JPS5844632B2 - Manufacturing method for corrosion-resistant, high-hardness ceramics - Google Patents

Manufacturing method for corrosion-resistant, high-hardness ceramics

Info

Publication number
JPS5844632B2
JPS5844632B2 JP56210591A JP21059181A JPS5844632B2 JP S5844632 B2 JPS5844632 B2 JP S5844632B2 JP 56210591 A JP56210591 A JP 56210591A JP 21059181 A JP21059181 A JP 21059181A JP S5844632 B2 JPS5844632 B2 JP S5844632B2
Authority
JP
Japan
Prior art keywords
temperature
powder
weight
resistant
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56210591A
Other languages
Japanese (ja)
Other versions
JPS58115077A (en
Inventor
正勝 伊地知
和司 岸
和夫 小林
正気 梅林
広教 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
IJICHI SHUKEIJO KK
Original Assignee
Agency of Industrial Science and Technology
IJICHI SHUKEIJO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, IJICHI SHUKEIJO KK filed Critical Agency of Industrial Science and Technology
Priority to JP56210591A priority Critical patent/JPS5844632B2/en
Publication of JPS58115077A publication Critical patent/JPS58115077A/en
Publication of JPS5844632B2 publication Critical patent/JPS5844632B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は、サイアロンを主成分とする耐食性、高硬度セ
ラミックスの工業的に有利な製造方法に関し、特にケイ
素源として酸性火山噴出物又はその二次たい積物を用い
、低い焼成温度で優れた耐食性、硬度及び強度を有する
セラミックスを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous manufacturing method for corrosion-resistant, high-hardness ceramics containing sialon as a main component, and in particular uses acidic volcanic ejecta or its secondary deposits as a silicon source, and The present invention relates to a method for producing ceramics having excellent corrosion resistance, hardness and strength at firing temperatures.

サイアロンは、Si、Al、0及びNからなる高温強度
及び高温耐食性に優れたセラミックスで、例えば、高温
熱機関用部品材料あるいは耐食性耐熱材料として注目さ
れ期待されているものである。
Sialon is a ceramic that is composed of Si, Al, O, and N and has excellent high-temperature strength and high-temperature corrosion resistance, and is attracting attention and expectations as, for example, a component material for high-temperature heat engines or a corrosion-resistant heat-resistant material.

一般的にサイアロンは、Si3N4、AINおよびAl
2O3の混合粉末、あるいは、S i 02、S i
3N4およびAINの混合粉末を1700℃ないし19
00℃の温度で焼結ち密化させることにより製造される
Sialon is generally Si3N4, AIN and Al
2O3 mixed powder or S i 02, S i
Mixed powder of 3N4 and AIN was heated at 1700℃ to 19℃.
It is manufactured by sintering and densifying it at a temperature of 00°C.

本発明者らは、サイアロンの研究過程において、酸化ケ
イ素(8102)及びアルミニウム(Al)、又は5i
02、Al及びケイ素(Si)を原料として効果的にサ
イアロンを製造することができることを見出し、さきに
提案した(特公昭5347245号、特願昭55−88
614号、特開昭53−3408号公報)。
In the course of research on Sialon, the present inventors discovered that silicon oxide (8102) and aluminum (Al), or 5i
02, we discovered that Sialon could be effectively produced using Al and silicon (Si) as raw materials, and proposed it earlier (Japanese Patent Publication No. 5347245, Japanese Patent Application No. 55-88)
No. 614, Japanese Unexamined Patent Publication No. 53-3408).

この方法によれば、一般的方法と同様に、最終的には1
700〜1900℃の高温で焼結させて気孔率の小さい
ち密化された焼結体を効果的に製造することができる。
According to this method, as with the general method, the final result is 1
By sintering at a high temperature of 700 to 1900°C, a densified sintered body with low porosity can be effectively produced.

さらに、本発明者らは少量のカーボン粉末を出発原料で
ある5i02とA1に、あるいはSiO2、AlとSi
の混合粉末に添加して最終的に1700℃〜2000℃
の温度で焼成することにより、焼結体の粒子境界相が強
化され、焼結体の特性、特に高温強度、気孔率や耐酸化
性などを改善する方法も提案した(特願昭56−108
466号)。
Furthermore, the present inventors added a small amount of carbon powder to the starting materials 5i02 and A1, or SiO2, Al and Si.
is added to the mixed powder and finally heated to 1700℃~2000℃
He also proposed a method for improving the properties of sintered bodies, especially high-temperature strength, porosity, and oxidation resistance, by firing at a temperature of
No. 466).

