JPS5844508A - Input compensating and controlling method for vibrator stage controlling system - Google Patents

Input compensating and controlling method for vibrator stage controlling system

Info

Publication number
JPS5844508A
JPS5844508A JP14102181A JP14102181A JPS5844508A JP S5844508 A JPS5844508 A JP S5844508A JP 14102181 A JP14102181 A JP 14102181A JP 14102181 A JP14102181 A JP 14102181A JP S5844508 A JPS5844508 A JP S5844508A
Authority
JP
Japan
Prior art keywords
properties
transfer characteristic
control system
waveform
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14102181A
Other languages
Japanese (ja)
Inventor
Tsutomu Matsuki
勉 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14102181A priority Critical patent/JPS5844508A/en
Publication of JPS5844508A publication Critical patent/JPS5844508A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To realize the accurate input compensation and control and to increase the regenerating accuracy of waveforms, by replacing the control system with a mathematics model and using the transmission properties obtained by the mathematics model. CONSTITUTION:The mathematics model transmission properties GA are used to perform the digital synthesization of the transmission properties to a control system. Thus the synthetic trnsmission properties G' are obtained and then smoothed. Here, A, B, C and D show the mathematics model transmission properties, the actual results transmission properties, the digital synthetic transmission properties C and the smoothing transmission properties respectively. The properties A are used in the case of f<fL and f>fH, where f, fL and fH show the frequency, low frequency and high frequency respectively. While the properties B are used with fL<=f<=fH. Thus the properties C are obtained. Then the properties D are obtained by applying a hamming filter to the properties C.

Description

【発明の詳細な説明】 本発明は、振動台制御系に関し、特に振動台制御系の非
線形特性に対し効果的な振動制御を行ない得る入力補償
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shaking table control system, and more particularly to an input compensation control method that can perform effective vibration control for nonlinear characteristics of a shaking table control system.

第1図は従来の振動台制御系の/ステム構成を示してい
る。目標波形入力装置10より計算機8に対して振動試
験体1に印加すべき目標振動波形が設定入力きれる。計
算機8ではアレープロセッサ9を使用して振動制御系に
最も適した印加すべき波形を作成し、こ′nを゛高速ア
ナログ出力装置6を経由してサーボ制御装置5に印加す
る。このアナログ波形信号は、加振機3により電気信号
から振動運動に変換され加振機3に連結されたテーブル
2を振動させ、テーブル2上の試験体1を振動させる。
FIG. 1 shows the stem configuration of a conventional shaking table control system. A target vibration waveform to be applied to the vibration test body 1 can be set and input into the computer 8 from the target waveform input device 10. The computer 8 uses an array processor 9 to create a waveform to be applied most suitable for the vibration control system, and applies this waveform to the servo control device 5 via the high-speed analog output device 6. This analog waveform signal is converted from an electric signal into a vibration motion by the vibrator 3, vibrates the table 2 connected to the vibrator 3, and vibrates the test specimen 1 on the table 2.

サーボ制御装置5は、振動検出装置4によりテーブル2
の振動量及び加振機3の振動量を、取込み、計算機8か
ら高速アナログ出力装置6を経由してくる計算機指令波
形となるようにクローズトループを構成している。又計
算機8は、振動検出装置4を経由してテーブル2及び加
振機3の振動量をアナログ入力装置7により入力し、あ
らかじめ求めた振動制御系の伝達特性を用いて、目標と
する振動波形を得ることができるようにサーボ制御装置
5に対する指令波形を修正演算する制御を行なっている
。この制御を以下入力補償と呼ぶことにする。
The servo control device 5 detects the table 2 by the vibration detection device 4.
A closed loop is configured in which the amount of vibration of the vibration exciter 3 and the amount of vibration of the vibrator 3 are taken in, and a computer command waveform is sent from the computer 8 via the high-speed analog output device 6. In addition, the computer 8 inputs the amount of vibration of the table 2 and the vibrator 3 via the vibration detection device 4 through the analog input device 7, and uses the transfer characteristics of the vibration control system determined in advance to determine the target vibration waveform. Control is performed to correct and calculate the command waveform for the servo control device 5 so that the following can be obtained. This control will be referred to as input compensation hereinafter.

次に第2図により入力補償の原理につき記述する。1点
鎖線で囲まれた部分に計算機内での処理を示している。
Next, the principle of input compensation will be described with reference to FIG. Processing within the computer is shown in the area surrounded by a dashed line.

