JPS5843576A - Compound semiconductor field effect transistor and manufacture thereof - Google Patents

Compound semiconductor field effect transistor and manufacture thereof

Info

Publication number
JPS5843576A
JPS5843576A JP14165381A JP14165381A JPS5843576A JP S5843576 A JPS5843576 A JP S5843576A JP 14165381 A JP14165381 A JP 14165381A JP 14165381 A JP14165381 A JP 14165381A JP S5843576 A JPS5843576 A JP S5843576A
Authority
JP
Japan
Prior art keywords
conductive layer
active layer
electrode
trapezoidal part
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14165381A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ishii
康博 石井
Yoshimoto Fujita
藤田 良基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP14165381A priority Critical patent/JPS5843576A/en
Publication of JPS5843576A publication Critical patent/JPS5843576A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To contrive the high performance of elements, by effectively shortening an electrode length and reducing series resistances between source.gate and gate.drain. CONSTITUTION:A trapezoidal part 14 is formed on a semi-indulating GaAs substrate 11, a source region conductive layer 15 and a drain region conductive layer 16 are respectively provided on both sides of the trapezoidal part 14, an N type GaAs active layer 17 is provided over the upper surface of the trapezoidal part 14, the surface of the source region conductive layer 15 and the surface of the drain region condutive layer 16, and a gate electrode 18 having an electrode length longer than the upper side of the trapezoidal part 14 is provided on the surface of this N type GaAs active layer 17. Therefore, a gate electrode region active layer participating in the control action of the gate electrode 18 is only the N type GaAs active layer 17 on the upper surface of the trapezoidal part 14. Since the gate electrode length effectively corresponds to the upper side length of the trapezoidal part 14, high performance element by reducing the gate length are easily attained.

Description

【発明の詳細な説明】 本発明は、プレーナ形の高性能な化合物半導体電界効果
トランジスタ及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a planar type high performance compound semiconductor field effect transistor and a method for manufacturing the same.

GaAaあるいはInP等の化合物半導体を基板とする
電界効果トランジスタは、いわゆるシリコン基板のもの
に比べ、超高周波・超高速の信号処理の領域で非常に良
好な性能を発揮す、ることは周知の通シでアシ、その高
性能化のための基本的事項として、ゲート長の短縮と、
ソース・ff−)間及びゲート・ドレイン間の直列抵抗
の低減とが重要となる。しかしながら、2れを実現する
ためには微細構造のゲート電極の製作、ダート電極域活
′性層厚さの精密な制御、ゲート電極とソース・ドレイ
ン電極の精密なマスク合せ等の製造上の困難な問題かあ
一シ1.素子の構造及びその製造方法に全く新規な発想
に基づく飛躍が必要である。
It is well known that field effect transistors with compound semiconductor substrates such as GaAa or InP exhibit much better performance in the area of ultra-high frequency and ultra-high speed signal processing than those with so-called silicon substrates. In order to improve the performance of the gate, shortening the gate length,
It is important to reduce the series resistance between the source and ff-) and between the gate and drain. However, in order to realize the above, there are manufacturing difficulties such as manufacturing a gate electrode with a fine structure, precise control of the thickness of the active layer in the dirt electrode region, and precise mask alignment of the gate electrode and source/drain electrodes. Is there a problem? 1. A breakthrough based on completely new ideas is required in the structure of the device and its manufacturing method.