しかし、これらの方法は焼結体のち密化や物性を改善す
るもので、1700℃以上の高温での焼成を必要とし、
処理条件に関しての改善に係るものではない。
However, these methods improve the densification and physical properties of the sintered body, and require firing at a high temperature of 1700°C or higher.
This does not relate to improvements in processing conditions.

また、焼成に関し、炉内の雰囲気圧力を高めて常圧焼成
の場合に生じる試料の熱分解を防止したり、あるいは試
料周辺を出発原料組成の粉末で充てんした密閉容器中で
焼成することより試料の熱分解を抑制し焼結体を得る方
法などが提案されている。
In addition, regarding firing, it is possible to increase the atmospheric pressure in the furnace to prevent thermal decomposition of the sample that occurs in normal pressure firing, or to fire the sample in a closed container filled with powder of the starting material composition. A method for obtaining a sintered body by suppressing the thermal decomposition of is proposed.

しかし、炉内圧力を上げるためには、特殊の焼成炉を必
要とし、また、試料の熱分解を抑制するには特殊の試料
配置を要するなど焼成条件の実質的改善はなく、しかも
、焼成後、焼成体と周辺充てん物との間、あるいは黒鉛
型との間に融着現象が生じる難点がある。
However, in order to increase the pressure inside the furnace, a special firing furnace is required, and to suppress the thermal decomposition of the sample, a special sample arrangement is required, so there is no substantial improvement in the firing conditions. However, there is a problem in that a fusion phenomenon occurs between the fired body and the surrounding filler or between the graphite mold.

本発明者らは、サイアロンの焼成条件の緩和、特に常圧
下での焼成温度を低減する方法について、さらに研究を
重ねた結果、本発明をなすに至った。
The present inventors have conducted further research on a method for relaxing the firing conditions for Sialon, particularly for reducing the firing temperature under normal pressure, and as a result, they have arrived at the present invention.

すなわち、本発明は酸性火山噴出物又はその二次たい積
物65〜79.5重量%、アルミニウム粉末20〜30
重量%及びカーボン粉末0.5〜5重量%を混合して粉
砕したのち成形し、その成形体を、窒素雰囲気下130
0〜1400℃の温度に加熱して窒化させ、次いでこれ
を1500℃以上1700℃未満の温度に加熱し焼結ち
密化させることを特徴とする耐食性、高硬度セラミック
スの製造方法、上記組成の粉末混合物を径3im以下の
粒状物に造粒し、この粒状物を窒素雰囲気下、1300
〜1400℃の温度に加熱して窒化したのち粉砕し、こ
れを所定の形状に成形してその成形物を1500℃以上
1700℃未満の温度で焼結する耐食性、高硬度セラミ
ックスの製造方法、及び上記の粒状物を窒化したのち微
粉砕した窒化微粉末を成形することなく1500℃以上
1700℃未満の温度で焼成して微粉末状の耐食性、高
硬度セラミックスの製造方法を提供するものである。
That is, the present invention uses 65 to 79.5% by weight of acidic volcanic ejecta or secondary deposits thereof, and 20 to 30% by weight of aluminum powder.
% by weight and 0.5 to 5% by weight of carbon powder are mixed and pulverized, then molded, and the molded product is heated under nitrogen atmosphere for 130 min
A method for producing corrosion-resistant, high-hardness ceramics, which comprises heating to a temperature of 0 to 1400°C to nitride, and then heating it to a temperature of 1500°C or more and less than 1700°C to sinter and densify it, and a powder having the above composition. The mixture was granulated into granules with a diameter of 3 mm or less, and the granules were heated at 1300 °C under a nitrogen atmosphere.
A method for producing corrosion-resistant, high-hardness ceramics, which comprises heating to a temperature of ~1,400°C, nitriding, pulverizing, molding it into a predetermined shape, and sintering the molded product at a temperature of 1,500°C or more and less than 1,700°C; The present invention provides a method for producing fine powder-like corrosion-resistant, high-hardness ceramics by firing the nitrided fine powder obtained by nitriding the above-mentioned granular material and pulverizing it at a temperature of 1500° C. or more and less than 1700° C. without molding.