指令波形fCを振動台に与えることにより振動台が実績
波形fAで振動する場合、このfA’にフーリエ変換し
FAを得る。図でに、フーリエ変換することをFFTと
して示している。
When the vibration table vibrates with the actual waveform fA by giving the command waveform fC to the vibration table, this fA' is Fourier-transformed to obtain FA. In the figure, Fourier transform is shown as FFT.

一方振動目標波形をfTとしこのフーリエ変換量FTと
して伝達特性G及び補償量の積分値FC−を用いて入力
補償量を周波数額域で、下式により演算する。
On the other hand, the input compensation amount is calculated in the frequency range using the transfer characteristic G and the integral value FC- of the compensation amount as the Fourier transform amount FT of the vibration target waveform fT in the frequency range.

F C= F C−+G−1・(FT−FA)・・・・
・・(1)この入力補償量FCを逆フーリエ変換し、入
力補償指令波形fCを求め、これを振動台に印加する。
F C= F C-+G-1・(FT-FA)・・・・
(1) This input compensation amount FC is subjected to inverse Fourier transform to obtain an input compensation command waveform fC, and this is applied to the vibration table.

この一連の入力補償制御を繰返し実行させることにより
、目標波形fTとなるように振動台の応答波形fAを改
善してゆくものが入力補償制御である。この入力補償制
御の制御精度は、伝達特性Gに左右さ扛る。即ち、伝達
特性Gの位相特性が例えば、180度実際の制御系の伝
達特性に比較して、ズしている場合、入力補償制御の繰
返しにより益々悪化の方向に制御することになる。又、
ゲイン特性の誤差の場合、制御がノ・/チングを起こす
か、又は、収束が遅い結果となる。従って通常、この伝
達特性Gを求めるために、試加振を行ない実績の伝達特
性Gを把握し、この伝達特性を使用して入力補償制御を
行なう。第3図に実績伝達特性GAe求める構成を示す
。試加振目標波形fTを振動台に印加し、その応答実績
波形’Aを得る。
Input compensation control improves the response waveform fA of the shaking table so that it becomes the target waveform fT by repeatedly executing this series of input compensation controls. The control accuracy of this input compensation control depends on the transfer characteristic G. That is, if the phase characteristic of the transfer characteristic G deviates, for example, by 180 degrees compared to the transfer characteristic of the actual control system, the input compensation control is repeated to make the control worse. or,
In the case of errors in the gain characteristics, the result is that the control causes cracking or slow convergence. Therefore, normally, in order to obtain this transfer characteristic G, a test vibration is performed to understand the actual transfer characteristic G, and this transfer characteristic is used to perform input compensation control. FIG. 3 shows the configuration for determining the actual transfer characteristic GAe. The test vibration target waveform fT is applied to the vibration table, and its response result waveform 'A' is obtained.

このfAをフーリエ変換しFAを求め、一方、前に目標
波形fTをフーリエ変換しFTを求め、この値を用いて
実績伝達特性GAを下式により計算する。
This fA is Fourier-transformed to obtain FA. On the other hand, the target waveform fT is previously Fourier-transformed to obtain FT, and this value is used to calculate the actual transfer characteristic GA using the following formula.

GA= F A/F T・・・・・・・・・・・・・・
・ (2)ここに、振動台系を有する、加振機のピスト
ンをシリンダ間の摩擦抵抗、加振機とテーブルを継ぐ継
手部のガタ、サーボ弁の不感帯等の非線形特性により、
実測する伝達特性は、第4図(A)に示すような結果と
なる。これは、非線形性に起因して生じる、高調波応答
の発生、重ね合わせ原理の不成立等により発生するもの
で、アベレージング手法、フィルタ手法によりある程度
平滑化は可能であるが、特性を求めることが困難である
。更にアベレージングは、試加振の回数を増加させるも
のであり、供試体の疲労等により本来の撮動試験の目的
を達成できない。又、高速アナログ入出力装置のビット
分解能の問題、即ち、通常のA/D。
GA= F A/F T・・・・・・・・・・・・・・・
・ (2) Here, due to nonlinear characteristics such as frictional resistance between the piston and cylinder of the vibrating machine that has a vibration table system, backlash in the joint that connects the vibrating machine and the table, and dead zone of the servo valve,
The actually measured transfer characteristics are as shown in FIG. 4(A). This occurs due to the occurrence of harmonic responses caused by nonlinearity, failure of the superposition principle, etc. Although it is possible to smooth it to some extent using averaging and filtering methods, it is difficult to determine the characteristics. Have difficulty. Furthermore, averaging increases the number of test vibrations, and the original purpose of the imaging test cannot be achieved due to fatigue of the specimen. Also, there is the problem of bit resolution of high-speed analog input/output devices, ie, ordinary A/D.

