A
Other languages
Japanese (ja)
Other versions
JPS53140344A (en
Inventor
寿郎 岡村
順雄 岩崎
信夫 魚津
宏 高橋
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP52055790A priority Critical patent/JPS5844709B2/en
Priority to US05/905,398 priority patent/US4216246A/en
Priority to GB19270/78A priority patent/GB1588475A/en
Priority to DE2821303A priority patent/DE2821303B2/en
Publication of JPS53140344A publication Critical patent/JPS53140344A/en
Publication of JPS5844709B2 publication Critical patent/JPS5844709B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/2066Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers

Description

【発明の詳細な説明】 本発明は無電解メッキ用接着剤、詳しくは、無電解メッ
キを使用するプリント配線板の製造に於て、基板と回路
導体との間に介在して使用される接着剤に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adhesive for electroless plating, and more specifically, an adhesive used between a board and a circuit conductor in the production of printed wiring boards using electroless plating. This is related to drugs.

従来、プリント配線板の製造法としては、銅張積層板の
不必要銅箔部分を工゛ノチアウ卜するエツチドフォイル
法が主体であったが、不必要部分の銅箔をエツチングす
るという無駄を省き、また、その表裏導体間のスルホー
ル接続技術における合理化を目的として、必要な導体回
路部分のみを、主として無電解銅メッキによって付加し
てプリント配線板を作るアディティブ法が開発されてき
た。
Conventionally, the main method for manufacturing printed wiring boards has been the etched foil method, which involves etching out unnecessary copper foil parts of copper-clad laminates. In addition, with the aim of rationalizing the through-hole connection technology between the front and back conductors, an additive method has been developed in which a printed wiring board is created by adding only the necessary conductor circuit parts mainly by electroless copper plating.

このアディティブ法としては、基板を穴あけし、全面活
性化処理した後(触媒入り基板を使用した場合は、活性
化処理は省略する)メンキレジストを印刷し、必要な導
体回路を無電解銅メッキのみにより付加する完全無電解
銅メッキ法、或は、基板を穴あけし、全面活性化処理し
た後(触媒入り基板を使用した場合は活性化処理は省略
する。
This additive method involves drilling holes in the board, activating the entire surface (if a catalyst-containing board is used, the activation process is omitted), printing a Menki resist, and then forming the necessary conductor circuits using only electroless copper plating. Complete electroless copper plating is added, or after the substrate is drilled and the entire surface is activated (if a catalyst-containing substrate is used, the activation treatment is omitted).

)、全面無電解メッキし、メンキレジストを印刷し電気
メッキにより必要な導体回路を形成した後、メツキレシ
スト更には導体回路部分以外の無電解メッキを除去する
電気銅メ′ツキ併用法が主に行われている。
), the main method is to perform electroless plating on the entire surface, print a metal resist, and form the necessary conductor circuits by electroplating, and then use a combined method of electrolytic copper plating, which removes the metal resist and the electroless plating other than the conductor circuit parts. ing.

この無電解メッキを使用して回路を形成するアディティ
ブ法は、析出銅の十分な密着強度と機械的強度を安定的
にうる方法が確立しておらず、ライン精度も低い欠点を
有している。
The additive method of forming circuits using electroless plating has the disadvantage that there is no established method to stably obtain sufficient adhesion and mechanical strength of the deposited copper, and the line precision is low. .

本発明はこのような点に鑑みてなされたもので、無電解
メッキ層との密着性、機械強度を改善する無電解メッキ
用接着剤に関するものである。
The present invention was made in view of these points, and relates to an adhesive for electroless plating that improves adhesion to an electroless plating layer and mechanical strength.

本発明は、蝕刻により溶出し得、連続相を形成する成分
(4)と、成分(4)と非相溶で、蝕刻されず、直径0
.5〜15μの球状粒子となって成分(4)の連続相に
分散する熱硬化性樹脂成分(ロ)とより成り、上記成分
(B)が成分(4)、(B)の和に対して20〜85体
積袈を占める無電解メッキ用接着剤に関する。
The present invention provides a component (4) that can be eluted by etching and forms a continuous phase, and a component (4) that is incompatible with component (4), is not etched, and has a diameter of 0.
.. It consists of a thermosetting resin component (b) that becomes spherical particles of 5 to 15μ and is dispersed in the continuous phase of component (4), and the component (B) is the sum of components (4) and (B). The present invention relates to an adhesive for electroless plating that occupies 20 to 85 volumes.

本発明に使用される蝕刻により溶出し得、連続相を形成
する成分(4)とは、各種ニトリル含有量のアクリロニ
トリルブタジェン共重合体、ブタジェンコム、クロロブ
レンゴム、スチレンブタジェン共重合体、ポリアミド、
ポリエチレンテレフタレートがある。
The component (4) which can be eluted by etching and forms a continuous phase used in the present invention is acrylonitrile butadiene copolymer with various nitrile contents, butadiene com, chloroprene rubber, styrene butadiene copolymer, polyamide. ,
There is polyethylene terephthalate.

この場合蝕刻は、クロム酸−硫酸溶液、重クロム酸カリ
ウム−濃硫酸溶液、重クロム酸カリウム−ホウフッ化水
素酸溶液等が使用される。
In this case, for etching, a chromic acid-sulfuric acid solution, a potassium dichromate-concentrated sulfuric acid solution, a potassium dichromate-concentrated sulfuric acid solution, or the like is used.

成分(4)の連続相に粒子状で分散する熱硬化性樹脂成
分(6)としてはビスフェノールA型エポキシ樹脂、エ
ポキシ化フェノール樹脂、エポキシ化クレゾールノボラ
ック樹脂、脂環式環状オキシラン、脂環式グリシジルエ
ーテル、フェノール樹脂ユリア樹脂、メラミン樹脂、ポ
リエステル樹脂などのなかから1〜2種以上が使用され
る。
The thermosetting resin component (6) dispersed in particulate form in the continuous phase of component (4) includes bisphenol A epoxy resin, epoxidized phenol resin, epoxidized cresol novolak resin, alicyclic oxirane, and alicyclic glycidyl. One or more of ether, phenolic resin, urea resin, melamine resin, polyester resin, etc. are used.