本発明の方法において、原料として用いる酸性火山噴出
物ないしたい積物又はその二次たい積物は、5i02を
その主たる構成鉱物とし、これに長石、輝石などの各種
副構成鉱物の数重量%を含み、金属成分としてマグネシ
ウム、カルシウム、鉄などの諸元素を含有している。
In the method of the present invention, the acidic volcanic ejecta, deposits, or secondary deposits used as raw materials have 5i02 as its main constituent mineral, and contain several weight percent of various sub-constituent minerals such as feldspar and pyroxene. , contains various elements such as magnesium, calcium, and iron as metal components.

本発明者らは、広範囲にわたるケイ素源をサイアロンの
製造原料として用い多くの実験を行った結果、シラスで
代表される酸性火山噴出物又はその二次たい積物が、ア
ルミニウム及びカーボンのそれぞれの特定範囲量と組合
わせるとき、従来方法に比べてはるかに低い焼成温度で
、サイアロンの本来有する優れた特性を保有し、優れた
耐食性、高硬度のセラミックスを製造しうろことを知っ
た。
As a result of many experiments using a wide range of silicon sources as the raw material for producing Sialon, the present inventors found that acidic volcanic ejecta represented by Shirasu or its secondary deposits were found to contain aluminum and carbon in specific ranges. It was discovered that when combined with the same amount of heat, it is possible to produce ceramics with excellent corrosion resistance and high hardness that retain the excellent properties inherent in Sialon at a much lower firing temperature than conventional methods.

どの含有成分によって、そのような焼成温度低減効果が
得られるのか、その理由はまだ明確ではないが、サイア
ロンの製造における焼成温度が1700℃以上を必要と
していた従来法からは、その焼成温度の低減は全く考え
られなかったことである。
Although it is not yet clear which ingredients can achieve such a firing temperature reduction effect, it is possible to reduce the firing temperature compared to the conventional method that required a firing temperature of 1,700°C or higher to manufacture Sialon. was completely unthinkable.

本発明の方法によれば約200℃低い温度で焼成するこ
とができ、従来のサイアロン焼成技術の通常概念からす
れば全く予想外のことである。
According to the method of the present invention, firing can be performed at a temperature approximately 200° C. lower, which is completely unexpected from the conventional concept of conventional sialon firing technology.

本発明の方法において用いられる上記酸性火山噴出物又
はその二次たい積物は、そのいずれか一方でもよいが、
明確に区分しえない場合が多く、両者の混合物を使用で
きることはもちろんである。
The acidic volcanic ejecta or secondary deposits thereof used in the method of the present invention may be either one of them, but
In many cases, it is not possible to clearly distinguish between the two, and it goes without saying that a mixture of the two can be used.

その代表的なものはシラスであるが、その他松脂岩、黒
曜石なとも用いることができる。
A typical example is shirasu, but other materials such as rosinite and obsidian can also be used.

また、本発明の方法においては、上記酸性火山噴出物な
どと組合わせて、アルミニウム粉末とカーボン粉末が用
いられる。
Further, in the method of the present invention, aluminum powder and carbon powder are used in combination with the above-mentioned acidic volcanic ejecta.

アルミニウム粉末は微細な松露状のものが望ましく、例
えば50μ胤以下の松露アルミニウムが好適に使用でき
る。
The aluminum powder is preferably in the form of fine pine dew, and for example, pine dew aluminum with a grain size of 50 μm or less can be suitably used.

また、カーボン粉末はどんな種類のカーボンであっても
よく、例えばカーボンブラックでもコークス粉でも使用
できるが、あらかじめ1000〜1400℃の温度で熱
処理された微粉であることが極めて好ましい。
Further, the carbon powder may be any type of carbon, such as carbon black or coke powder, but it is extremely preferable to use a fine powder that has been heat-treated in advance at a temperature of 1000 to 1400°C.

本発明の方法においては、酸性火山噴出物や、その二次
たい積物65〜79.5重量%、アルミニウム粉末20
〜30重量%及びカーボン粉末0.5〜5重量%の範囲
量で混合使用される。
In the method of the present invention, 65 to 79.5% by weight of acidic volcanic ejecta and its secondary deposits, 20% by weight of aluminum powder,
-30% by weight of carbon powder and 0.5-5% by weight of carbon powder.

