JPS60252920A - Waveform corrector for vibration tester - Google Patents

Waveform corrector for vibration tester

Info

Publication number
JPS60252920A
JPS60252920A JP59110347A JP11034784A JPS60252920A JP S60252920 A JPS60252920 A JP S60252920A JP 59110347 A JP59110347 A JP 59110347A JP 11034784 A JP11034784 A JP 11034784A JP S60252920 A JPS60252920 A JP S60252920A
Authority
JP
Japan
Prior art keywords
waveform
fourier transform
spectrum
correction
correction spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59110347A
Other languages
Japanese (ja)
Other versions
JPH067367B2 (en
Inventor
Kiyohiro Obara
清弘 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59110347A priority Critical patent/JPH067367B2/en
Publication of JPS60252920A publication Critical patent/JPS60252920A/en
Publication of JPH067367B2 publication Critical patent/JPH067367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To regenerate a corrected waveform by performing the Fourier transform between an exciting waveform and an answer waveform to calculate a correction spectrum and then performing the inverse Fourier transform after substituting the real part and the imaginary part of each frequency component excluding a DC component for zero and a power square root respectively. CONSTITUTION:An output buffer 4 stores an exciting waveform and a waveform output means 6 reads out the exciting waveform. Then a vibrating base 2 is vibrated by an exciting means 8. The base 2 supplies an answer waveform to an answer waveform input means 12 through an acceleration sensor 10. This answer waveform is supplied to a Fourier transform means 14 together with the exciting waveform for fast Fourier transform. The waveform is sent to a correction spectrum calculation means 16 after transformation. Thus a correction spectrum is calculated from a transmission function. The correction spectrum is sent to a correction spectrum conversion means 18, and a converted correction spectrum is obtained. This spectrum is converted into a corrected waveform by an inverse Fourier transform means 20 and sent to the buffer 4.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は構造物の振動試験等を行なう振動試験機におい
て振動台の応答波形がある設定された目標波形に一致す
るように振動台に加える波形を補正する波形補正装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is a vibration testing machine for performing vibration tests on structures, etc., in which the vibration table is adjusted so that the response waveform of the vibration table matches a certain set target waveform. The present invention relates to a waveform correction device that corrects an applied waveform.

(ロ)従来技術 一般に、振動試験においては加速度制御で正弦波の加振
を行なう場合がある。このような正弦波を振動台に入力
して加振させた場合、振動台自体の加速度応答波形は、
供試体をも含む振動伝達系によって加振波形に歪を生じ
、実際の振動台に加わる波形は所期の加振波形と異なっ
たものになる。
(b) Prior Art Generally, in vibration tests, sine wave excitation is sometimes performed under acceleration control. When such a sine wave is input to a shaking table and excited, the acceleration response waveform of the shaking table itself is
The vibration transmission system that includes the specimen causes distortion in the excitation waveform, and the waveform actually applied to the vibration table differs from the intended excitation waveform.

特に加振波形の周波数が低いときにこの傾向は顕著であ
る。加振波形の歪を補正し、振動台からの応答波形を所
期の目標波形にするには振動伝達系の伝達関数を知る必
要がある。このため、従来技術では、リアルタイムで応
答波形をCPUに入力し、高速フーリエ変換によって伝
達関数をめ新たな補正波形を作成することも試みられて
いる。
This tendency is particularly noticeable when the frequency of the excitation waveform is low. In order to correct the distortion of the excitation waveform and make the response waveform from the vibration table the desired target waveform, it is necessary to know the transfer function of the vibration transfer system. For this reason, in the prior art, an attempt has been made to input a response waveform to a CPU in real time, calculate the transfer function using fast Fourier transform, and create a new corrected waveform.

(ハ)発明が解決しようとする問題点 正弦波の加振波形に基づく応答波形をCPUに取込み加
振波形を高速フーリエ変換法により補正する場合応答波
形のデータの取込みタイミングは常に一定したものでは
ないので、取込みタイミングにより補正された波形は必
らずしも零点から始まるものとはならない。このような
補正波形を波形メモリとしての出力バッファにそのまま
セットすると振動台に加える時系列化された加振波形の
途中で急な立ち上り現象を生じ、定常の正弦波を撮動台
に加えられなくなる。このため、振動試験により急激な
ショックを供試体に与えることになり、しかも得られる
データの信頼性が乏しくなるという不具合を生じる。
(c) Problems to be Solved by the Invention When a response waveform based on a sine wave excitation waveform is imported into a CPU and the excitation waveform is corrected using the fast Fourier transform method, the timing of acquiring the response waveform data is not always constant. Therefore, the waveform corrected by the capture timing does not necessarily start from the zero point. If such a correction waveform is set as is in the output buffer as a waveform memory, a sudden rise phenomenon will occur in the middle of the time-series excitation waveform applied to the shaking table, making it impossible to apply a steady sine wave to the imaging table. . For this reason, a sudden shock is given to the specimen by the vibration test, and the reliability of the data obtained becomes poor.