本発明の接着剤では、蝕刻により溶出し得、連続相を形
成する成分(4)の中に、蝕刻されずに残る熱硬化性樹
脂成分(B)が直径0.5〜15μの球状粒子となって
分散している。
In the adhesive of the present invention, in the component (4) that can be eluted by etching and forms a continuous phase, the thermosetting resin component (B) that remains without being etched contains spherical particles with a diameter of 0.5 to 15 μm. It has become dispersed.

このような樹脂層を得るためには、成分(4)と成分の
)とは非相溶でなければならない。
In order to obtain such a resin layer, component (4) and component () must be incompatible.

成分(4)と成分(6)とが非相溶であれば三者の良溶
剤を使用しても2層に分離するかあるいは分散状態とな
る。
If component (4) and component (6) are incompatible, they will separate into two layers or become dispersed even if three good solvents are used.

このような2種の高分子溶液の相溶性を溶解度パラメー
ター(SP値、単位体積当りの凝集エネルギーの目安)
を用いて考察すると、SP値が似ているもの同志は互い
に溶けやすく、SP値の差が大きくなると溶けにくくな
り分散状態となる。
The compatibility of these two types of polymer solutions is determined by the solubility parameter (SP value, a measure of cohesive energy per unit volume).
When considered using , substances with similar SP values are easy to dissolve into each other, and when the difference in SP value becomes large, it becomes difficult to dissolve, resulting in a dispersed state.

即ちSP値の大きい成分が、粒子状となってSP値の小
さい成分と溶媒より成る連続相中に分散する。
That is, a component with a large SP value becomes particulate and is dispersed in a continuous phase consisting of a component with a small SP value and a solvent.

本発明に於ては成分(4)のSP値は成分の)のそれよ
り少さいものが使用される。
In the present invention, the SP value of component (4) is smaller than that of component (4).

さらにこの差が大きくなれば溶は合わず混合しても直ち
に2相に分離する。
Furthermore, if this difference becomes large, the solutions will not match and will immediately separate into two phases even if they are mixed.

今、互いに非相溶成分(4)、@、両者の良溶媒との混
合系で、SP値の大きい成分の)を増加させていくと、
本来非相溶性、不安定系であるので、成分の)粒子濃度
の増大にともない粒子同志の衝突(粒子の合一)がおこ
り、粒子径は増大する。
Now, if we increase the mutually incompatible component (4), @, the component with a large SP value in a mixed system of both with a good solvent,
Since it is essentially an incompatible and unstable system, as the particle concentration of the components increases, particles collide with each other (particle coalescence) and the particle size increases.

すなわち、成分(6)粒子の相対的占有体積の増大と粒
子径の増大が並行しておこる。
That is, an increase in the relative occupied volume of component (6) particles and an increase in particle diameter occur in parallel.

このような知見に従えば溶媒の選択、連続相となる成分
(4)の変性(例えばアクリロニt−1)ルブタジエン
共重合体のニトリル基含有量を可変にする)、分散質と
なる成分(B)の変性(たとえばエポキシ樹脂の変性、
重合度)によってSP値または分散状態を#JIJ御す
ることは容易であり、SP値差が1〜4の範囲で一般に
目的とする分散状態が得られる。
According to this knowledge, the selection of the solvent, the modification of the component (4) that will become the continuous phase (for example, varying the nitrile group content of the acryloni-t-1) butadiene copolymer), and the component that will become the dispersoid ( B) modification (e.g. modification of epoxy resin,
It is easy to control the SP value or the dispersion state depending on the degree of polymerization, and the desired dispersion state can generally be obtained when the SP value difference is in the range of 1 to 4.

また粒子の合−即ち本発明で必要とされる直径0.5〜
15μの球状粒子の形成に関してはSP値の高い成分の
)のSP値が低い成分(4)に対する相対濃度の制御や
、溶媒の稀釈度合によっても制御されうる。
In addition, the diameter of the particles is 0.5 to 0.5, which is required in the present invention.
The formation of spherical particles of 15 μm can also be controlled by controlling the relative concentration of the component (4) with a high SP value to the component (4) with a low SP value, or by the degree of dilution of the solvent.

さらに初期の分散状態は、分散エネルギーの付与方法−
混合方法−や分散質となる成分の分子量などによっても
制御される。
Furthermore, the initial dispersion state is determined by the method of applying dispersion energy.
It is also controlled by the mixing method and the molecular weight of the component that becomes the dispersoid.

例えば、二) l)ル含有量18%〜45%のアクリロ
ニトリルブタジェン共重合体−メチルエチルケトン溶液
中でプロペラ攪拌する場合、平均分子量(重量)が50
0〜1500のビスフェノールA型エポキシ樹脂を用い
ると直径1〜10μのエポキシ樹脂粒子の好ましい分散
状態になる。
For example, when stirring with a propeller in an acrylonitrile butadiene copolymer-methyl ethyl ketone solution having a l) content of 18% to 45%, the average molecular weight (weight) is 50%.
When a bisphenol A type epoxy resin having a molecular weight of 0 to 1500 is used, epoxy resin particles having a diameter of 1 to 10 μm are preferably dispersed.

本発明は以上述べたように、本来かえりみられなかった
高分子溶液の各成分相互の非相溶性に着目し、凝集エネ
ルギーの高い方の成分(SP値の高い成分)を相対的に
多く含む溶液にすれば、粒径が大きくかつ密に分散した
無電解メッキ層との密着性に優れた樹脂層を得ることが
出来るという知見に基いてなされたものである。
As described above, the present invention focuses on the mutual incompatibility between the components of a polymer solution, which was originally unresolved, and creates a solution containing a relatively large amount of the component with higher cohesive energy (component with a higher SP value). This was made based on the knowledge that by using the above method, it is possible to obtain a resin layer having large particle size and densely dispersed particles and excellent adhesion to the electroless plating layer.