混合物は可及的微細かつ均一に分散させることが望まし
いから、粉砕と混合を同時に行なう方法が有利に採用さ
れる。
Since it is desirable to disperse the mixture as finely and uniformly as possible, a method in which pulverization and mixing are performed simultaneously is advantageously employed.

各成分原料の割合が上記範囲量を逸脱するときは、上記
本発明の優れた効果が得られずまたサイアロンの物性低
下を招くので不都合である。
When the ratio of each component raw material deviates from the above-mentioned range, it is inconvenient that the above-mentioned excellent effects of the present invention cannot be obtained and the physical properties of the sialon are deteriorated.

すなわち、酸性火山噴出物あるいはその二次たい積物が
適正配合量より多い場合(アルミニウム量が少ない場合
)、あるいは適正配合量より少ない場合(アルミニウム
量が多い場合)、カーボン量が適正範囲内であっても、
ち密化は進行せず強固な焼結体が得られない。
In other words, if the amount of acidic volcanic ejecta or its secondary deposits is greater than the appropriate amount (when the amount of aluminum is low) or less than the appropriate amount (when the amount of aluminum is large), the amount of carbon is within the appropriate range. Even though
Densification does not proceed and a strong sintered body cannot be obtained.

また、酸性火山噴出物、!、7)いはその二次たい積物
とアルミニウム量の両者が適正範囲内にあっても、カー
ボン量が適正範囲内から逸脱している場合も、ち密化が
進行せず著しい気孔率の大きい焼結体となる。
Also acidic volcanic ejecta,! , 7) Or, even if both the secondary deposits and the amount of aluminum are within the appropriate range, if the amount of carbon deviates from the appropriate range, densification will not progress and the porosity will be significantly large. It becomes a body.

粉砕された微粉状混合物は、次いで圧縮成形などにより
、所望の成形体あるいは3N1L以下の径の粒状体に成
形される。
The pulverized fine powder mixture is then molded into a desired molded body or granular body with a diameter of 3N1L or less by compression molding or the like.

その場合、原料粉末混合物中に少量のバインダー、例え
ばでん粉10%溶液を添加して成形を容易にすることが
できる。
In that case, a small amount of a binder, such as a 10% starch solution, can be added to the raw powder mixture to facilitate shaping.

次に。この成形物又は粒状物を窒化炉中に入れ、窒素雰
囲気中で1300〜1400℃の温度に5〜6時間加熱
処理して窒化反応させる。
next. This molded product or granular material is placed in a nitriding furnace and heat-treated at a temperature of 1,300 to 1,400° C. for 5 to 6 hours in a nitrogen atmosphere to cause a nitriding reaction.

窒化処理した成形物は、そのまま次の高温焼結に供され
るが、窒化粒状物は再度粉砕し、粉砕粉末を所望の形状
の成形物に成形し、次の高温焼結処理に提供される。
The nitrided molded product is directly subjected to the next high-temperature sintering process, but the nitrided granules are ground again, the crushed powder is molded into a molded product of the desired shape, and the product is sent to the next high-temperature sintering process. .

窒化反応前の粉末混合物の成形は単純形状の成形品の製
造に、また窒化膜粉砕混合物は複雑な形状の成形体を得
るのに好適である。
The molding of the powder mixture before the nitriding reaction is suitable for producing molded products with simple shapes, and the pulverized nitride film mixture is suitable for producing molded products with complex shapes.

また、窒化処理粒状物を粉砕した粉末を成形することな
く焼成するとき、例えば研摩材や耐酸化性、耐熱性の優
れた耐火物用原材料として好適な粉末素材なども製造す
ることができる。
Furthermore, when the powder obtained by crushing the nitrided granules is fired without being molded, it is possible to produce a powder material suitable as a raw material for abrasives and refractories with excellent oxidation resistance and heat resistance, for example.

このような無機質原料粉末混合物から実用性の高いサイ
アロン粉末を製造することは従来全く知られていなかっ
たことであり、この点においても本発明の方法は画期的
である。
The production of highly practical sialon powder from such an inorganic raw material powder mixture was completely unknown in the past, and the method of the present invention is groundbreaking in this respect as well.

このように窒化処理された成形物、窒化処理された粒状
物を粉砕した粉末やその成形物は、従来の焼結温度より
低い1000℃以上1700 ℃未満の温度で焼成処理
される。
The nitrided molded product, the powder obtained by crushing the nitrided granules, and the molded product are fired at a temperature of 1000° C. or more and less than 1700° C., which is lower than the conventional sintering temperature.