D/A変換器では、±2000 カウント範囲内であり
高周波頭載の特性は、正確に実測で@ないこともある。
In the case of a D/A converter, the high frequency head characteristic is within the range of ±2000 counts and may not be accurately measured.

従って、従来方式では、第4図(B)に示すように、高
周波傾城は、カットして入力補償を行なっていた。従っ
て、高周波傾城に該当する高調波成分に対し、入力補償
による波形再現精度が落ちる結果となっていた。本発明
は、この点に着目しなされたものであり、その目的は、
実使用領域の周波数帯域に対し、正確に入力補償制御を
可能とし、波形再現精度を向上させる振動台制御系にお
ける入力補償制御方法を提供するにある。
Therefore, in the conventional system, as shown in FIG. 4(B), the high frequency tilt is cut to perform input compensation. Therefore, the accuracy of waveform reproduction due to input compensation deteriorates for harmonic components corresponding to high-frequency tilting. The present invention has been made with attention to this point, and its purpose is to:
An object of the present invention is to provide an input compensation control method in a shaking table control system that enables accurate input compensation control in a frequency band of a practical use area and improves waveform reproduction accuracy.

本発明の特徴は、実績伝達特性では、正確に求める事が
困難である高域部及び低域部に対して、振動台制御系を
数学モデルで置きかえ、数学モデルによる伝達特性を使
用することである。即ち数学モデル伝達特性GMと実績
伝達特性GAをディジタル合成し、合成伝達特性G′を
求め、これをハニングフィルタによりスムージングし、
この特性を入力補償制御に使用することにより、効果的
な入力補償制御を可能とするものである。
The feature of the present invention is that the shaking table control system is replaced with a mathematical model, and the transfer characteristics based on the mathematical model are used for the high-frequency and low-frequency regions, which are difficult to accurately obtain using actual transfer characteristics. be. That is, the mathematical model transfer characteristic GM and the actual transfer characteristic GA are digitally synthesized to obtain a composite transfer characteristic G', which is smoothed by a Hanning filter.
By using this characteristic for input compensation control, effective input compensation control is made possible.

本発明のブロック構成図を第5図に示している。A block diagram of the present invention is shown in FIG.

実績伝達特性を求める手順は第4図に示す従来例と同様
であるが、数学モデル伝達特性GMと実績伝達特性GA
を用いて伝達特性のディジタル合成を行い、合成伝達特
性G′を求め、こniスムージングしている点が従来方
式と異なっている。第6図は伝達特性の相関を示してい
る。第6図において(AIX数学モデル伝達性、(B)
は実績伝達特性、(C)にディジタル合成伝達特性、(
D)はスムージング伝達特性を示している。本発明では
、周波数fが低域周波数fL、高域周波数fHに対し、 f<fLおよびf>fHの場合、数学モデル伝達特性を
用い、 fL<f<fHの場合実績伝達特性を用いる。
The procedure for determining the performance transfer characteristic is the same as the conventional example shown in Fig. 4, but the mathematical model transfer characteristic GM and the performance transfer characteristic GA are
This method is different from the conventional method in that digital synthesis of the transfer characteristics is performed using G' to obtain a composite transfer characteristic G', and this is smoothed. FIG. 6 shows the correlation of transfer characteristics. In Figure 6 (AIX mathematical model transferability, (B)
is the actual transfer characteristic, (C) is the digital composite transfer characteristic, (
D) shows smoothing transfer characteristics. In the present invention, when the frequency f is a low frequency fL and a high frequency fH, a mathematical model transfer characteristic is used when f<fL and f>fH, and an actual transfer characteristic is used when fL<f<fH.

(C)に示すディジタル合成は、このようにして求めら
扛たものである。
The digital synthesis shown in (C) was obtained in this way.

(D)のスムージング伝達特性は、ディジタル合成特性
(C)をノ・ニングフィルタにかけることに、lスムー
ジングしたものである。
The smoothing transfer characteristic (D) is obtained by smoothing the digital synthesis characteristic (C) by applying it to a no-ning filter.

第7図にディジタル合成の詳細を示している。FIG. 7 shows details of digital synthesis.