本発明は従来のかかる問題点を解決し、振動台の応答波
形が所期の目標波形に一致するようにリアルタイムで遂
次補正ができるようにするとともに、補正された正弦波
形が時系列的にみて連続的な波形となるようにして、信
頼度の高い振動試験データが得られる1つにすることを
目的とする。
The present invention solves these conventional problems and makes it possible to sequentially correct the response waveform of the shaking table in real time so that it matches the desired target waveform, and also to make it possible to sequentially correct the corrected sine waveform in time series. The purpose is to create a continuous waveform that can be used to obtain highly reliable vibration test data.

に)問題点を解決するだめの手段 本発明は上述の目的を達成するため、振動台に加える正
弦波の加振波形とこの加振波形に応答して得られる応答
波形とを共にフーリエ変換し、フーリエ変換後の両波形
から補正スペクトルを算出し、この補正スペクトルに対
して、そのDC成分を除いた各周波数成分の実数部を零
に、虚数部をパワーの平方根にそれぞれ代替して逆フー
リエ変換によって最終的な補正波形を再現するようにし
たものである。
In order to achieve the above-mentioned object, the present invention performs Fourier transform on both the sine wave excitation waveform applied to the vibration table and the response waveform obtained in response to this excitation waveform. , calculate a corrected spectrum from both waveforms after Fourier transform, and apply inverse Fourier transform to this corrected spectrum by replacing the real part of each frequency component excluding the DC component with zero and the imaginary part with the square root of the power. The final corrected waveform is reproduced through conversion.

(ホ)実施例 以下、本発明を図面に示す一実施例に基づいて詳細に説
明する。
(E) Example Hereinafter, the present invention will be explained in detail based on an example shown in the drawings.

図はこの実施例の波形補正装置のブロック図である。同
図において、1V1.波形補正装置を示し、2は供試体
が取付けられる振動試験機の振動台である。4は振動台
2に加える正弦波の加振波形が記憶される出力バッファ
、6は出カバソファ4に記憶された加振波形を読み出し
て出力する波形出力手段、8V′i、波形出力手段6か
ら与えられる加振波形により振動台2を加振する加振手
段で、たとえば油圧アクチュエータで構成される。10
は振動台2に取付けられた加速度センサ、12は振動台
2の振動にともない加速度センサ10で検出された応答
波形を入力する応答波形入力手段、14は応答波形入力
手段12から与えられる応答波形ならびに出力バッファ
4に記憶された加振波形をそれぞれ高速フーリエ変換す
るフーリエ変換手段である。16はフーリエ変換手段1
4でフーリエ変換された加振波形ならびに応答波形に基
づいて補正スペクトルを算出する補正スペクトル算出手
段、20は補正スペクトル算出手段16で算出された補
正スペクトルに対してそのDC成分を除いた各周波数成
分の実数部を零に、虚数部をパワーの平方根にそれぞれ
代替する補正スペクトル換算手段である。また20は補
正スペクトル換算手段18で換算された後の補正スペク
トルを高速逆フーリエ変換する逆フーリエ変換手段であ
る。
The figure is a block diagram of the waveform correction device of this embodiment. In the figure, 1V1. A waveform correction device is shown, and 2 is a vibration table of a vibration testing machine to which a specimen is attached. 4 is an output buffer in which the excitation waveform of a sine wave applied to the vibration table 2 is stored; 6 is a waveform output means for reading and outputting the excitation waveform stored in the output sofa 4; 8V'i is from the waveform output means 6; It is an excitation means that vibrates the vibration table 2 with a given excitation waveform, and is composed of, for example, a hydraulic actuator. 10
1 is an acceleration sensor attached to the vibration table 2; 12 is a response waveform input means for inputting a response waveform detected by the acceleration sensor 10 as the vibration table 2 vibrates; 14 is a response waveform provided from the response waveform input means 12; This is a Fourier transform means that performs fast Fourier transform on each of the excitation waveforms stored in the output buffer 4. 16 is Fourier transform means 1
4, a correction spectrum calculation means for calculating a correction spectrum based on the excitation waveform and response waveform subjected to Fourier transformation; 20, each frequency component of the correction spectrum calculated by the correction spectrum calculation means 16, excluding its DC component; This is a corrected spectrum conversion means that replaces the real part of the power with zero and the imaginary part with the square root of the power. Reference numeral 20 denotes an inverse Fourier transform means for fast inverse Fourier transform of the corrected spectrum converted by the corrected spectrum converter 18.