この高温処理により優れた耐食性及び硬度を有するち密
化されたサイアロン焼結体やサイアロン粉末が得られる
This high-temperature treatment yields a densified sialon sintered body and sialon powder having excellent corrosion resistance and hardness.

本発明の方法によれば、従来サイアロン焼結体の製造に
おいて採用し得なかった1700℃未満の低い焼成温度
で効果的にサイアロン焼結体を得ることができ、さらに
従来知られなかったサイアロン焼成粉末を提供し得る。
According to the method of the present invention, it is possible to effectively obtain a sialon sintered body at a low sintering temperature of less than 1700°C, which could not be adopted in the production of a sialon sintered body conventionally, and furthermore, the sialon sintered body A powder may be provided.

本発明の方法は、1700〜1900℃の高温を必要と
する従来の方法に比べて、かなり低い1500℃以上1
700℃未満の焼成温度でサイアロン焼結体を製造でき
るので工業的に極めて有利であり、さらに従来法におい
ては、アルミニウムを30重量%以上存在させないと十
分なち密化が進行しないが、本発明の方法においては、
30重量%以下のアルミニウム量でち密化されたサイア
ロン焼結体を効果的に得ることができるのでコストダウ
ンが可能であり、この点でも工業的に優れている。
The method of the present invention is considerably lower than conventional methods that require high temperatures of 1,700 to 1,900 degrees Celsius.
Sialon sintered bodies can be produced at a firing temperature of less than 700°C, which is extremely advantageous industrially.Furthermore, in the conventional method, sufficient densification does not proceed unless aluminum is present in an amount of 30% by weight or more, but the method of the present invention In the method,
Since a densified sialon sintered body can be effectively obtained with an aluminum content of 30% by weight or less, costs can be reduced, and this method is also industrially superior.

さらに、また本発明の方法は、1700℃未満の比較的
低い焼成温度が使用できるので、1700℃以上の焼成
温度を必要とする従来法において、試料の熱分解を抑制
するためにとられていた手段、例えば、炉内雰囲気圧力
を高めて焼成する方法、あるいは、試料周辺部を試料同
様に高温で熱分解ガスを発生する窒化珪素粉末などある
いは試料と同組成の粉末で充てんした密閉容器中で焼成
する方法をとる必要がなく、その改善効果も評価できる
Furthermore, the method of the present invention allows the use of a relatively low calcination temperature of less than 1700°C, which was taken to suppress thermal decomposition of the sample in the conventional method requiring a calcination temperature of 1700°C or higher. For example, by increasing the atmospheric pressure in the furnace and firing, or by filling the surrounding area of the sample with silicon nitride powder, which generates pyrolysis gas at high temperatures like the sample, or with powder having the same composition as the sample. There is no need to use a baking method, and the improvement effect can be evaluated.

本発明の方法は、前述のように従来得られなかったサイ
アロンの焼成粉末を製造することができ、この新規な粉
末セラミックスはサイアロンの特性をいかした各種の用
途に利用することができる。
As mentioned above, the method of the present invention can produce fired powder of Sialon, which has not been previously available, and this new powder ceramic can be used in various applications that take advantage of the characteristics of Sialon.

本発明の方法によって得られるサイアロン焼結体は、高
密度、高強度、高硬度で、かつ耐食性に優れており、機
械部品、保護管、ルツボなと種々の耐熱耐食性材料とし
て、またサイアロン系粉末体は、それ自身でも研摩材な
どとして、あるいは、他のセラミック粉末と複合させて
、耐食性のある耐火物として有用である。
The sialon sintered body obtained by the method of the present invention has high density, high strength, high hardness, and excellent corrosion resistance, and can be used as a variety of heat-resistant and corrosion-resistant materials such as mechanical parts, protection tubes, and crucibles. The bodies are useful on their own as an abrasive or in combination with other ceramic powders as corrosion-resistant refractories.

以下に本発明が一層よく理解できるように実施例をあげ
て具体的に説明する。
EXAMPLES Below, the present invention will be explained in detail by way of examples so that it can be better understood.