本発明による無電解メッキ用接着剤を食刻粗化すると、
粗化表面形状は、深さ20μ程度の凹凸となりかつ直径
0.5〜15μの熱硬化樹脂による球状粒子をもつ表面
となる。
When the adhesive for electroless plating according to the present invention is roughened by etching,
The roughened surface has irregularities with a depth of about 20 microns and has spherical particles made of thermosetting resin with a diameter of 0.5 to 15 microns.

このため導体層との接触面積がふえかつアンカー効果に
よって高いビール強度かえられると思われる。
For this reason, the contact area with the conductor layer increases and the anchor effect seems to increase beer strength.

同、本発明に於て、成分(B)が、成分(4)、@の和
に対して20〜85体積φとしたのは、20%以下では
、無電解メッキ層との十分な密着性が得られないためで
あり、又85%以下とすることについては85%以上の
体積占有率となる樹脂層を製造することが困難なためで
ある。
Similarly, in the present invention, component (B) has a volume φ of 20 to 85 with respect to the sum of component (4) and @, because if it is 20% or less, sufficient adhesion with the electroless plating layer is achieved. This is because it is difficult to obtain a resin layer with a volume occupancy of 85% or more.

次に、成分(4)としてアクリロニトリルブタジェン共
重合体、成分(B)として、ビスフェノールA型エポキ
シ樹脂を使用した場合を例にして本発明を具体的に訝明
する。
Next, the present invention will be specifically explained using an example in which an acrylonitrile butadiene copolymer is used as the component (4) and a bisphenol A type epoxy resin is used as the component (B).

1)熱硬化性樹脂としてのビスフェノールA型工ポキン
樹脂100重量部に対して粗化溶出成分としてアクリロ
ニトリルブタジェン共重合体40〜100重量部加える
1) Add 40 to 100 parts by weight of an acrylonitrile butadiene copolymer as a roughening eluent component to 100 parts by weight of bisphenol A-type engineered resin as a thermosetting resin.

2)さらに充填剤として酸化亜鉛を10〜20重量部加
える。
2) Furthermore, 10 to 20 parts by weight of zinc oxide is added as a filler.

3)エポキシ樹脂硬化剤としてジシアンジアミドを3〜
4重量部加える。
3) Using dicyandiamide as an epoxy resin curing agent
Add 4 parts by weight.

この樹脂組成物調製に用いる溶剤は両者の良溶剤である
メチルエチルケトンで全体不揮発分20〜40重量優、
好ましくは30重量優の溶液にする。
The solvent used for preparing this resin composition is methyl ethyl ketone, which is a good solvent for both, and has a total nonvolatile content of 20 to 40% by weight.
Preferably, the solution is over 30% by weight.

4)この樹脂組放物をガラスエポキシ樹脂基板に厚さ5
0〜60μに塗布し、160’C60分間加熱硬化させ
る。
4) Place this resin assembly paraboloid on a glass epoxy resin board with a thickness of 5
Apply to 0 to 60μ and heat cure at 160°C for 60 minutes.

ビスフェノールA型エポキシ樹脂とアクリロニHルブタ
ジエン共重合体のSP値はそれぞれおよそ11と9.5
であり、その差は約1.5である。
The SP values of bisphenol-A epoxy resin and acryloni-H-rubutadiene copolymer are approximately 11 and 9.5, respectively.
The difference is about 1.5.

このため両者は本来非相溶性である。したがってエポキ
シ樹脂は直径0.8〜5μの粒子(一般に島という)と
なってメチルエチルケトン−アクリロニトリル共重合体
連続相(一般に海という)中に分散する。
Therefore, the two are essentially incompatible. Therefore, the epoxy resin is dispersed in the methyl ethyl ketone-acrylonitrile copolymer continuous phase (generally referred to as a sea) in the form of particles (generally referred to as islands) having a diameter of 0.8 to 5 microns.

このものを基板に塗布しメチルエチルケトンを蒸発させ
るとエポキシ樹脂がアクリロニトリルブタジェン共重合
体中に微細粒子となって分散した塗膜を得ることができ
る。
When this material is applied to a substrate and methyl ethyl ketone is evaporated, a coating film can be obtained in which the epoxy resin is dispersed in the form of fine particles in the acrylonitrile butadiene copolymer.

5)樹脂組成物を塗布した基板を45℃のクロム酸−硫
酸溶液(CrO3100g/、!、 濃H28043
001rtl/ t )に10分間浸漬して蝕刻粗化す
る。
5) The substrate coated with the resin composition was treated with a chromic acid-sulfuric acid solution (CrO3100g/!, concentrated H28043) at 45°C.
001rtl/t) for 10 minutes for etching roughening.

この場合アクリロニトリルブタジェン共重合体と共に一
部のエポキシ樹脂粒子も液中に取り去られるが、基板表
面はエポキシ樹脂粒子による微細な凸部が形成される。
In this case, some of the epoxy resin particles are also removed into the liquid together with the acrylonitrile butadiene copolymer, but fine convex portions are formed by the epoxy resin particles on the surface of the substrate.

6)活性化処理を施した後、公知のアデイテイフ法によ
り、回路導体を形成してプリント配線板を得る。
6) After the activation treatment, a circuit conductor is formed by a known additif method to obtain a printed wiring board.

尚、樹脂組成物に触媒を予じめ混入しである場合は、活
性化処理をする必要のないことはいうまでもない。
It goes without saying that if the catalyst is mixed into the resin composition in advance, there is no need to carry out the activation treatment.

成分(4)としてゴム類は、加硫してもよく加硫剤とし
てイオウ、加硫促進剤としてベンゾチアゾール類など通
常の加硫剤をもちいることができる。
As component (4), the rubber may be vulcanized using sulfur as a vulcanizing agent and a common vulcanizing agent such as benzothiazoles as a vulcanization accelerator.