メモリー配置内では、伝達特性は、実部(REAL部)
と虚部(IMAG部)からなるコンプレックスデータで
、数学モデル伝達特性と実績伝達特性が配列さnている
。こnを図のようにディジタル合成伝達特性エリアに配
列替えするものである。以上のようにして求めた伝達特
性Gを使用することにより波形再現性の良い入力補償制
御を行なわせることができる。
Within the memory arrangement, the transfer characteristic is the real part (REAL part).
It is complex data consisting of the imaginary part (IMAG part), and the mathematical model transfer characteristics and actual performance transfer characteristics are arranged. This n is rearranged into a digital composite transfer characteristic area as shown in the figure. By using the transfer characteristic G obtained as described above, input compensation control with good waveform reproducibility can be performed.

このように本発明によ扛ば、振動台制御系の非線形特性
を有する制御系に対しても、良好な波形再現性を有する
人力補償制御が可能である。
As described above, according to the present invention, human power compensation control with good waveform reproducibility is possible even for a control system having nonlinear characteristics such as a shaking table control system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、従来方式を説明するための図、第5
図〜第7図は、本発明による入力補償制御方法を説明す
るための図である。
Figures 1 to 4 are diagrams for explaining the conventional method, and Figure 5
7 to 7 are diagrams for explaining the input compensation control method according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、クローズトループを構成するサーボ制御装置と、目
標波形と実績波形からサーボ制御装置に指令波形を与え
る計算制御装置を含む振動台制御系において、制御系の
実測伝達特性と、系を数学モデルで模擬した計算伝達特
性のディンタル合成により、伝達特性を求め、この伝達
特性を用いてサーボ制御装置に対する指令波形の修正演
算を行うようにしたことを特徴とする振動台制御系にお
ける入力補償制御方法。
1. In a shaking table control system that includes a servo control device that forms a closed loop and a calculation control device that provides command waveforms to the servo control device from target waveforms and actual waveforms, the actually measured transfer characteristics of the control system and the system are calculated using a mathematical model. An input compensation control method for a shaking table control system, characterized in that a transfer characteristic is obtained by digital synthesis of simulated calculated transfer characteristics, and this transfer characteristic is used to perform correction calculations on a command waveform for a servo control device.
JP14102181A 1981-09-09 1981-09-09 Input compensating and controlling method for vibrator stage controlling system Pending JPS5844508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14102181A JPS5844508A (en) 1981-09-09 1981-09-09 Input compensating and controlling method for vibrator stage controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14102181A JPS5844508A (en) 1981-09-09 1981-09-09 Input compensating and controlling method for vibrator stage controlling system

Publications (1)

Publication Number Publication Date
JPS5844508A true JPS5844508A (en) 1983-03-15

Family

ID=15282353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14102181A Pending JPS5844508A (en) 1981-09-09 1981-09-09 Input compensating and controlling method for vibrator stage controlling system

Country Status (1)

Country Link
JP (1) JPS5844508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014355A (en) * 2006-07-04 2008-01-24 Nsk Ltd Coupling part of shaft and yoke of universal joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014355A (en) * 2006-07-04 2008-01-24 Nsk Ltd Coupling part of shaft and yoke of universal joint

Similar Documents

Publication Publication Date Title
KR101021895B1 (en) Method and system for processing a sound field representation
Wang et al. On the application of coherence techniques for source identification in a multiple noise source environment
Terasawa et al. The thirteen colors of timbre
JP5420621B2 (en) Non-Gaussian vibration control device
GB2122052A (en) Reducing noise or vibration
JP2612697B2 (en) Vibration control device
JPS5844508A (en) Input compensating and controlling method for vibrator stage controlling system
JP3281875B2 (en) Shaking table waveform control apparatus and method
JPH03295437A (en) Vehicle vibration testing method
US5517426A (en) Apparatus and method for adaptive closed loop control of shock testing system
Johannsen Development and optimization of a nonlinear multiparameter human operator model
JP3495595B2 (en) Shaking table controller
JPH05118906A (en) Method and device for acoustic measurement
JP2002501245A (en) Method and apparatus for generating an input signal in a physical system
JP3626858B2 (en) Shaking table waveform distortion control device
JP3224381B2 (en) Method and apparatus for interpolating between data samples
CN110657933A (en) Novel iteration control method for earthquake simulation vibration table
JPS592113A (en) Digital applied vibration controlling method of vibration base
JPS60252920A (en) Waveform corrector for vibration tester
JPS61164133A (en) Vibration testing method
CN114235317B (en) Incomplete surface laser continuous scanning vibration measurement method based on square wave path
JP3469136B2 (en) Waveform control device
JPS6217765B2 (en)
JPH08137490A (en) Waveform generation device
JP2002529754A (en) System repeatable bandwidth measurement for simulation testing