実施例 1 酸性火山噴出物としてシラスを用い、これにアルミニウ
ム粉末30重量%及びカーボン粉末1重量%を加え、十
分混合したのち、径30mの円板状成形体に成形し、こ
れを窒素ガス雰囲気中で1380℃まで昇温し、同温度
で5時間窒化させた。
Example 1 Shirasu was used as the acidic volcanic ejecta, 30% by weight of aluminum powder and 1% by weight of carbon powder were added thereto, and after thorough mixing, it was molded into a disc-shaped body with a diameter of 30 m, and this was placed in a nitrogen gas atmosphere. The temperature was raised to 1380° C. in the chamber, and nitriding was carried out at the same temperature for 5 hours.

次いで降温することなく、そのままの状態で1690℃
までさらに昇温し、1時間保持することにより、ち密な
焼結体を得た。
Then, the temperature was kept at 1690℃ without cooling.
The temperature was further increased to 100.degree. C. and maintained for 1 hour to obtain a compact sintered body.

焼結体はβ−サイアロンを主成分とし、見掛げ比重:2
.95、見掛は気孔率:0.06%、吸水率:0.05
%、ビッカース硬度1000 Iy/m4、室温曲げ強
度:24kg/waitであった。
The sintered body is mainly composed of β-sialon and has an apparent specific gravity of 2.
.. 95, apparent porosity: 0.06%, water absorption: 0.05
%, Vickers hardness: 1000 Iy/m4, and room temperature bending strength: 24 kg/wait.

また、1200℃2時間の空気酸化、及び溶融アルミニ
ウム700℃に1時間、あるいは、溶融銅1220℃に
1時間、どぷづげしたが溶融金属との反応による焼結体
表面の変化は認められなかった。
In addition, the sintered body was oxidized in air for 2 hours at 1200℃, molten aluminum was exposed to 700℃ for 1 hour, or molten copper was exposed to 1220℃ for 1 hour, but no change in the surface of the sintered body due to reaction with the molten metal was observed. There wasn't.

実施例 2 酸性火山噴出物としてシラスを用い、これにアルミニウ
ム粉末20重量%及びカーボン粉末3重量%を加え、十
分混合したのち、径37IL7rL以下の造粒物とし、
窒素ガス雰囲気中で1350℃まで昇温して同温度に6
時間保持し窒化させた。
Example 2 Shirasu was used as the acidic volcanic ejecta, 20% by weight of aluminum powder and 3% by weight of carbon powder were added thereto, and after thorough mixing, it was made into granules with a diameter of 37IL7rL or less,
The temperature was raised to 1350℃ in a nitrogen gas atmosphere, and the temperature was increased to 6.
It was held for a time and nitrided.

次に窒化粒状体を微粉砕し、径30mmの円板状に成形
、1550℃の温度で1時間、つめ粉や密閉容器を使用
することなく常圧焼成し焼結体を得た。
Next, the nitride granules were finely pulverized, formed into a disk shape with a diameter of 30 mm, and fired at a temperature of 1550° C. for 1 hour under normal pressure without using nail powder or a closed container to obtain a sintered body.

焼結体はβ−サイアロンを主成分とし、見掛は比重:2
.8、見掛は気孔率:0.06%、吸水率:0.02%
、ビッカース硬度: 800 kg/mt?t、室温曲
げ強度20kg/maであった。
The main component of the sintered body is β-sialon, and the apparent specific gravity is 2.
.. 8. Apparent porosity: 0.06%, water absorption: 0.02%
, Vickers hardness: 800 kg/mt? t, and room temperature bending strength of 20 kg/ma.

また、1000℃2時間の空気酸化実験においては全(
変化が認められなかった。
In addition, in an air oxidation experiment at 1000°C for 2 hours, all (
No change was observed.

また、溶融アルミニウム700℃1時間及び溶融鋼12
20℃1時間の浸食実験においても反応による接触面の
変化は認められなかった。
In addition, molten aluminum at 700°C for 1 hour and molten steel at 12
Even in an erosion experiment conducted at 20° C. for 1 hour, no change in the contact surface due to reaction was observed.

実施例 3 酸性火山噴出物としてシラスを用い、これにアルミニウ
ム粉末30重量%及びカーボン粉末1重量%を加え、十
分に混合し、造粒機により直径1〜3朋の粒状成形体と
した。
Example 3 Shirasu was used as the acidic volcanic ejecta, and 30% by weight of aluminum powder and 1% by weight of carbon powder were added thereto, thoroughly mixed, and formed into a granular compact with a diameter of 1 to 3 mm using a granulator.

