JPS5843904B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5843904B2
JPS5843904B2 JP51138610A JP13861076A JPS5843904B2 JP S5843904 B2 JPS5843904 B2 JP S5843904B2 JP 51138610 A JP51138610 A JP 51138610A JP 13861076 A JP13861076 A JP 13861076A JP S5843904 B2 JPS5843904 B2 JP S5843904B2
Authority
JP
Japan
Prior art keywords
circuit
channel
semiconductor device
stages
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51138610A
Other languages
Japanese (ja)
Other versions
JPS5363877A (en
Inventor
光正 芦田
秀夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP51138610A priority Critical patent/JPS5843904B2/en
Publication of JPS5363877A publication Critical patent/JPS5363877A/en
Publication of JPS5843904B2 publication Critical patent/JPS5843904B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、各種のCMO8論理回路を簡単Iこ構成でき
る半導体装置の製作方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device that can easily configure various CMO8 logic circuits.

CMO3FETの組合せからなる論理回路は、従来はそ
の要求された論理回路ごとにそれぞれパターンを設計し
、各トランジスタの配列の仕方、コンタクトの取り方、
出力段の構成その他をその都度考えていたしかしこの方
式では手数がか\す、集積度が犬になった場合の計算機
処理ではもつと画一的、機械的処理が望まれてくる。
Conventionally, a logic circuit consisting of a combination of CMO3FETs is designed by designing a pattern for each required logic circuit, and determining how to arrange each transistor, how to make contacts, etc.
The configuration of the output stage, etc., had to be considered each time, but this method is time-consuming, and when the degree of integration becomes small, uniform and mechanical processing is desired.

本発明はこのような要求に応えようとするもので、パフ
ォーマンスは若干落ちるとしても、予め基準の型のトラ
ンジスタ対を多数所定のパターンで配列しておき、単に
配線、それも交叉部のない直線状の配線を施すだけで所
望の各種の論理回路を構成し得るようlこしようとする
ものである。
The present invention is an attempt to meet such demands, and even if the performance is slightly degraded, a large number of transistor pairs of a standard type are arranged in advance in a predetermined pattern, and the wiring is simply a straight line with no intersections. It is an attempt to make it possible to construct various desired logic circuits simply by providing wiring in the form of wires.

本発明の半導体装置の製作方法は半導体基板に、各々独
立したソース領域およびドレイン領域を備え、ゲート電
極はPチャンネル側およびNチャンネル側各トランジス
タのそれを連結させたP、Nチャンネルトランジスタ対
を複数個配列し、その配列方向に沿って平行に延びる複
数本の導体パターンによりソースおよびドレイン領域の
結線を行なってCM OS論理回路を構成することを特
徴とするが、次lこ図面を参照しながらこれを詳細に説
明する。
The manufacturing method of a semiconductor device of the present invention includes a plurality of pairs of P and N channel transistors, each of which has independent source and drain regions on a semiconductor substrate, and whose gate electrode connects each transistor on the P channel side and the N channel side. The CMOS logic circuit is characterized in that a CMOS logic circuit is constructed by connecting source and drain regions using a plurality of conductor patterns arranged in parallel with each other along the arrangement direction. This will be explained in detail.

第1図a、b、cは本発明の実施例を示す。Figures 1a, b and c show embodiments of the invention.

これらの図において、A−Gは入力信号であり第1図a
に示される如く、入力AとBは2人カアンド回路A1に
加え、アンド回路A、の出力は入力Cと共に2人カオア
回路R1に加え、オア回路R1の出力は入力りとEが加
えられる2人カオア回路R2の出力と共に2人カアンド
回路A2に加え、アンド回路A2の出力は入力FとGが
加えられる2人カアンド回路A3の出力と共にノア回路
R4に加え、ノア回路R4の出力はインバータからなる
バッファ回路BPを通して出力する。
In these figures, A-G are input signals and are shown in Figure 1a.
As shown in , inputs A and B are added to the two-person AND circuit A1, the output of the AND circuit A is added to the two-person AND circuit R1 along with the input C, and the output of the OR circuit R1 is added to the inputs E and 2. The output of the AND circuit A2 is added to the NOR circuit R4 together with the output of the two-person AND circuit A3 to which inputs F and G are added, and the output of the NOR circuit R4 is input from the inverter. It is output through a buffer circuit BP.