第1図は従来の代表的な化合物半導体電′界効果トラン
ジスタの構造図・を示すものであシ、第・1図(、)は
半絶縁性GaAs基板1にエピタキシャル成長でn型G
aAs活性層2を形成し、その上にショットキ接合のゲ
ート電極3、オーム性接触のソース電極4及びドレイン
電極5を設けたものである。第2図(b)はn型GaA
s活性層2の一部に堀込み部6を設けその中にグニト電
極3を設けたものである計このような構造には次のよう
な重要な欠点がある。まず第1図(a) 、 (b)と
もr二1!電極3の直下は均一厚さのn型GaAs活性
層2になっており’s  n型GaAs活性層2の中の
電子流の制御に関与するゲート長はr−1・電極3の長
さそのものであシ、ゲート長の短縮のためにはr−1・
電極3の長さ自体を短縮することが必要となシ、ゲート
電極形成の微細加工の制限に直面する。マヘ1::1−
ソース・f−1−間、ゲート・ドレイン間の各直列抵抗
に着目すると、第1図(、)の場合は、ゲート電極域活
性層(ゲート電極3直下のれ型GaAs活性層2)と同
じ厚さのn型GaAs活性層2にょシ直列抵抗が形成さ
れる゛ ため、ソース・ドレイン間距離の短縮とそれに
伴)う°r−1・電極3に対する相対位置を確保するマ
ス゛チ合せ精度が限界を決定することになる。第・1図
(b)の場合は、堀込部6をケ゛−1・電極長よシ少し
大きい程度にする必要があシ堀込部6に対するゲート電
極3の相対位置合せ精度が問題と゛なることに加え、ゲ
ート電極域活性層の厚さの制御にはn型GaAs活性層
2の厚さと堀込み蔀6の深さ゛の双方の精密な制御が要
求され、さらに堀込み部6の存在はゾレーナ化・IC化
において大きな障害になる。
Figure 1 shows a structural diagram of a typical conventional compound semiconductor field effect transistor. Figure 1 (,) shows an n-type G
An aAs active layer 2 is formed, and a Schottky junction gate electrode 3, an ohmic contact source electrode 4, and a drain electrode 5 are provided thereon. Figure 2(b) shows n-type GaA
This structure, in which a trench 6 is provided in a part of the active layer 2 and a Gunite electrode 3 is provided therein, has the following important drawbacks. First, Figure 1 (a) and (b) both show r21! Immediately below the electrode 3 is an n-type GaAs active layer 2 with a uniform thickness, and the gate length involved in controlling the electron flow in the n-type GaAs active layer 2 is r-1, which is the length of the electrode 3 itself. In order to shorten the gate length, r-1.
Since it is necessary to shorten the length of the electrode 3 itself, we are faced with limitations in microfabrication for forming the gate electrode. Mahe1::1-
Focusing on each series resistance between the source and f-1- and between the gate and drain, in the case of Figure 1 (,), it is the same as that of the gate electrode area active layer (lean-type GaAs active layer 2 directly below the gate electrode 3). Since a series resistance is formed in the thick n-type GaAs active layer 2, the distance between the source and drain is shortened and the matching accuracy for securing the relative position to the r-1 electrode 3 is at its limit. will be decided. In the case of Fig. 1(b), it is necessary to make the digging part 6 slightly larger than the length of the case-1 electrode.In addition, the relative alignment accuracy of the gate electrode 3 with respect to the digging part 6 becomes a problem. In order to control the thickness of the active layer in the gate electrode area, precise control of both the thickness of the n-type GaAs active layer 2 and the depth of the trench 6 is required. This becomes a major obstacle in the implementation of IC.

第2図は本発明の化合物±導体電界効果、トランジスタ
の製造工程の一例を示す図であシ、第2図(、)の工程
では半絶縁性″GaAa基板ノーの表面に5i02゜A
z2o’31 S’3N4等の絶縁膜を設け、レジスト
材を塗布し露光描画シ叫しジス1四2°をマスクとして
、・’、’、11.。
Figure 2 is a diagram showing an example of the manufacturing process of a compound ± conductor field effect transistor of the present invention.
An insulating film such as z2o'31 S'3N4 is provided, a resist material is applied, and exposure drawing is performed using the resistor 142° as a mask. .