次いでとの造粒物を焼成炉に入れ、窒素ガス雰囲気中で
1350℃まで昇温し、6時間同温度に保持して窒化さ
せた。
Next, the granules were placed in a firing furnace, heated to 1350° C. in a nitrogen gas atmosphere, and kept at the same temperature for 6 hours to nitride.

次にこの窒化粒状成形体を微粉砕し、金型成形板により
径30關の円板状に成形、成形体を1695℃でつめ粉
や密閉容器を用いることなく、1時間常圧焼成を行い、
焼結体を得た。
Next, this nitrided granular molded body was finely pulverized and formed into a disk shape with a diameter of 30 mm using a mold forming plate, and the molded body was baked at 1695°C under normal pressure for 1 hour without using powder or a closed container. ,
A sintered body was obtained.

得られた焼結体はβ−サイアロンを主成分とし、見掛は
比重3.11、見掛は気孔率0.05%、吸水率0.0
2%、ビッカース硬度1200 kg/myA、室温曲
げ強度” 3 kg/rm?tであった。
The obtained sintered body has β-sialon as its main component, has an apparent specific gravity of 3.11, an apparent porosity of 0.05%, and a water absorption rate of 0.0.
2%, Vickers hardness was 1200 kg/myA, and room temperature bending strength was 3 kg/rm?t.

また、1200°C2時間の空気酸化実験により、全く
変化が認められなかった。
Furthermore, no change was observed in an air oxidation experiment at 1200°C for 2 hours.

また溶融アルミニウム700℃1時間及び溶融銅122
0℃1時間どぷつげテストにおいても接触面の反応によ
る変化は認められなかった。
Also, molten aluminum at 700°C for 1 hour and molten copper at 122°C.
No change due to reaction on the contact surface was observed in the 1-hour drop test at 0°C.

実施例 4 SiO2組成70重量%の酸性火山噴出二次たい漬物粉
末78重量部、アルミニウム粉末20重量部及びカーボ
ン粉末2重量部の混合粉末を、粒径3mm以下の粒状体
に造粒し、これを窒素雰囲気中で1300℃まで昇温し
、同温度に5時間保持し窒化させた。
Example 4 A mixed powder of 78 parts by weight of acidic volcanic secondary pickle powder with a SiO2 composition of 70% by weight, 20 parts by weight of aluminum powder, and 2 parts by weight of carbon powder was granulated into granules with a particle size of 3 mm or less. The temperature was raised to 1300° C. in a nitrogen atmosphere, and the temperature was maintained for 5 hours to nitride.

次いでこの窒化粒状体を粉砕し粉末状とし、黒鉛容器中
に入れ、窒素雰囲気中1500℃の温度で1時間焼成し
、サイアロン系粉末体を得た。
Next, the nitrided granules were crushed into powder, placed in a graphite container, and fired in a nitrogen atmosphere at a temperature of 1500° C. for 1 hour to obtain a sialon-based powder.

このサイアロン系粉末を耐火物原料として用い、従来使
用されていた原料SiCの代りに用い配合した耐火材を
作成し、温度1650℃、3時間の空気酸化実験を行っ
たところ、従来品にみられた発泡現象やガラス生成現象
は全(認められなかった。
Using this sialon powder as a raw material for refractories, we created a blended refractory material in place of the previously used raw material SiC, and conducted an air oxidation experiment at a temperature of 1650°C for 3 hours. No foaming or glass formation phenomena were observed.

Claims (1)