第1図すはかSる論理回路をP−fヤンネルFET列P
とNチャンネルFET列NによるCMO8回路で構成し
たものであり、並列接続したPチャンネルFET P
AとPBおよび直列接続したNチャンネルFET N
AとNBがアンド回路A1を、またPA 、PBの並列
接続に直列に接続されたPチャンネルFET PCと
NA、NBの直列接続と並列に接続されたNチャンネル
FET Noがオア回路R1を構成する。
Figure 1 shows the logic circuit of P-f channel FET array P.
It consists of 8 CMO circuits with N-channel FET rows N, and P-channel FETs P connected in parallel.
A and PB and N-channel FET N connected in series
A and NB form an AND circuit A1, and a P-channel FET connected in series with the parallel connection of PA and PB. An N-channel FET No. connected in parallel with the series connection of PC, NA and NB forms an OR circuit R1. .

また直列接続されたPチャンネルFET PD、PE
と並列接続されたNチャンネルFET ND、NEが
オア回路R2を構成し、また並列接続されたPチャンネ
ルFET ppPGと直列接続されたNチャンネルFE
T NFNGがアンド回路A3を構成する更にアンド回
路A2はPA−PCとPD、PEの並列接続およびNA
−NoとND、NEの直列接続で構成され、ノア回路R
4はPA−PEとPF、PGの直列接続およびNA−N
EとNF、NGの並列接続で構成される。
Also, P-channel FETs PD, PE connected in series
N-channel FETs ND and NE connected in parallel constitute OR circuit R2, and N-channel FE connected in series with P-channel FET ppPG connected in parallel.
T NFNG constitutes an AND circuit A3. Furthermore, an AND circuit A2 consists of the parallel connection of PA-PC, PD, and PE, and the NA
- Consists of series connection of No, ND, and NE, NOR circuit R
4 is the series connection of PA-PE, PF, and PG and NA-N
It consists of parallel connection of E, NF, and NG.

即ちCMO8回路では、アンド回路はPチャンネルでは
並列接続、Nチャンネルでは直列接続となり、オア回路
はPチャンネルでは直列接続、Nチャンネルでは並列接
続となる。
That is, in the CMO8 circuit, the AND circuit is connected in parallel for the P channel and connected in series for the N channel, and the OR circuit is connected in series for the P channel and connected in parallel for the N channel.

バッファ回路BFは、3個並列のPチャンネルFETP
1〜P3とNチャンネルFET Nl−N3を直列接
続してなる。
The buffer circuit BF is composed of three parallel P-channel FETPs.
1 to P3 and N-channel FETs Nl-N3 are connected in series.

第1図Cはこの第1図aまたはbに示す論理回路を本発
明の半導体装置により構成した具体例を示す。
FIG. 1C shows a specific example in which the logic circuit shown in FIG. 1a or b is constructed using the semiconductor device of the present invention.

この図に示すようにまず本発明では半導体基板SUB上
にソース領域S1 ドレイン領域D1ゲート電極Gから
なる多数のFET素子を、上段にPチャンネル型のそれ
、下段にNチャンネル型のそれと区分して直線状に並べ
て多数構成する。
As shown in this figure, first, in the present invention, a large number of FET elements each consisting of a source region S1, a drain region D1, and a gate electrode G are separated on a semiconductor substrate SUB into P-channel type devices in the upper stage and N-channel type devices in the lower stage. A large number of them are arranged in a straight line.

隣接する各FETのソース領域Sおよびドレイン領域り
は互いに独立させておき、ゲート電極GはPチャンネル
FETとNチャンネルFETのそれを互いに接続してお
く。
The source region S and drain region of each adjacent FET are made independent from each other, and the gate electrode G connects the P-channel FET and the N-channel FET to each other.

この様な基板は予め半完成品としておいても、またはそ
の都変製作してもよいが、いずれにしてもか\る基板を
用いるとCMO8論理回路は簡単に構成できる。
Such a board may be prepared in advance as a semi-finished product, or may be manufactured as needed, but in any case, using such a board allows a CMO8 logic circuit to be easily constructed.

即ち第1図a、bに示す論理回路を構成するにはP、N
ヂャンネル型各FET上にそれぞれ連続または断続する
3本の、FET対の配列方向Qこ沿って延びる平行な配
線L1. L2. L3およびL4. L5. L6を
施し、網線をけして示す如く窓Wをあけてコンタクトを
とればよい。
That is, to configure the logic circuit shown in FIG. 1a and b, P, N
On each channel-type FET, there are three continuous or discontinuous parallel wiring lines L1. extending along the FET pair arrangement direction Q. L2. L3 and L4. L5. L6 may be applied, and contact may be made by opening the window W as shown by the mesh lines.