上記構成を有する波形補正装置1において、出力バッフ
ァ4に記憶された正弦波の加振波形f (t)は波形出
力手段6によって読み出され加振手段8に与えられる。
In the waveform correction device 1 having the above configuration, the sine wave excitation waveform f (t) stored in the output buffer 4 is read out by the waveform output means 6 and applied to the excitation means 8 .

加振手段8はこの加振波形f (t)に基づき振動台2
を振動させる。振動台2の振動にともなう加速度は加速
度センサ10により検出され、その検出信号の応答波形
g(t)が応答波形入力手段12に入力される。応答波
形入力手段12に入力される応答波形g (t)は振動
台2や供試体を含む振動伝達系の影響を受け加振波形f
 (t)から歪んだものとなっている。フーリエ変換手
段14は応答波形入力手段12に入力される応答波形g
 (t)と出力バッファ4に記憶されている加振波形f
 (t)とをそれぞれ取込み、両波形f(t)4g(t
)を高速フーリエ変換する。このフーリエ変換後の加振
波形と応答波形をそれぞれF(ω)、G(ω)とする。
The vibration means 8 uses the vibration table 2 based on this vibration waveform f(t).
vibrate. Acceleration accompanying the vibration of the vibration table 2 is detected by the acceleration sensor 10, and a response waveform g(t) of the detection signal is input to the response waveform input means 12. The response waveform g (t) input to the response waveform input means 12 is influenced by the vibration transmission system including the vibration table 2 and the specimen, and the excitation waveform f
It is distorted from (t). The Fourier transform means 14 converts the response waveform g input into the response waveform input means 12.
(t) and the excitation waveform f stored in the output buffer 4
(t) and both waveforms f(t)4g(t
) is fast Fourier transformed. The excitation waveform and response waveform after the Fourier transform are designated as F(ω) and G(ω), respectively.

フーリエ変換手段14でフーリエ変換された加振波形F
(ω)と応答波形G(ω)とは共に次段の補正スペクト
ル請出手段16へ送出される。補正スペクトル算出手段
16は、入力される応答波形G(ω)を加振波形F(ω
)で除算して、これにより振動伝達系における伝IG(
ω)1一 連関数H(ω)を算出する。すなわち−51□。、H(
ω)である。さらに引き続いて補正スペクトル算出手段
16は、加振波形G(ω)を伝達関数H(ω)で除算し
て加振波形F(ω)に対する補正スペクトルF′(ω)
を算出する。すなわちニー可ニーF′(ω)となる。こ
うしIH(ω)j て得られる補正スペクトルF′(ω)は加振波形F(ω
)を補正したものとなっているが零点から始まる正弦波
の保障はなされていない。従って、算出された補正スペ
クトルは次段の補正スペクトル換算手段18に加えられ
る。補正スペクトル換算手段1Bは補正スペクトル算出
手段16から与えられる補正スペクトルF′(ω)に対
して次の演算処理を行なう。
Excitation waveform F subjected to Fourier transformation by Fourier transformation means 14
(ω) and the response waveform G(ω) are both sent to the corrected spectrum extracting means 16 at the next stage. The correction spectrum calculation means 16 converts the input response waveform G(ω) into an excitation waveform F(ω
), and this results in the transmission IG in the vibration transmission system (
ω) Calculate one series of functions H(ω). That is -51□. , H(
ω). Further, the correction spectrum calculating means 16 divides the excitation waveform G(ω) by the transfer function H(ω) to obtain a correction spectrum F'(ω) for the excitation waveform F(ω).
Calculate. In other words, the knee is F'(ω). The corrected spectrum F'(ω) obtained by IH(ω)j in this way is the excitation waveform F(ω
), but the sine wave starting from zero is not guaranteed. Therefore, the calculated correction spectrum is applied to the correction spectrum conversion means 18 at the next stage. The corrected spectrum conversion means 1B performs the following arithmetic processing on the corrected spectrum F'(ω) given from the corrected spectrum calculation means 16.