【特許請求の範囲】 1 酸性火山噴出物又はその二次たい積物65〜79.
5重量%、アルミニウム粉末20〜30重量%及びカー
ボン粉末0.5〜5重量%を混合して粉砕したのち成形
し、その成形体を窒素雰囲気下、1300〜1400℃
の温度に加熱して窒化させ、次いでこれを1500℃以
上1700’C未満の温度に加熱し焼結ち密化させるこ
とを特徴とする耐食性、高硬度セラミックスの製造方法
。 2 酸性火山噴出物又はその二次たい積物65〜79.
5重量%、アルミニウム粉末20〜30重量%及びカー
ボン粉末0.5〜5重量%より成る混合粉末を径3關以
下の粒状物に造粒し、この粒状物を窒素雰囲気下、13
00〜1400℃の温度に加熱して窒化したのち微粉砕
し、これを所定の形状に成形して、その成形物を150
0℃以上1700℃未満の温度で焼結することを特徴と
する耐食性、高硬度セラミックスの製造方法。 3 酸性火山噴出物又はその二次たい積物65〜79.
5重量%、アルミニウム粉末20〜30重量%及びカー
ボン粉末0.5〜5重量%より成る混合粉末を径3關以
下の粒状物に造粒し、この粒状物を窒素雰囲気下、13
00〜1400℃の温度に加熱して窒化したのち微粉砕
し、この窒化微粉末を1500℃以上1700℃未満の
温度で焼成することを特徴とする粉末状耐食性、高硬度
セラミックスの製造方法。
[Claims] 1. Acidic volcanic ejecta or secondary deposits thereof 65-79.
5% by weight, 20 to 30% by weight of aluminum powder, and 0.5 to 5% by weight of carbon powder are mixed and pulverized, then molded, and the molded body is heated at 1300 to 1400°C under a nitrogen atmosphere.
1. A method for producing a corrosion-resistant, high-hardness ceramic, which is characterized by heating to a temperature of 1,500° C. or higher to nitride it, and then heating it to a temperature of 1,500° C. or higher and lower than 1,700° C. to sinter and densify it. 2 Acidic volcanic ejecta or secondary deposits 65-79.
A mixed powder consisting of 5% by weight, 20 to 30% by weight of aluminum powder, and 0.5 to 5% by weight of carbon powder was granulated into granules with a diameter of 3 mm or less, and the granules were heated under a nitrogen atmosphere for 13 to 30 minutes.
After heating to a temperature of 00 to 1400°C and nitriding, it is pulverized, molded into a predetermined shape, and the molded product is heated to 150°C.
A method for producing corrosion-resistant, high-hardness ceramics, characterized by sintering at a temperature of 0°C or more and less than 1700°C. 3 Acidic volcanic ejecta or secondary deposits 65-79.
A mixed powder consisting of 5% by weight, 20 to 30% by weight of aluminum powder, and 0.5 to 5% by weight of carbon powder was granulated into granules with a diameter of 3 mm or less, and the granules were heated under a nitrogen atmosphere for 13 to 30 minutes.
A method for producing powdered corrosion-resistant, high-hardness ceramics, which comprises heating to a temperature of 00 to 1,400°C, nitriding, pulverizing, and firing the nitrided fine powder at a temperature of 1,500°C to 1,700°C.
JP56210591A 1981-12-26 1981-12-26 Manufacturing method for corrosion-resistant, high-hardness ceramics Expired JPS5844632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210591A JPS5844632B2 (en) 1981-12-26 1981-12-26 Manufacturing method for corrosion-resistant, high-hardness ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210591A JPS5844632B2 (en) 1981-12-26 1981-12-26 Manufacturing method for corrosion-resistant, high-hardness ceramics

Publications (2)

Publication Number Publication Date
JPS58115077A JPS58115077A (en) 1983-07-08
JPS5844632B2 true JPS5844632B2 (en) 1983-10-04

Family

ID=16591849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210591A Expired JPS5844632B2 (en) 1981-12-26 1981-12-26 Manufacturing method for corrosion-resistant, high-hardness ceramics

Country Status (1)

Country Link
JP (1) JPS5844632B2 (en)

Also Published As

Publication number Publication date
JPS58115077A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
JPS6313955B2 (en)
EP0153000B1 (en) Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase
US2872327A (en) Refractory bodies containing boron nitride and a boride, and the manufacture thereof
US2887393A (en) Refractory bodies containing boron nitride
GB2048953A (en) Sintering silicon carbide in boron containing atmosphere
JPS59107908A (en) Manufacture of silicon nitride powder with superior sinterability
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
GB2567660A (en) Refractory material
US3329514A (en) Refractory body and method of making same
US4500644A (en) Preparation and composition of sialon grain and powder
JPS5844632B2 (en) Manufacturing method for corrosion-resistant, high-hardness ceramics
JPS6210954B2 (en)
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH0253388B2 (en)
JPH02500667A (en) composite refractory material
WO1990013525A1 (en) PROCESS FOR PRODUCING β-SIALON SINTER
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPH0224789B2 (en)
JPS6374978A (en) Ceramic composite body
JPS5823346B2 (en) Production method of α-sialon sintered body
JP2641149B2 (en) Manufacturing method of thermal shock resistant ceramics
JP2508511B2 (en) Alumina composite
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JP2916934B2 (en) Method for producing sialon-based sintered body