この配線により例えばトランジスタPAのドレインはV
DD線L線区1ソースはトランジスタPBのソースに、
PBのドレインはVDD線L線区1続され、またトラン
ジスタNAのドレインは中間出力線L4に、ソースはト
ランジスタNBのドレインに接続され、アンド回路A1
が構成される。
With this wiring, for example, the drain of transistor PA is set to V
The DD line L line section 1 source is the source of transistor PB,
The drain of PB is connected to VDD line L line section 1, the drain of transistor NA is connected to intermediate output line L4, the source is connected to the drain of transistor NB, and AND circuit A1
is configured.

他のアンド、オア回路等についても同様である。The same applies to other AND and OR circuits.

トランジスタP1〜N3からなるバッファとなるインバ
ータ部も同様である。
The same holds true for the inverter section, which serves as a buffer and includes transistors P1 to N3.

この半導体装置ではPチャンネル、Nチャンネル各FE
T側とも3段を越えない範囲で形成できるすべての論理
回路を、配線のみの変更で簡単に構成できる。
In this semiconductor device, each P channel and N channel FE
All logic circuits that can be formed within the range of not exceeding three stages on the T side can be easily configured by changing only the wiring.

配線を各3本でなく4本以上にして4段以上の論理回路
も構成可能ではあるが、段数が余り増加すると動作遅延
が目立ち、実用上問題が生じてくる。
Although it is possible to configure a logic circuit with four or more stages by using four or more wires instead of three wires each, if the number of stages increases too much, the operation delay becomes noticeable, which poses a practical problem.

3段積みの論理回路は82種類あり、4段積みは343
0種類ある。
There are 82 types of 3-level stacked logic circuits, and 343 types of 4-level stacked logic circuits.
There are 0 types.

従って本発明の半導体装置は相当に多数の論理回路の製
作に利用できる。
Therefore, the semiconductor device of the present invention can be used to fabricate a considerably large number of logic circuits.

この段数を論理図から判断する方法を述べると、Pチャ
ンネル側ではオア回路に着目し、またNチャンネル側で
はアンド回路に着目し、これらがあれば2段とする。
A method for determining the number of stages from a logic diagram is to focus on OR circuits on the P channel side, and on AND circuits on the N channel side, and if these are present, it is assumed to be two stages.

第1図aの回路で言えば、Pチャンネル側についてはア
ンド回路A1は1段で、入力C等と同様に考えてよく、
次のオア回路R1は2段となり、オア回路R2の2段と
同じになる。
In the circuit of Figure 1a, the AND circuit A1 on the P channel side is one stage, and can be considered in the same way as the input C etc.
The next OR circuit R1 has two stages, which is the same as the two stages of OR circuit R2.

次のアンド回路A2.A3も段数的には数えなくてよく
、しかし次のノア回路R4(段数的(こはオアと同じ)
は2段つまり1段プラスとなり、全体で3段になる。
Next AND circuit A2. A3 also does not need to be counted in terms of the number of stages, but the next NOR circuit R4 (in terms of the number of stages (this is the same as OR)
is 2 stages, or 1 stage plus, making the total 3 stages.

Nチャンネル側ではアンド回路とオア回路を入れ換えて
考え、初段アンド回路A1が2段、次のアンド回路A2
がプラス1段、で計3段、これとノア回路R4に並列に
入るアンド回路A3は2段であるから多い方をとって3
段、オア回路R1,rt2゜R4は0段であるから結局
本回路はN(ヤンネル側も3段となる。
On the N channel side, the AND circuit and OR circuit are interchanged, and the first stage AND circuit A1 is replaced by two stages, and the next stage AND circuit A2
is plus one stage, totaling 3 stages, and the AND circuit A3 which is connected in parallel to NOR circuit R4 has 2 stages, so take the larger one and get 3 stages.
Since the OR circuit R1, rt2°R4 has 0 stages, this circuit has N stages (the Jannel side also has 3 stages).

3段積み論理回路は本半導体装置によれば、P。According to the present semiconductor device, the three-level stacked logic circuit has P.

N各チャンネル側ともL1〜L3.L4〜L6の3本の
導線で交叉することなく必要な結線を行なうことができ
る。
N L1 to L3 on each channel side. Necessary connections can be made using the three conductive wires L4 to L6 without crossing each other.