絶縁膜13を残し1.・・、1.、第2図(b)の工程
では絶縁膜13をマスクとして硫酸系あるいは燐酸系等
のエツチング液によシ半絶縁性GaAa基板11を選択
エツチングして台形部14を形成する。台形部14は、
例えば絶縁膜13の長さを1μm、半絶縁性GaAs基
板11のエツチング量を0.25μmとすると、横方向
の工↓チング作用のためその上辺の長さは0.5μmに
なる。な誉しジス1;12は、半絶縁性GaAs基板1
1のエツチング前に除去してもよいがエツチング後まで
残しておけば、レレスト12の除iに先立ち短−間絶縁
虐13のエツチングを行い、半絶縁性GaAs基板11
あエツチングによシ生ずる一縁膜13の周辺部の庇状突
起を除去することができる。次に第2図(C)の工程で
絶縁膜13をマスクとしてn型GaAsのソース域導電
層15及″びドレイン域導電層゛16を選択エピタキシ
ャル成長させる。この場合台形部14の上面と選択エピ
タキシャル成長表面とがほぼ同一平面になるように成長
厚さを設定する。化合物半導体のエピタキシャル成長法
としては、通常のハロゲン法による気相成長法、有機金
属熱分解CVD法9分子線エピタキシャル法等の公知の
技術を用いればよい。絶縁膜13をマスクとする選択エ
ピタキシャル成金の場合、これらのエピタキシャル成長
法の種類。
1. Leaving the insulating film 13. ..., 1. In the step shown in FIG. 2(b), the trapezoidal portion 14 is formed by selectively etching the semi-insulating GaAa substrate 11 using an etching solution such as sulfuric acid or phosphoric acid using the insulating film 13 as a mask. The trapezoidal part 14 is
For example, if the length of the insulating film 13 is 1 .mu.m and the amount of etching of the semi-insulating GaAs substrate 11 is 0.25 .mu.m, the length of the upper side will be 0.5 .mu.m due to the lateral etching effect. Nahomoshijis 1 and 12 are semi-insulating GaAs substrates 1
Although it may be removed before etching step 1, if it is left until after etching, short-time dielectric etching step 13 is performed before removing resist 12, and semi-insulating GaAs substrate 11 is removed.
It is possible to remove the eave-like protrusions on the periphery of the edge film 13 that are caused by etching. Next, in the step shown in FIG. 2(C), an n-type GaAs source region conductive layer 15 and drain region conductive layer 16 are selectively epitaxially grown using the insulating film 13 as a mask. The growth thickness is set so that the surface is almost flush with the surface.As the epitaxial growth method for compound semiconductors, known methods such as vapor phase growth using a normal halogen method, organometallic pyrolysis CVD, 9-molecular beam epitaxial method, etc. In the case of selective epitaxial growth using the insulating film 13 as a mask, these epitaxial growth methods may be used.

温度等の成長条件によっては選択エピタキシャル成長層
の平坦化に絶縁膜13の周辺部の庇状突起の存在が一部
し前述の庇状突起の除去が効果的である場合がある。第
2図(d)の工程で、まず絶縁膜13を除去する。この
場合前工程の選択エピタキシャル成長の種類、成長条件
によっては絶縁膜1−3上にアモルファス状の化合物半
導体層が生成することもある力″(、かかる層も同時に
除去する。
Depending on the growth conditions such as temperature, the presence of eaves-like protrusions at the periphery of the insulating film 13 may be partially effective in planarizing the selective epitaxially grown layer, and removal of the eaves-like protrusions described above may be effective. In the process shown in FIG. 2(d), the insulating film 13 is first removed. In this case, depending on the type and growth conditions of the selective epitaxial growth in the previous step, an amorphous compound semiconductor layer may be formed on the insulating film 1-3. Such a layer is also removed at the same time.