また適当な樹脂加硫をおこなうこともできる。Appropriate resin vulcanization can also be carried out.

成分の)のエポキシ樹脂の硬化剤としては、脂肪族アミ
ン、芳香族アミン、第2級アミン、第3級アミン、酸無
水物などを用いることができる。
As the curing agent for the epoxy resin (component), aliphatic amines, aromatic amines, secondary amines, tertiary amines, acid anhydrides, etc. can be used.

さらに適当な硬化促進剤を用いることもできる。Furthermore, a suitable curing accelerator can also be used.

また充填剤として酸化亜鉛のほかにシリカ粉酸化チタン
、硫化亜鉛、酸化ジルコニウム、炭酸カルシウム、炭酸
マグネシウムなどを添加してもよい0 基板としてはフェノール樹脂、エポキシ樹脂、アリルフ
タレート樹脂、フラン樹脂、メラミン樹脂、不飽和ポリ
エステル樹脂等の熱硬化性樹脂を、ガラス繊維、パルプ
、リンター、ナイロン、ポリエステルなどの有機天然ま
たは合成繊維等の基材に含浸させ、加熱加圧した合成樹
脂積層板、鉄、アルミニウム、雲母などの無機物より成
る基板、又はそれらの複合体等が使用し得る。
In addition to zinc oxide, silica powder titanium oxide, zinc sulfide, zirconium oxide, calcium carbonate, magnesium carbonate, etc. may be added as a filler.As the substrate, phenol resin, epoxy resin, allyl phthalate resin, furan resin, melamine Synthetic resin laminates, iron, A substrate made of an inorganic material such as aluminum or mica, or a composite thereof can be used.

実施例 1 ■)ビスフェノールA型エポキシ樹脂(エピコート10
01シエルケミカル社製)100部、ニトリルゴム(N
1032、日本ゼオンエ業■製)70部、イオウ粉末0
.7部、2メルカプトベンゾチアゾール0.07部、酸
化匪鉛10部、塩化パラジウム0.03部、ジシアンジ
アミド3部、キュアゾールC,,Z−AZINE(四国
化成製20.3部をメチルエチルケトン400部に溶解
して均一な溶液とする。
Example 1 ■) Bisphenol A epoxy resin (Epicote 10
01 (manufactured by Ciel Chemical Co.) 100 parts, nitrile rubber (N
1032, Nippon Zeon Engineering Co., Ltd.) 70 parts, 0 sulfur powder
.. 7 parts, 0.07 parts of 2-mercaptobenzothiazole, 10 parts of lead oxide, 0.03 parts of palladium chloride, 3 parts of dicyandiamide, Curazole C, Z-AZINE (20.3 parts manufactured by Shikoku Kasei, dissolved in 400 parts of methyl ethyl ketone) to make a homogeneous solution.

2)上記樹脂組成物を触媒入りガラスエポキン基板(L
E−161、日立化成工業■製)上に40〜60ミクロ
ンの厚さに塗布して130℃5分熱風乾燥機で乾燥後1
60℃で60分間気中硬化させる。
2) The above resin composition was applied to a catalyst-containing glass Epokin substrate (L
E-161, manufactured by Hitachi Chemical Co., Ltd.) to a thickness of 40 to 60 microns and dried in a hot air dryer at 130°C for 5 minutes.
Cure in air at 60°C for 60 minutes.

3)穴あけ後、表面、穴内を清浄にし、スクリーン印刷
機でプリント配線パターンとなる部分以外にエポキシマ
クス(HPR−404V、日立化成工業■製)を設け、
130℃30分間加熱硬化させる。
3) After drilling the hole, clean the surface and inside of the hole, use a screen printer to apply epoxy max (HPR-404V, manufactured by Hitachi Chemical Co., Ltd.) in areas other than the areas that will become the printed wiring pattern,
Heat and cure at 130°C for 30 minutes.

4)この基板を45℃に加温したクロム酸−濃硫酸溶液
< CrO31o o g/1%濃硫酸3001111
/l)に10分間浸漬し上記樹脂組成物を粗化する。
4) Chromic acid-concentrated sulfuric acid solution heated to 45°C < CrO31o g/1% concentrated sulfuric acid 3001111
/l) for 10 minutes to roughen the resin composition.

5)このものを無電解銅メッキ液(硫酸銅0.03モル
/11苛性ソーダ0.125モル/1.シアン化ナトリ
ウム0.0004モル/4.ホルマリン0.08モル/
11エチレンジアミン4酢酸すトリウム0.036モル
/1)に30〜40時間浸漬しプリント配線板を得る。
5) Add this to electroless copper plating solution (copper sulfate 0.03 mol/11 caustic soda 0.125 mol/1. sodium cyanide 0.0004 mol/4. formalin 0.08 mol/
11 ethylenediaminetetraacetate (0.036 mol/1) for 30 to 40 hours to obtain a printed wiring board.

得られたプリント配線板の導体と樹脂層のビール強度は
2.3Ky/cmであり、260℃のハンダ浴に3分間
浸漬してもふくれを生じなかった。
The beer strength of the conductor and resin layer of the obtained printed wiring board was 2.3 Ky/cm, and no blistering occurred even when immersed in a 260° C. solder bath for 3 minutes.

尚、接着剤層のエポキシ樹脂は直径0.5〜4μの球状
粒子となっており、エポキシ樹脂成分とゴム成分のSP
値の差は1.9であった。
The epoxy resin in the adhesive layer is in the form of spherical particles with a diameter of 0.5 to 4μ, and the SP of the epoxy resin component and rubber component is
The difference in values was 1.9.