まず、補正スペクトルpr<ω)の周波数成分のうち0
次のDC成分を除く各周波数成分についてパワーの平方
根をめる。すなわち、今、1次の周波数成分の実数部を
Rei 、虚数部をImiとするとパワーの平方根A1
けAi=fi−となる。次いで、補正スペクトルp/(
ω)の0次のDC成分を除く各周波数成分について、実
数部を全て零に代替する一方、虚数部を上記のごとくし
てめたパワーの平方根A1に代替する。この操作はフー
リエ変換の各周波数成分の実数部が余弦波に、虚数部が
正弦波に対応することからゲイン補償を保ちながら、余
弦波をなくして正弦波の集合体に換算し直すことを意味
する。このようにして補正スペクトル換算手段18で換
算された補正スペクトルf−1フーリエ変換手段20に
送られ、ここで高速逆フーリエ変換されて補正波形f′
(t)となる。この補正波形f′(1)は出力バッファ
4に新たにセットされる。その際の補正波形f ’ (
t)は零点から始まる正弦波なので、セットにともなう
波形の変動は生じない。このように、出力バッファ4か
らは補正波形f’(t)が出力波形f (t)として遂
次更新しながら出力される。
First, 0 of the frequency components of the corrected spectrum pr<ω)
Find the square root of the power for each frequency component except for the following DC component. That is, if the real part of the first-order frequency component is Rei and the imaginary part is Imi, then the square root of the power A1
Therefore, Ai=fi-. Then, the corrected spectrum p/(
For each frequency component other than the zero-order DC component of ω), the real parts are all replaced with zeros, and the imaginary parts are replaced with the square root A1 of the power obtained as described above. This operation means that the real part of each frequency component of the Fourier transform corresponds to a cosine wave and the imaginary part corresponds to a sine wave, so while maintaining gain compensation, the cosine wave is removed and converted back to a collection of sine waves. do. The correction spectrum f-1 converted by the correction spectrum conversion means 18 in this way is sent to the Fourier transform means 20, where it is fast inverse Fourier transformed to form a correction waveform f'
(t). This corrected waveform f'(1) is newly set in the output buffer 4. The corrected waveform f' (
Since t) is a sine wave starting from the zero point, the waveform does not fluctuate as it is set. In this way, the output buffer 4 outputs the corrected waveform f'(t) as the output waveform f(t) while being updated successively.

(へ)効果 以上のように本発明によれば、振動台に加える正弦波の
加振波形とこの加振波形に応答して得られる応答波形と
を共にフーリエ変換しフーリエ変換後の両波形から補正
スペクトルを算出し、この補正スペクトルに対して、そ
のDC成分を除いた各周波数成分の実数部を零に1虚数
部をパワーの平方根にそれぞれ代替して逆フーリエ変換
によって最終的な補正波形を再現するようにしている。
(F) Effect As described above, according to the present invention, both the sine wave excitation waveform applied to the vibration table and the response waveform obtained in response to this excitation waveform are Fourier-transformed, and both waveforms after Fourier transformation are A corrected spectrum is calculated, and the final corrected waveform is obtained by inverse Fourier transform by substituting the real part of each frequency component excluding the DC component with zero and the imaginary part with the square root of the power. I'm trying to reproduce it.

従って、振動台の応答波形が所期の目標波形に一致する
ように、リアルタイムで補正がなされ、しかも、補正さ
れた正弦波形が時系列的にみて急激な立ち上りのないス
ムーズなものとなる。このため信頼度の高い振動試験デ
ータが得られるようになるという実用上優れた効果を奏
する。
Therefore, correction is made in real time so that the response waveform of the shaking table matches the desired target waveform, and the corrected sinusoidal waveform becomes smooth without sudden rises in time series. Therefore, highly reliable vibration test data can be obtained, which is an excellent practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す振動試験機における波形
補正装置のブロック図である。 1・・波形補正装置、2・・振動台、4 ・出力バッフ
ァ、14・・フーリエ変換手段、16・・補正スペクト
ル算出手段、18・・補正スペクトル換算手段、20・
・逆フーリエ変換手段。 出 願 人 株式会社島津製作所 代 理 人 弁理士岡田和秀
The drawing is a block diagram of a waveform correction device in a vibration testing machine showing an embodiment of the present invention. 1. Waveform correction device, 2. Shaking table, 4. Output buffer, 14. Fourier transform means, 16. Correction spectrum calculation means, 18. Correction spectrum conversion means, 20.
- Inverse Fourier transform means. Applicant: Shimadzu Corporation Agent: Kazuhide Okada, Patent Attorney

Claims (1)