次に台形部14上船ソース域導電層15表面及びドレイ
シ域導電層16表面にまたがってn型GaAs活性層1
7をエピタキシャル成長させる。n型GaAs活性層1
2とソース域導電層15及びドレイン域導電膚16とは
同一導電型でほぼ近似した不純物濃度を有するように構
成する。そして第2図(、)の工程で、n型GaAs活
性層17の表面に台形部14め上辺よりも長い電極長を
有するショットキ接合のケ゛−1・電極18を設け、オ
ーム性接触のソース電極19及び′ドレイン電極2oを
設けるこ□とによ)本廃嫡の化合物半導体電界効果l・
ランジスタが得られ□る二 ′ 本発明の化合物半導体電界効果トランジスタの構造上の
特徴は、半絶縁性GaAa基板11に台形部14が形成
され、台形部14の両側にはそれぞれソース域導電層1
5とドレイン域導電層16が設けられ、台形部14の上
面、ソース域導電層15の表面及びドレイン域導電層1
6の表面にまたがってn型GaAs活性層17が設けら
れ、台型部14の上辺より長い電極長を有するダート電
極18がこのn型GaAs活性層17の表面に設けられ
て−いる所にある。
Next, an n-type GaAs active layer 1 is placed over the trapezoidal part 14 on the surface of the source region conductive layer 15 and the surface of the Drayshi region conductive layer 16.
7 is epitaxially grown. n-type GaAs active layer 1
2, the source region conductive layer 15, and the drain region conductive layer 16 are of the same conductivity type and have substantially similar impurity concentrations. Then, in the process shown in FIG. 2(,), a Schottky junction case 1 electrode 18 having an electrode length longer than the upper side of the trapezoidal part 14 is provided on the surface of the n-type GaAs active layer 17, and a source electrode 18 with an ohmic contact is formed. 19 and 'by providing the drain electrode 2o) the present compound semiconductor field effect l.
2' The compound semiconductor field effect transistor of the present invention has a structural feature that a trapezoidal part 14 is formed on a semi-insulating GaAa substrate 11, and a source region conductive layer 1 is formed on each side of the trapezoidal part 14.
5 and a drain region conductive layer 16 are provided.
An n-type GaAs active layer 17 is provided across the surface of the n-type GaAs active layer 17, and a dart electrode 18 having an electrode length longer than the upper side of the trapezoidal portion 14 is provided on the surface of the n-type GaAs active layer 17. .

従って、ゲート電極18の制御作用に関与する □f−
1−電極域活性層は、台形部14の上面部分のn型Ga
As活性層17のみであり、ゲート電極長は実効的に台
形部14の上辺長に相当する。前述のように1μmのマ
スクで0.5μmの台形部上辺が、声。
Therefore, □f- is involved in the control action of the gate electrode 18.
1-electrode area active layer is n-type Ga on the upper surface part of the trapezoidal part 14.
There is only an As active layer 17, and the gate electrode length effectively corresponds to the length of the upper side of the trapezoidal part 14. As mentioned above, the upper side of the 0.5 μm trapezoidal part of the 1 μm mask is the voice.

易に形成され、1μm長のゲート電極を設けても実、 
  1 効ゲート電極長として0.5μm1り実現されるので、
短ゲート長化による高性能素子が容易に達成される。 
                   ・・=2 、
・また薄いダート電極域活性層から直接的に厚いソース
域導°電1層15及びドレイン域導電層16に接続され
るので付加的な直列抵抗を微少にすることができ高性能
化に大きく貢献する。
It is easy to form, and even if a gate electrode with a length of 1 μm is provided,
1 Since the effective gate electrode length is 0.5 μm,
High performance devices can be easily achieved by shortening the gate length.
...=2,
・Also, since the thin dart electrode active layer is directly connected to the thick source region conductive layer 15 and drain region conductive layer 16, additional series resistance can be minimized, greatly contributing to higher performance. do.