実施例 2 ■)ビスフェノールA型エポキシ樹脂(エピコー)10
02、シェルケミカル社製)75部、ノボラック型エポ
キシ樹脂(エピコート154、シェルケミカル社製)2
5部、ニトリルコム(N100I、日本ゼオン工業■製
)80部、イオウ粉末0.8部、2メルカプトベンゾチ
アゾール0.08部、塩化パラジウム0.03部、ジシ
アンジアミド3部、キュアゾールC,,Z−AZINE
(四国化成製)0.3部、Zr5i04(ミクロパック
スA−20、白水化学工業■製)10部をメチルエチル
ケトン400部に溶解して均一な溶液とする。
Example 2 ■) Bisphenol A epoxy resin (Epicor) 10
02, manufactured by Shell Chemical Company) 75 parts, novolac type epoxy resin (Epicote 154, manufactured by Shell Chemical Company) 2
5 parts, nitrile comb (N100I, manufactured by Nippon Zeon Kogyo ■) 80 parts, sulfur powder 0.8 part, 2-mercaptobenzothiazole 0.08 part, palladium chloride 0.03 part, dicyandiamide 3 parts, Curazole C,,Z- AZINE
(manufactured by Shikoku Kasei) and 10 parts of Zr5i04 (Micropax A-20, manufactured by Hakusui Kagaku Kogyo ■) were dissolved in 400 parts of methyl ethyl ketone to form a uniform solution.

2)上記樹脂組成物を触媒入りガラスエポキン基板(L
E−161、日立化成工業■製)上に40〜60ミクロ
ンの厚さに塗布して130℃5分乾燥後160℃で60
分間気中硬化させる。
2) The above resin composition was applied to a catalyst-containing glass Epokin substrate (L
E-161, manufactured by Hitachi Chemical Co., Ltd.) to a thickness of 40 to 60 microns, dried at 130°C for 5 minutes, and then heated to 60°C at 160°C.
Allow to air cure for a minute.

3)穴あけ後、表面穴内を清浄にし、プリント配線パタ
ーンとなる部分以外にメンキマスク(リストンフィルム
、デュポン社製)を設ける。
3) After drilling, clean the inside of the surface hole and apply a Menki mask (Riston film, manufactured by DuPont) to areas other than the areas that will become the printed wiring pattern.

4)このものを130℃、40分加熱したのち実施例1
.4) 、 5)の工程を行う。
4) After heating this product at 130°C for 40 minutes, Example 1
.. Perform steps 4) and 5).

5)塩化メチレンでメッキマスクを剥離すればプリント
配線板を得ることができる。
5) A printed wiring board can be obtained by peeling off the plating mask with methylene chloride.

得られたプリント配線板の導体と樹脂層のビール強度は
2.1 KFI/IZ771であり、260℃のハンダ
浴に3分間浸漬してもふくれは生じなかった。
The beer strength of the conductor and resin layer of the obtained printed wiring board was 2.1 KFI/IZ771, and no blistering occurred even when immersed in a 260° C. solder bath for 3 minutes.

尚、接着剤層のエポキシ樹脂は直径2〜6μの球状粒子
となっており、エポキシ樹脂成分とゴム成分のSP値の
差は1.0であった。
The epoxy resin in the adhesive layer was in the form of spherical particles with a diameter of 2 to 6 μm, and the difference in SP value between the epoxy resin component and the rubber component was 1.0.

実施例 3 1)塩化パラジウムを含まない以外は実施例1と同じ樹
脂組成物を紙エポキシ基板(LE−47、日立化成工業
■製)上に40〜60ミクロンの厚さに塗布して130
℃5分乾燥後160℃で60分間気中硬化させる。
Example 3 1) The same resin composition as in Example 1 except that it did not contain palladium chloride was coated on a paper epoxy substrate (LE-47, manufactured by Hitachi Chemical Co., Ltd.) to a thickness of 40 to 60 microns.
After drying for 5 minutes at 160°C, it is cured in air for 60 minutes.

2)穴あけ後、表面、穴内を清浄にし、実施例1.4)
の工程を行って上記樹脂組成物を粗化する。
2) After drilling, clean the surface and inside of the hole, Example 1.4)
The above resin composition is roughened by performing the steps of.

3)このものをH8−101B(パラジウム含有増感溶
液、日立化成工業■製)に10分間浸漬し、粗化表面、
穴内壁に無電解銅メッキに対する触媒性を付与する。
3) This material was immersed in H8-101B (palladium-containing sensitizing solution, manufactured by Hitachi Chemical Co., Ltd.) for 10 minutes to roughen the surface,
Provides catalytic properties for electroless copper plating on the inner wall of the hole.

4)無電解銅メッキ液(液組成は実施例1.5)に同じ
)に1〜2時間浸漬し、粗化表面、穴内壁に1〜2ミク
ロンの銅層を形成する。
4) Immerse in an electroless copper plating solution (liquid composition is the same as Example 1.5) for 1 to 2 hours to form a 1 to 2 micron copper layer on the roughened surface and inner wall of the hole.

5)プリント配線パターンとなる部分以外にメッキマス
ク(リストンフィルム、デュポン”f3)を設け、13
0℃、40分間加熱する。
5) Provide a plating mask (Riston film, Dupont "f3") in areas other than the part that will become the printed wiring pattern, and
Heat at 0°C for 40 minutes.

6)このものを電気銅メッキ液(ピロリン酸銅85 g
/l、 ピロリン酸カリウム310 g/l。
6) Add this electrolytic copper plating solution (copper pyrophosphate 85 g
/l, potassium pyrophosphate 310 g/l.

アンモニア水3rlll/l、光沢剤(ピロライトPY
−61、上材工業■製)3Ttl/l、温度55℃、陰
極電流密度3 A/ d m2)に40分間浸漬する。
Ammonia water 3rlll/l, brightener (Pyrolite PY
-61, manufactured by Uezai Kogyo ■) for 40 minutes at 3 Ttl/l, temperature 55°C, cathode current density 3 A/d m2).

7)塩化メチレンでメッキマスクを剥離する。7) Peel off the plating mask with methylene chloride.