但し、入力信号A、B、C・・・・・・の順序は任意で
はなく、図示の如き所定の順序に固定される。
However, the order of the input signals A, B, C, . . . is not arbitrary, but is fixed to a predetermined order as shown in the figure.

従って場合(こよっては入力端子と本装置との間に入力
信号の順序を入れ換えるピンスクランブルが必要である
Therefore, pin scrambling is required to change the order of input signals between the input terminal and the device.

第2図はこのピンスクランブルの例を示す。FIG. 2 shows an example of this pin scrambling.

この図においてINはA−Fからなる入力、LSは第1
図に示した如きCMO8複合論理セル、PSはピンスク
ランブル部、OUTは出力端である。
In this figure, IN is the input consisting of A-F, and LS is the first
In the CMO8 complex logic cell shown in the figure, PS is a pin scrambling section and OUT is an output terminal.

第1図に示す様な論理セルを多数用いることにより多入
力、多出力の論理ゲート配列を作ることができるが、こ
の場合、論理の種類によって論理セルの入力の順序が異
なることがあるが、これにはピンスクランブル部PSで
入力の順序換えを行なえばよい。
By using a large number of logic cells as shown in Figure 1, it is possible to create a multi-input, multi-output logic gate array, but in this case, the order of inputs to the logic cells may differ depending on the type of logic. This can be accomplished by rearranging the input order using the pin scrambling section PS.

このピンスクランブル部PSは、各セルLSのゲートを
延長し交叉線La 、 Lb・・・・・・により所定ゲ
ート間を接続したもので、これにより各論理セルに所望
の順序で人力A、 −Gを加えることが可能となる。
This pin scrambling section PS extends the gates of each cell LS and connects predetermined gates by crossing lines La, Lb, . It becomes possible to add G.

またこの半導体装置で71使用素子対は人力数に従って
定まり、本例の如きA−F7人力では7対を用いる。
In addition, the number of 71 element pairs used in this semiconductor device is determined according to the number of manpower, and in the case of A-F7 manpower as in this example, 7 pairs are used.

周知のようにCMO8論理回路は出力がVSSかVDD
かのレシオレスタイプであり、トランジスタのサイズを
変えずに直列接続を行rfつでも出力レベルに影響はな
い。
As is well known, the output of the CMO8 logic circuit is either VSS or VDD.
It is a ratioless type, so even if the transistors are connected in series in one row without changing the transistor size, the output level will not be affected.

これはパターンレイアウト上非常に有効であり、本発明
の半導体装置でも各トランジスタのサイズは一定にして
いる。
This is very effective in terms of pattern layout, and the size of each transistor is made constant in the semiconductor device of the present invention as well.

しかしこの場合直列接続段数が大きくなると回路のイン
ピーダンスが大きくなり、遅延時間が犬になる。
However, in this case, as the number of series-connected stages increases, the impedance of the circuit increases and the delay time increases.

そこで本発明ではバッファBFを入れて(このファンア
ウトは1である)段数毎に回路の特性を規格化している
Therefore, in the present invention, a buffer BF is inserted (the fan-out is 1) to standardize the circuit characteristics for each stage.

バッファ段にFETを3個並列接続したのは容量の関係
であり、個数はこれに限定するものではない。
The reason why three FETs are connected in parallel in the buffer stage is due to the capacity, and the number is not limited to this.

こ和、はCAD(コンピュータエイプントデザイン)で
のLSI設計に有効である。
Kowa is effective for LSI design using CAD (Computer Appointed Design).

以上詳細に説明したように本発明によればCMO8論理
回路のレイアウトを機械的に行なうことが可能になり、
設計、製作が非常に容易になる。
As explained in detail above, according to the present invention, it is possible to mechanically layout a CMO8 logic circuit,
Design and production become extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、b、cは本発明の第1の実施例を示す論理図
および配線図、第2図はピンスクランブルの例を示す配
線図である。 図面でSUBは半導体基板、Sはソース領域、Dはドレ
イン領域、Gはゲート電極、L1〜L6は導体パターン
、BFはバッファを構成するインバータである。
FIGS. 1a, b, and c are logic diagrams and wiring diagrams showing a first embodiment of the present invention, and FIG. 2 is a wiring diagram showing an example of pin scrambling. In the drawing, SUB is a semiconductor substrate, S is a source region, D is a drain region, G is a gate electrode, L1 to L6 are conductor patterns, and BF is an inverter forming a buffer.