【特許請求の範囲】[Claims] (1)振動台に加える正弦波の加振波形が記憶される出
カバソファと、前記加振波形を振動台に加えることによ
り振動台から検出された応答波形ならびに前記出力バッ
ファに記憶された加振波形をそれぞれフーリエ変換する
フーリエ変換手段と、このフーリエ変換手段でフーリエ
変換された加振波形ならびに応答波形に基づいて補正ス
ペクトルを算出する補正スペクトル算出手段と、この補
正スペクトル算出手段で算出された補正スペクトルに対
してそのDC成分を除いた各周波数成分の実数部を零に
、虚数部をパワーの平方根にそれぞれ代替する補正スペ
クトル換算手段と、この補正スペクトル換算手段で換算
された補正スペクトルを逆フーリエ変換する逆フーリエ
変換手段とを含むことを特徴とする振動試験機における
波形補正装置。
(1) An output buffer sofa in which a sine wave excitation waveform applied to the vibration table is stored, a response waveform detected from the vibration table by applying the excitation waveform to the vibration table, and an excitation stored in the output buffer. Fourier transform means that performs Fourier transform on each waveform; correction spectrum calculation means that calculates a correction spectrum based on the excitation waveform and response waveform that have been Fourier transformed by the Fourier transform means; A correction spectrum conversion means for substituting the real part of each frequency component excluding the DC component of the spectrum with zero and the imaginary part with the square root of the power, and an inverse Fourier converter of the correction spectrum converted by the correction spectrum conversion means. 1. A waveform correction device for a vibration testing machine, comprising an inverse Fourier transform means for converting the waveform.
JP59110347A 1984-05-29 1984-05-29 Waveform correction device in vibration tester Expired - Lifetime JPH067367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110347A JPH067367B2 (en) 1984-05-29 1984-05-29 Waveform correction device in vibration tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110347A JPH067367B2 (en) 1984-05-29 1984-05-29 Waveform correction device in vibration tester

Publications (2)

Publication Number Publication Date
JPS60252920A true JPS60252920A (en) 1985-12-13
JPH067367B2 JPH067367B2 (en) 1994-01-26

Family

ID=14533449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110347A Expired - Lifetime JPH067367B2 (en) 1984-05-29 1984-05-29 Waveform correction device in vibration tester

Country Status (1)

Country Link
JP (1) JPH067367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347847A2 (en) * 1988-06-21 1989-12-27 Supfina Maschinenfabrik Hentzen GmbH & Co. KG Automatic centreless finishing apparatus for articles with a rotation-symmetric surface in a pass-through machine
JPH02217904A (en) * 1989-02-17 1990-08-30 Toyoda Mach Works Ltd Positioning control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397262B2 (en) * 2010-02-22 2014-01-22 株式会社島津製作所 Vibration test equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347847A2 (en) * 1988-06-21 1989-12-27 Supfina Maschinenfabrik Hentzen GmbH & Co. KG Automatic centreless finishing apparatus for articles with a rotation-symmetric surface in a pass-through machine
JPH02217904A (en) * 1989-02-17 1990-08-30 Toyoda Mach Works Ltd Positioning control device

Also Published As

Publication number Publication date
JPH067367B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JP5420621B2 (en) Non-Gaussian vibration control device
JP2018021781A (en) Non-gaussian vibration control device
CN109765512A (en) Magnetic resonance gradient system and its eddy current compensation method and device
JPS60252920A (en) Waveform corrector for vibration tester
JPS63208913A (en) Vibration control device
JP3281875B2 (en) Shaking table waveform control apparatus and method
JP2002156308A (en) Shaking table and its control device and control method
JP3809880B2 (en) Method and apparatus for acquiring transfer function within a short time in vibration control system
JP2022045086A (en) System for finding reverberation
JPH0259638A (en) Compensating method for input of vibration tester
JPH05188105A (en) Impulse response measuring apparatus
JP4209266B2 (en) Real-time simulation apparatus and real-time simulation method
JP7405347B2 (en) Vibration control device using kurtosis response spectrum
JPS60254211A (en) Waveform corrector for vibration tester
JP2594782B2 (en) Electronic musical instrument
JPS6199835A (en) Waveform correcting device of oscillation tester
JPS61164135A (en) Vibration testing method
JP2002228541A (en) Vibration table and its control device and control method
JPH0514879U (en) Shaking table controller
JP2000253499A (en) Instrument for measuring impulse response
JP2001056265A (en) Waveform control device
JPS6331224A (en) Accuracy improving system for a/d conversion sample value
JPH02287805A (en) Method and device for controlling waveform
SU1361504A1 (en) Device for controlling dynamic tests
JP2506982B2 (en) Image reader