8)過硫酸アンモニウム溶液((NHJ2820510
0g/4,40℃)に浸漬し、プリント配線パターン以
外の銅層を除去すればプリント配線板を得ることができ
る。
8) Ammonium persulfate solution ((NHJ2820510
A printed wiring board can be obtained by immersing the copper layer at 0g/4, 40°C) and removing the copper layer other than the printed wiring pattern.

得られたプリント配線板の導体と樹脂層のビール強度は
2.1KfI/CrILであり、260℃のハンダ浴に
3分間浸漬してもふくれは生じなかった。
The beer strength of the conductor and resin layer of the obtained printed wiring board was 2.1 KfI/CrIL, and no blistering occurred even when immersed in a 260° C. solder bath for 3 minutes.

伺、接着剤層のエポキシ樹脂は直径0.5〜4μの球状
粒子となっており、エポキシ樹脂成分とゴム成分のSP
値の差は1.9であった。
The epoxy resin in the adhesive layer is spherical particles with a diameter of 0.5 to 4μ, and the SP of the epoxy resin component and rubber component
The difference in values was 1.9.

実施例 4 1)塩化パラジウムを含まない以外は実施例2と同じ樹
脂組成物を紙ツボノール基板(LP−414F、日立化
成工業■製)上に40〜60ミクロンの厚さに塗布して
130℃5分乾燥後、160℃で60分間気中硬化させ
る。
Example 4 1) The same resin composition as in Example 2 except that it did not contain palladium chloride was coated on a paper Tsubonol substrate (LP-414F, manufactured by Hitachi Chemical Co., Ltd.) to a thickness of 40 to 60 microns and heated at 130°C. After drying for 5 minutes, it is cured in air at 160°C for 60 minutes.

2)実施例1.4)、実施例3.3)工程を行い、粗化
表面、穴内壁に無電解銅メッキに対する触媒性を付与す
る。
2) The steps of Example 1.4) and Example 3.3) are carried out to impart catalytic properties for electroless copper plating to the roughened surface and inner wall of the hole.

3)無電解銅メッキ液(Cust 101.日立化成
工業■製)に1〜2時間浸漬し、粗化表面、穴内壁に1
〜2ミクロンの銅層を形成する。
3) Immerse it in an electroless copper plating solution (Cust 101, manufactured by Hitachi Chemical Co., Ltd.) for 1 to 2 hours, and apply 1 to 1 on the roughened surface and inner wall of the hole.
Form a ~2 micron copper layer.

4)実施例3.5)工程を行ったのち、このものを無電
解銅メッキ液(液組成は実施例1.5)に同じ)に30
〜40時間浸漬する。
4) After carrying out the process of Example 3.5), this product was added to an electroless copper plating solution (liquid composition is the same as Example 1.5) for 30 minutes.
Soak for ~40 hours.

5)実施例3.7)、8)工程を行えばプリント配線板
を得ることができる。
5) A printed wiring board can be obtained by carrying out the steps of Example 3, 7) and 8).

得られたプリント配線板の導体と樹脂層のビール強度は
2.3Ky/cmであり、260℃のバンク°浴に3分
間浸漬してもふくれは生じなかった。
The beer strength of the conductor and resin layer of the obtained printed wiring board was 2.3 Ky/cm, and no blistering occurred even when immersed in a bank bath at 260° C. for 3 minutes.

同、接着剤層のエポキシ樹脂は直径2〜6μの球状粒子
となっており、エポキシ樹脂成分とゴム成分のSP値の
差は1.0であった。
Similarly, the epoxy resin in the adhesive layer was in the form of spherical particles with a diameter of 2 to 6 μm, and the difference in SP value between the epoxy resin component and the rubber component was 1.0.

比較例 1 1)ヒスフェノールA型エポキシ樹脂(エピコート1o
oi、シェルケミカル社製)100部、ポリブタジェン
(N−BR−1220、日本ゼオン工業■製)500部
、イオウ粉末5.0部、酸化亜鉛40部、2メルカプト
ベンゾチアゾール0.5 部、ジシアンジアミド6部、
キュアゾールC1□ Z−AZINE(四国化成製)0
.6部をメチルエチルケトン1130部、メチルセルソ
ルブ60部に溶解して均一な溶液とする。
Comparative example 1 1) Hisphenol A type epoxy resin (Epicote 1o
oi, manufactured by Shell Chemical Co., Ltd.) 100 parts, polybutadiene (N-BR-1220, manufactured by Nippon Zeon Industries) 500 parts, sulfur powder 5.0 parts, zinc oxide 40 parts, 2-mercaptobenzothiazole 0.5 parts, dicyandiamide 6 Department,
Curesol C1□ Z-AZINE (manufactured by Shikoku Kasei) 0
.. 6 parts were dissolved in 1130 parts of methyl ethyl ketone and 60 parts of methyl cellosolve to form a homogeneous solution.

2)以降、実施例3と同様にして、プリント配線板を得
た。
2) Thereafter, a printed wiring board was obtained in the same manner as in Example 3.

得られたプリント配線板の導体のビール強度は、l、7
Ky/Crnであり、260℃のハンダ浴に3分間浸漬
してもふくれは生じなかった。
The beer strength of the conductor of the obtained printed wiring board is l, 7
Ky/Crn, and no blistering occurred even when immersed in a 260° C. solder bath for 3 minutes.

尚、接着剤層のエポキシ樹脂は直径o、i〜0.3μの
球状粒子となっていた。
Note that the epoxy resin of the adhesive layer was in the form of spherical particles with diameters o, i~0.3μ.

エポキシ樹脂成分とゴム成分のSP値の差は2.8であ
った。
The difference in SP value between the epoxy resin component and the rubber component was 2.8.