Claims (1)

【特許請求の範囲】 1 半導体基板lこ、各々独立したソース領域およびド
レイン領域を備え、ゲート電極はPチャンネル側および
Nチャンネル側各トランジスタのそれを連結させたP、
Nチャンネルトランジスタ対を複数個配列し、その配列
方向に沿って平行に延びる複数本の導体パターンにより
ソースおよびドレイン領域の結線を行なってCMO8論
理回路を構成することを特徴とした半導体装置の製作方
法。 2 P、Nチャンネルトランジスタ対の一部で、CM
O8論理回路の回路特性を規格化するインバータを構成
することを特徴とする特許請求の範囲第1項記載の半導
体装置の製作方法。
[Scope of Claims] 1. A semiconductor substrate, each having an independent source region and a drain region, and a gate electrode connected to each transistor on the P-channel side and the N-channel side;
A method for manufacturing a semiconductor device comprising arranging a plurality of pairs of N-channel transistors and connecting source and drain regions using a plurality of conductor patterns extending in parallel along the arrangement direction to form a CMO8 logic circuit. . 2 Part of P, N channel transistor pair, CM
2. The method of manufacturing a semiconductor device according to claim 1, further comprising configuring an inverter that standardizes circuit characteristics of an O8 logic circuit.
JP51138610A 1976-11-18 1976-11-18 Manufacturing method of semiconductor device Expired JPS5843904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51138610A JPS5843904B2 (en) 1976-11-18 1976-11-18 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51138610A JPS5843904B2 (en) 1976-11-18 1976-11-18 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5363877A JPS5363877A (en) 1978-06-07
JPS5843904B2 true JPS5843904B2 (en) 1983-09-29

Family

ID=15226096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51138610A Expired JPS5843904B2 (en) 1976-11-18 1976-11-18 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5843904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520419Y2 (en) * 1985-07-10 1993-05-27

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844592Y2 (en) * 1979-04-16 1983-10-08 富士通株式会社 Semiconductor integrated circuit device
JPS5745948A (en) * 1980-09-02 1982-03-16 Nec Corp Semiconductor integrated circuit device
JPS5758334A (en) * 1980-09-24 1982-04-08 Nec Corp Manufacture of integrated circuit
JPS58213448A (en) * 1982-06-07 1983-12-12 Hitachi Ltd Driving system of load
TW310470B (en) * 1995-05-01 1997-07-11 Micron Technology Inc

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520419Y2 (en) * 1985-07-10 1993-05-27

Also Published As

Publication number Publication date
JPS5363877A (en) 1978-06-07

Similar Documents

Publication Publication Date Title
US5923060A (en) Reduced area gate array cell design based on shifted placement of alternate rows of cells
US6166560A (en) Basic cell structure having a plurality of transistors for master slice type semiconductor integrated circuit device
US4516312A (en) Method for constructing delay circuits in a master slice IC
US6091090A (en) Power and signal routing technique for gate array design
JP2016192560A (en) Gate array structure having a plurality of programmable regions
US7557614B1 (en) Topology for a n-way XOR/XNOR circuit
US6194914B1 (en) Semiconductor integrated circuit capable of realizing logic functions
JPH06236923A (en) Semiconductor integrated circuit device
JPS5843904B2 (en) Manufacturing method of semiconductor device
KR101318220B1 (en) Gate array
JP3289736B2 (en) Semiconductor integrated circuit
US5422581A (en) Gate array cell with predefined connection patterns
JPS63207148A (en) Master slice semiconductor integrated circuit
JPH10116916A (en) Cell for forming integrated circuit and method for producing the same
US4516040A (en) High-speed merged plane logic function array
JPH02285656A (en) Semiconductor integrated circuit of standard cell system
EP0092176B1 (en) Basic cell for integrated-circuit gate arrays
US4853562A (en) Programmable logic array using single transistor to generate true or complement signal
JPS6290948A (en) Semiconductor integrated circuit device
JPH0371789B2 (en)
JPH1022817A (en) Logic circuit and semiconductor integrated circuit array
US7185307B2 (en) Method of fabricating and integrated circuit through utilizing metal layers to program randomly positioned basic units
JP4156864B2 (en) Semiconductor device and manufacturing method thereof
JPH05167048A (en) Gate array
US7205795B2 (en) Semiconductor device having universal logic cell