−力木発明の製造方法によれば、台形部14を形成する
だめの選択エツチングと、ソース域導電層15及びドレ
イン域導電層16を形成するための選択エピタキシャル
成長との工程で同じ絶縁膜13をマスク°として使用で
きるので、工程の簡素化けも−とよシ該工程相互間のマ
スク合せも不要となる。r−1・電極域活性層厚さは、
第1図(b)に示す従来のものでは活性層成長厚さとエ
ツチング深さとの差によっていたのに対し、活性層成長
厚さのみで決定されるので制御性がよい。さらにゲート
電極18は実効的なゲート電極長よシ長くできるので、
デート電極18の長さの制御及び)la−1−電極18
と合一部14との相対位置合せのためのマスク合せ精度
系ともに緩和され、製造歩留シの1o□、、%1゜ゎI
諌。′□6゜ 1 以上説明・したように、本発明の化合物半導体電界
効果トランジスタ及びその製造方法によれば、実効的に
ゲート電極長の短縮化やソース・ゲート間及びゲート・
ドレイン間の直夕1j抵抗を低減することができるので
素子の高性能化力;は力1れ、製造工程の簡素化、製造
歩留シの向上、特性の均一イヒも達成できプレーナIC
化も容易にできる等のすぐれた効果が得られる。
- According to the manufacturing method of Rikiki's invention, the same insulating film 13 is used in the steps of selective etching to form the trapezoidal part 14 and selective epitaxial growth to form the source region conductive layer 15 and drain region conductive layer 16. Since it can be used as a mask, it simplifies the process and eliminates the need for mask alignment between processes. r-1・electrode area active layer thickness is
In contrast to the conventional method shown in FIG. 1(b), which depends on the difference between the active layer growth thickness and the etching depth, controllability is good because it is determined only by the active layer growth thickness. Furthermore, since the gate electrode 18 can be made longer than the effective gate electrode length,
Control of the length of the date electrode 18 and) la-1-electrode 18
The mask alignment accuracy system for relative positioning of the joint part 14 and the joint part 14 is relaxed, and the manufacturing yield is reduced to 1o□,,%1゜ゎI.
Isa. '□6゜1 As explained and described above, according to the compound semiconductor field effect transistor and the manufacturing method thereof of the present invention, the gate electrode length can be effectively shortened and the distance between the source and gate and between the gate and gate can be effectively shortened.
Since it is possible to reduce the direct resistance between the drains, it is possible to improve the performance of the device, simplify the manufacturing process, improve the manufacturing yield, and achieve uniform characteristics.
Excellent effects such as easy conversion can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化合物半導体電界効果トランジスタの構
造図、第2図は本発明の化合物半導体電界効果l・ラン
ジスタの製造工程の−fljを示す図である。 11・・・半絶縁性化合物半導体基板、12・・・絶縁
膜、′14・・・台形部、15・・・n型GaAsのソ
ース域導電層、16・・・n型GaAsのドレイン域導
電)’ji、”・・・n型GaAs活性層、18・・・
ゲート電極。 (b)
FIG. 1 is a structural diagram of a conventional compound semiconductor field effect transistor, and FIG. 2 is a diagram showing -flj of the manufacturing process of the compound semiconductor field effect transistor of the present invention. DESCRIPTION OF SYMBOLS 11... Semi-insulating compound semiconductor substrate, 12... Insulating film, '14... Trapezoidal part, 15... N-type GaAs source region conductive layer, 16... N-type GaAs drain region conductive layer )'ji,"... n-type GaAs active layer, 18...
gate electrode. (b)

Claims (2)