比較例 2 1)ビスフェノールA型エポキシ樹脂(エピコート83
6、シェルケミカル社製)50部、ビスフェノールA型
エポキシ樹脂(エピコート834、シェルケミカル社製
)50部、ニトリルゴム(N−1001、日本ゼオン工
業■製)25部、イオウ粉末0.25部、Zr5i04
(ミクロパックスA−20.白水化学工業■製)10部
、2メルカプトベンゾチアゾール0.02部、ジシアン
ジアミド6部、キュアゾールC,、Z−AZINE(四
国化成製)0.6部をメチルエチルケトン190部、メ
チルセルソルブ60部に溶解して均一な溶液とする。
Comparative Example 2 1) Bisphenol A epoxy resin (Epicote 83
6, manufactured by Shell Chemical Company) 50 parts, bisphenol A type epoxy resin (Epicote 834, manufactured by Shell Chemical Company) 50 parts, nitrile rubber (N-1001, manufactured by Nippon Zeon Industries ■) 25 parts, sulfur powder 0.25 part, Zr5i04
(Micropax A-20. manufactured by Hakusui Kagaku Kogyo ■) 10 parts, 0.02 parts of 2-mercaptobenzothiazole, 6 parts of dicyandiamide, Curazole C, 0.6 parts of Z-AZINE (manufactured by Shikoku Kasei), 190 parts of methyl ethyl ketone, Dissolve in 60 parts of methylcellosolve to make a homogeneous solution.

2)以降、実施例3と同様にして、プリント配線板を得
た。
2) Thereafter, a printed wiring board was obtained in the same manner as in Example 3.

得られたプリント配線板の導体のビール強度は、1.2
Kf/C11lであり、260℃のハンダ浴に2分間
浸漬するとふくれが生じた。
The beer strength of the conductor of the obtained printed wiring board was 1.2
Kf/C11l, and blistering occurred when immersed in a 260°C solder bath for 2 minutes.

尚、接着剤層のエポキシ樹脂は、ニトリルゴム中に均一
に混合されていた。
Note that the epoxy resin of the adhesive layer was uniformly mixed in the nitrile rubber.

エポキシ樹脂成分とゴム成分のSP値の差は0.5であ
った。
The difference in SP value between the epoxy resin component and the rubber component was 0.5.

比較例 3 1)ビスフェノールA型エポキシ樹J]s(エピコート
1O01、シェルケミカル社製)80部、ノボラック型
エポキシ樹脂(エピコート152、シェルケミカル社製
)20部、ポリブタジェン(N−BR,−1220,日
本ゼオン工業■製)30部、イオウ粉末0.3部、酸化
亜鉛40部、2メルカプトベンゾチアゾール0.03部
、ジシアンジアミド6部、キュアゾールC,I Z−A
ZINE(四国化成製)0.6部をメチルエチルケトン
250部、メチルセルソルブ60部に溶解して均一な溶
液とする。
Comparative Example 3 1) 80 parts of bisphenol A type epoxy tree J]s (Epicoat 1O01, manufactured by Shell Chemical Company), 20 parts of novolac type epoxy resin (Epicoat 152, manufactured by Shell Chemical Company), polybutadiene (N-BR, -1220, Nippon Zeon Kogyo ■) 30 parts, sulfur powder 0.3 parts, zinc oxide 40 parts, 2-mercaptobenzothiazole 0.03 parts, dicyandiamide 6 parts, Curazole C, I Z-A
0.6 part of ZINE (manufactured by Shikoku Kasei) is dissolved in 250 parts of methyl ethyl ketone and 60 parts of methyl cellosolve to form a uniform solution.

2)以降、実施例3と同様にして、プリント配線板を得
た。
2) Thereafter, a printed wiring board was obtained in the same manner as in Example 3.

得られたプリント配線板の導体のビール強度はl、7K
y/CrILであり、260℃のハンダ浴に3分間浸漬
してもふくれは生じなかった。
The beer strength of the conductor of the obtained printed wiring board is l, 7K.
y/CrIL, and no blistering occurred even when immersed in a 260° C. solder bath for 3 minutes.

尚、接着剤層のエポキシ樹脂は、直径18〜20μの球
状粒子となっていた。
Note that the epoxy resin of the adhesive layer was in the form of spherical particles with a diameter of 18 to 20 μm.

エポキシ樹脂成分とゴム成分のSP値の差は2.3であ
った。
The difference in SP value between the epoxy resin component and the rubber component was 2.3.

比較例 4 1)ノボラック型フェノール樹脂(HP−607N。Comparative example 4 1) Novolac type phenolic resin (HP-607N).

日立化成工業■製)80部、アルキルフェノール樹脂(
H−2400、日立化成工業■製)20部、ニトリルコ
ム(N1032、日本ゼオンエ業■製)10部、ヘキサ
メチレンテトラミン8部、酸化亜鉛5部、イオウ粉末0
.1部、ZrSiO4(ミクロパックスA−20、白水
化学工業■製)15部、2メルカプトベンゾチアゾール
0.01部をメチルエチルケトン245部に溶解して均
一な溶液とする。
Hitachi Chemical Co., Ltd.) 80 parts, alkylphenol resin (
H-2400, Hitachi Chemical Co., Ltd.) 20 parts, Nitrile Comb (N1032, Nippon Zeon Co., Ltd.) 10 parts, hexamethylenetetramine 8 parts, zinc oxide 5 parts, sulfur powder 0
.. 1 part of ZrSiO4 (Micropax A-20, manufactured by Hakusui Kagaku Kogyo ■) and 0.01 part of 2-mercaptobenzothiazole were dissolved in 245 parts of methyl ethyl ketone to form a homogeneous solution.

2)以降、実施例3と同様にして、プリント配線板を得
た。
2) Thereafter, a printed wiring board was obtained in the same manner as in Example 3.

得られたプリント配線板の導体のビール強度は1.5K
y/cInであり、260℃のハンダ浴に3分間浸漬し
てもふくれは生じなかった。
The beer strength of the conductor of the obtained printed wiring board is 1.5K.
y/cIn, and no blistering occurred even when immersed in a 260° C. solder bath for 3 minutes.

尚、接着剤層はフェノール樹脂成分が連続相となってい
た。
Note that the adhesive layer had a phenol resin component as a continuous phase.

フェノール樹脂成分とゴム成分のSP値の差は1.2で
あった。
The difference in SP value between the phenol resin component and the rubber component was 1.2.

Claims (1)

【特許請求の範囲】[Claims] 1 蝕刻により溶出し得、連続相を形成する成分(4)
と、成分(4)より1〜4高いSP値をもち、蝕刻され
ず、直径0.5〜15μの球状粒子となって成分(4)
の連続相に分散する熱硬化性樹脂成分の)とより成り、
上記成分の)が、成分(4)、@の和に対して20〜8
5体積饅を占めることを特徴とする無電解メッキ用接着
剤。
1 Component (4) that can be eluted by etching and forms a continuous phase
Component (4) has an SP value 1 to 4 higher than component (4), is not etched, and becomes spherical particles with a diameter of 0.5 to 15μ.
of a thermosetting resin component dispersed in a continuous phase of
) of the above components is 20 to 8 for the sum of component (4) and @
An adhesive for electroless plating that occupies 5 volumes.
JP52055790A 1977-05-14 1977-05-14 Resin composition for printed wiring boards Expired JPS5844709B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP52055790A JPS5844709B2 (en) 1977-05-14 1977-05-14 Resin composition for printed wiring boards
US05/905,398 US4216246A (en) 1977-05-14 1978-05-12 Method of improving adhesion between insulating substrates and metal deposits electrolessly plated thereon, and method of making additive printed circuit boards
GB19270/78A GB1588475A (en) 1977-05-14 1978-05-12 Method of adhesion between insulating substrates and metal deposits electrolessly plated thereon and method of making additive printed circuit boards
DE2821303A DE2821303B2 (en) 1977-05-14 1978-05-16 A method of improving the adhesiveness of the surface of an insulating substrate and use of the substrate to manufacture a printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52055790A JPS5844709B2 (en) 1977-05-14 1977-05-14 Resin composition for printed wiring boards

Publications (2)

Publication Number Publication Date
JPS53140344A JPS53140344A (en) 1978-12-07
JPS5844709B2 true JPS5844709B2 (en) 1983-10-05

Family

ID=13008697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52055790A Expired JPS5844709B2 (en) 1977-05-14 1977-05-14 Resin composition for printed wiring boards

Country Status (1)

Country Link
JP (1) JPS5844709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346478Y2 (en) * 1984-12-19 1991-10-01

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447095A (en) * 1987-08-18 1989-02-21 Ibiden Co Ltd Printed wiring board and manufacture thereof
JPH0634447B2 (en) * 1987-08-31 1994-05-02 イビデン株式会社 Adhesive for additive, base material for additive and printed wiring board using the same
DE3913966B4 (en) * 1988-04-28 2005-06-02 Ibiden Co., Ltd., Ogaki Adhesive dispersion for electroless plating, and use for producing a printed circuit
US5344893A (en) * 1991-07-23 1994-09-06 Ibiden Co., Ltd. Epoxy/amino powder resin adhesive for printed circuit board
WO1997024229A1 (en) * 1995-12-26 1997-07-10 Ibiden Co., Ltd. Metal film bonded body, bonding agent layer and bonding agent
CN102115653B (en) * 2009-12-31 2013-12-04 比亚迪股份有限公司 Binding agent composition, preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278934A (en) * 1975-12-26 1977-07-02 Toshiba Corp Adhesive composition for chemical plating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278934A (en) * 1975-12-26 1977-07-02 Toshiba Corp Adhesive composition for chemical plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346478Y2 (en) * 1984-12-19 1991-10-01

Also Published As

Publication number Publication date
JPS53140344A (en) 1978-12-07

Similar Documents

Publication Publication Date Title
US4216246A (en) Method of improving adhesion between insulating substrates and metal deposits electrolessly plated thereon, and method of making additive printed circuit boards
US4305975A (en) Method of forming printed circuit
WO1997017824A1 (en) Multilayered printed wiring board and its manufacture
JPS5844709B2 (en) Resin composition for printed wiring boards
WO1997024229A1 (en) Metal film bonded body, bonding agent layer and bonding agent
JPH07154069A (en) Adhesive for printed wiring board and production of printed wiring board using the adhesive
JPH11177237A (en) Build-up multilayer printed wiring board and manufacture thereof
JP2006108314A (en) Metal plated board, manufacturing method thereof, flexible printed wiring board, and multilayer printed wiring board
JP3290529B2 (en) Adhesive for electroless plating, adhesive layer for electroless plating and printed wiring board
JP2001102758A (en) Printed wiring board, insulation resin sheet used therefor and manufacturing method of insulation resin sheet
JPH06334334A (en) Manufacture of printed wiring board
JP3090973B2 (en) Method of forming adhesive layer for additive printed wiring board
JPH05235546A (en) Multilayer printed board and manufacture thereof
JPH07188935A (en) Adhesive having excellent anchor characteristic and printed circuit board formed by using this adhesive and its production
JPH028283A (en) Adhesive for nonelectrolytic plating
JP2001123137A (en) Adhesive for additive process printed circuit board
JP3536937B2 (en) Additive method adhesive for printed wiring board and method for manufacturing wiring board using the adhesive
JP3115435B2 (en) Adhesives and printed wiring boards
JP4051587B2 (en) Method for producing multilayer wiring board using resin composition curable by heat or light
JP2003124626A (en) Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
JP3329915B2 (en) Adhesive for printed wiring board and method for manufacturing printed wiring board using this adhesive
JPH01166598A (en) Multi-layer printed circuit board and manufacture therefor
JP3329917B2 (en) Adhesive for printed wiring board and method for manufacturing printed wiring board using this adhesive
JPH0649851B2 (en) Adhesive for electroless plating
JPS6260877A (en) Laminated sheet for chemical plating