【特許請求の範囲】[Claims] (1)  上面に台形部を有する半絶縁性化合物半導体
基板と、前記台形部の両側に表面が前記台形部上面とほ
ぼ同二千面になるように設けられた一導電型の導電層と
、前記台形部上面及び前記−導電型の導電層の表面に設
けられた前記下溝電型の導電層と同一導電型の活性層と
、この活性層の表面に設けられた前−配合形部上辺よシ
′長いダート電極長を有するダート電極とを備えること
を特徴とする化合物半導体電界効果トランジスタ。
(1) a semi-insulating compound semiconductor substrate having a trapezoidal portion on its upper surface; a conductive layer of one conductivity type provided on both sides of the trapezoidal portion so that its surface is approximately the same as the upper surface of the trapezoidal portion; an active layer of the same conductivity type as the conductive layer of the lower conductivity type provided on the upper surface of the trapezoidal part and the surface of the conductive layer of the conductivity type; 1. A compound semiconductor field effect transistor comprising: a dart electrode having a long dart electrode length.
(2)半絶縁性化合物半導体基板に絶縁膜をマスクとし
て選択エツチングを行ない台形部を形成する工程と、前
記選択エツチング部分が一導電型の導電層で埋ま′るよ
うに前記絶縁膜をマスクとして選択エピタキシャル成長
を行なう工程と、前記台形部上面及び前記−導電型の導
電層の表面に前記−導電型の導電層と同一導電型の活性
層をエピタキシャル成長させる工程と、前記台形部上辺
より長“ダート電極長を有するr−1゛電讐を設ける工
程とを含むことを特徴とする化合物半導体電界効果トラ
ンジスタの製造方法。
(2) A step of performing selective etching on a semi-insulating compound semiconductor substrate using an insulating film as a mask to form a trapezoidal part, and masking the insulating film so that the selectively etched part is filled with a conductive layer of one conductivity type. a step of epitaxially growing an active layer of the same conductivity type as the conductive layer of the -conductivity type on the upper surface of the trapezoidal part and the surface of the conductive layer of the -conductivity type; 1. A method for manufacturing a compound semiconductor field effect transistor, comprising the step of providing an r-1 electrode having a dart electrode length.
JP14165381A 1981-09-10 1981-09-10 Compound semiconductor field effect transistor and manufacture thereof Pending JPS5843576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14165381A JPS5843576A (en) 1981-09-10 1981-09-10 Compound semiconductor field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14165381A JPS5843576A (en) 1981-09-10 1981-09-10 Compound semiconductor field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5843576A true JPS5843576A (en) 1983-03-14

Family

ID=15297044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14165381A Pending JPS5843576A (en) 1981-09-10 1981-09-10 Compound semiconductor field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5843576A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953780A (en) * 1972-09-28 1974-05-24
JPS50109683A (en) * 1974-02-04 1975-08-28
JPS5322378A (en) * 1976-08-13 1978-03-01 Fujitsu Ltd Production of field effect transistor s
JPS5426668A (en) * 1977-07-29 1979-02-28 Nec Corp Field effect transistor of junction gate type

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953780A (en) * 1972-09-28 1974-05-24
JPS50109683A (en) * 1974-02-04 1975-08-28
JPS5322378A (en) * 1976-08-13 1978-03-01 Fujitsu Ltd Production of field effect transistor s
JPS5426668A (en) * 1977-07-29 1979-02-28 Nec Corp Field effect transistor of junction gate type

Similar Documents

Publication Publication Date Title
EP0303248B1 (en) Method of forming a mask pattern and recessed-gate MESFET
JPS6323666B2 (en)
JPS5843576A (en) Compound semiconductor field effect transistor and manufacture thereof
JPS6323668B2 (en)
JPS6242398B2 (en)
JPS6237890B2 (en)
JPS6323667B2 (en)
JPS592385B2 (en) Mesa-type inactive V-gate GaAs field effect transistor and its manufacturing method
JP2893776B2 (en) Method for manufacturing semiconductor device
JPS5850434B2 (en) Method for manufacturing field effect transistors
JPS5852351B2 (en) Manufacturing method of semiconductor device
JPH01117366A (en) Manufacture of semiconductor device
JPS6239834B2 (en)
JPS6245078A (en) Field effect transistor and manufacture thereof
JPS6332273B2 (en)
JPS6161549B2 (en)
KR100220870B1 (en) Manufacturing method of the compound semiconductor device
JPS61150379A (en) Manufacture of semiconductor device
JPS6392062A (en) Manufacture of field effect transistor
JPS60136264A (en) Manufacture of semiconductor device
JPS5946109B2 (en) Method for manufacturing insulated gate field effect transistor
JPS6161550B2 (en)
JPH01133373A (en) Manufacture of field effect transistor
JPS6070772A (en) Manufacture of field-effect transistor
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor