JPS5842949A - Monitoring method for body in periodic motion - Google Patents

Monitoring method for body in periodic motion

Info

Publication number
JPS5842949A
JPS5842949A JP14216981A JP14216981A JPS5842949A JP S5842949 A JPS5842949 A JP S5842949A JP 14216981 A JP14216981 A JP 14216981A JP 14216981 A JP14216981 A JP 14216981A JP S5842949 A JPS5842949 A JP S5842949A
Authority
JP
Japan
Prior art keywords
value
periodic motion
density function
probability density
dispersive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14216981A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takeyasu
数博 竹安
Satoshi Ueda
植田 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14216981A priority Critical patent/JPS5842949A/en
Publication of JPS5842949A publication Critical patent/JPS5842949A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/021Gearings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To monitor a body in periodic motion without reference to equipment size, a load, etc., by comparing the dispersive normalized value of the even- numbered moment of the probability density function of oscillation data with the normal logical value of the body in periodic motion, and thus detecting a fault. CONSTITUTION:The oscillation of reduction gears 1 for a body in periodic motion is detected by an oscillation detector 4 and sampled at specified intervals by a sampling circuit 5, whose output is A/D-converted and then stored in a storage device 6. On the basis of the storage contents, a computing device 7 performs arithmetic according to equalitiesIand II to calculate the dispersive normalized value K of the even-numbered moment of the probability density function of the oscillation data which corresponds to the extent of a normal distribution. Then, a comparing circuit 9 compares said calculated value with a logical dispersive normalized value K as a constant, such as three, of the body in periodic motion stored in a memory 8 and when their difference is great, a decision on the occurrence of a fault is made to operate an alarm device 10, etc. This constitution monitors the body in periodic motion without reference to the equipment size, load, etc. Further, P(x):x is the probability density function.

Description

【発明の詳細な説明】 本発明はベアリング、歯車のように回転等の周期運動を
行う物体の監視方法に関し、更に詳述、すれば回転部に
偏心、傷が発生して回転が異常になったことを、周期運
動体を備えた機器のサイズ、負荷状況等とFi無関係な
普遍的判定基準によシ検出する方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for monitoring objects that perform periodic motion such as rotation, such as bearings and gears. The present invention relates to a method of detecting this using a universal criterion that is unrelated to Fi, such as the size and load status of equipment equipped with periodic moving bodies.

一般にベアリング、歯車等の周期運動体及びこれらを備
えた機器において部品の傷、回転軸の偏心、潤滑の不良
等の異常が発生した場合に゛はこれを放−するとベアリ
ング、歯車等の部分的破損のみならず、これらを備えた
機器全体の故障、破壊を惹起する。従ってこのような異
常の程度を正擁に把握することはベアリング、歯車等を
有する機器の保守管理上、極めて重要な課題である。従
来このような異常の程度を把握するために周期運動体に
センナを収り付け、その出力信号から得られるデータよ
りRMS (Root Mean 5quare )値
又はパワースペクトル積分値を求め、それらの解析によ
って機器の診断、監視を行うこととしていた。RMS値
は下記CI)式にて定義される値で1+、似し、xI:
時系列データ(izl、 2”・N)N :データ飲 パワースペクトル積分値SPは下記(2)式にて定義さ
れる値である。
In general, if abnormalities such as scratches on parts, eccentricity of the rotating shaft, or poor lubrication occur in periodic moving bodies such as bearings and gears, and equipment equipped with these, if the abnormalities occur, such as parts of the bearings and gears, etc. This causes not only damage but also failure and destruction of the entire equipment equipped with them. Therefore, accurately grasping the extent of such abnormality is an extremely important issue in the maintenance and management of equipment including bearings, gears, etc. Conventionally, in order to understand the extent of such abnormalities, a senna is placed in a periodic moving body, and the RMS (Root Mean 5quare) value or power spectrum integral value is determined from the data obtained from the output signal, and the equipment is determined by analyzing them. The plan was to diagnose and monitor the situation. The RMS value is 1+, similar to the value defined by the following CI) formula, xI:
Time series data (izl, 2''·N) N: The data power spectrum integral value SP is a value defined by the following equation (2).

似し、5(f) :周波数fにおけるパワースペクトル
値[f、、 f1] :積分区間 これらの値は機器のサイズ、負荷の大小9回転速度等に
よって区々に異なシ、−普遍的な判断基準を設けること
ができず、個々の正常時のデータを零発#!A#−i所
かる事情に鑑みてなされたものであり、歯車、ベアリン
グ等の周期運動体に異常が発生し九際に機器のサイズ、
負荷状品等e監視体の条件に左右されない普遍的な判断
基準により異常を検出する周期運動体の監視方法を提供
すること・を目的とする。
5(f): Power spectrum value at frequency f [f,, f1]: Integral interval These values vary depending on the size of the equipment, the magnitude of the load, and the rotation speed, etc. - This is a universal judgment. Unable to set a standard, individual normal data was released #! A#-i This was done in consideration of certain circumstances, and when an abnormality occurred in periodic moving bodies such as gears and bearings, the size of the equipment,
It is an object of the present invention to provide a method for monitoring a periodic moving body, such as a load, which detects an abnormality using a universal criterion that is not affected by the conditions of the e-monitoring body.

零発#14に係る周期運動体の監視方法は、周期運動体
の振動を一定周期′″c−rンプリングして得たサンプ
リング値群によって構成される確率密度関数の高次モー
メントを前記サンプリング値群の分散にて正規化した値
と、前記周期運動体が正常である場合における前記サン
プリング値群に係る正規化高次モーメントの理論値とを
比較し、その比較結果に基き周期運動体の異常を°検知
することを特徴とする。
The method for monitoring a periodic moving body according to zero shot #14 is to calculate the higher-order moment of a probability density function formed by a group of sampling values obtained by subjecting the vibration of a periodic moving body to constant period '''cr sampling as the sampling value. The value normalized by the variance of the group is compared with the theoretical value of the normalized higher-order moment related to the sampled value group when the periodic body is normal, and based on the comparison result, it is determined whether the periodic body is abnormal. It is characterized by detecting °.

先ず本発明の原理について述べる。被監視体が正常であ
る場合にはこれから得られるデータの確率密度関数(P
robability Density Functi
on以下P、D、F以下略す)は一般に正規分布をなす
と考えられるが、の要部であるが、この乱れを定量化す
る手段としてPLD、F、−のモーメントがあげられる
が、そのモーメントのうち奇数次モーメントは分布の対
称性を、偶数次モーメントは分布の広がりを夫々示すの
で後者が選択される。また振幅が大きいデー、夕群は分
散が大きいので、2次より大きな次数の偶数次モーメン
トをとニジ、これを分散にて正規化した値、例えば次式
に示す指標KKよシ前記乱れを定量化する。
First, the principle of the present invention will be described. If the monitored object is normal, the probability density function (P
robustness density function
(P, D, F (hereinafter omitted)) are generally considered to have a normal distribution, but the moment of PLD, F, - can be mentioned as a means of quantifying this disturbance, which is the main part of . The latter is selected because the odd-order moments indicate the symmetry of the distribution, and the even-order moments indicate the spread of the distribution. In addition, since the dispersion is large for days and evening groups with large amplitudes, the disturbance can be quantified using an even-order moment with an order larger than the second order, and a value normalized by the dispersion, for example, the index KK shown in the following formula. become

似し、X:時系列データ 玖幻:XのP、D、F。Similar, X: Time series data Kugen: X's P, D, F.

E:平均操作 声、:4次モーメント l!:Xの分散        ” 被監視体が正常である場合にはそのP、D、F、は理論
的に正規分布をなし、Kの値は理論面に3.0となる。
E: average operating voice,: fourth moment l! :Dispersion of X ” When the monitored object is normal, its P, D, and F have a theoretical normal distribution, and the value of K is theoretically 3.0.

従って機器のサイズ、負荷状況等に拘らず、Kの値を判
定基準とし、Kの値の8.0からの離隔程度IK−8,
01により、被監視体の異常の程度を把握する。即ち被
監視体が異常な場合Ul、に−3,01が大きくなるの
で、その値により、被監視体の異常の程度を把握するの
である。
Therefore, regardless of the size of the equipment, load status, etc., the value of K is used as the criterion, and the degree of separation from the value of K of 8.0 is IK-8,
01, the degree of abnormality of the monitored object is grasped. That is, when the object to be monitored is abnormal, -3.01 becomes large in Ul, so the degree of abnormality in the object to be monitored can be grasped from this value.

次は本発明方法をその実施例を示す図面に基いて説明す
る。第1図は本発明方法の実施状態を示す模式図であっ
て、減速機IKI/i所定のギヤ比を持った歯車1a、
lbが内蔵されており、その歯車1mの中心孔に嵌通さ
れた軸1gは減速機lのハウジングに対置されたベアリ
ングlc、ldによって支承され、また歯車1bの中心
孔に嵌通された軸1hは減速機1のハウジングに対設さ
れたベアリングle、1fKよ゛つて支承されている。
Next, the method of the present invention will be explained based on drawings showing examples thereof. FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention, in which a gear 1a having a predetermined gear ratio of a reducer IKI/i,
The shaft 1g, which is fitted into the center hole of the gear 1m, is supported by bearings lc and ld placed opposite to the housing of the reducer l, and the shaft 1g, which is fitted into the center hole of the gear 1b, is built-in. 1h is supported by bearings le and 1fK, which are provided oppositely to the housing of the reducer 1.

軸1gはモーフ2の出力軸に連鹸連結されており、その
回転は歯車1a、1bKより減速されて軸1hK伝わり
、更にプーリー、ペイレ上を介°して負荷ポンプ3に伝
わるようKなっている。ベアリングlc。
The shaft 1g is connected to the output shaft of the morph 2, and its rotation is decelerated by the gears 1a and 1bK and transmitted to the shaft 1hK, and further transmitted to the load pump 3 via the pulley and Peyre. There is. bearing lc.

ld、le、ifの外輪にはその振動を検出して電気信
号に変換する振動検出装置114が取り付けられており
、該振動検出装置i4の出力はサンプリング回路5へ入
力され、ここで一定周期毎にサンプリングされでアナロ
グデー′りからデジ多ルデータに変換され、記憶装置6
へ順次ストアされていく。記憶装置6ヘストアされたデ
ジタルデータは計算装置7へ入力され、(3)式をデジ
タル値を扱うために変形した次式に基いてKの値が各検
出部毎に求められる。
A vibration detection device 114 that detects the vibration and converts it into an electric signal is attached to the outer ring of ld, le, and if. The analog data is sampled and converted into digital data, and stored in the storage device 6.
The data will be stored sequentially. The digital data stored in the storage device 6 is input to the calculation device 7, and the value of K is determined for each detection unit based on the following equation, which is a modification of equation (3) to handle digital values.

に−去・−!I’ (x(t)−x ) dt#’  
 T  O =−!−*’ j (x(t6+ (i  1)Δ) 
−M )’(4)、4   、’f 1..1 似し、 t :サンプリング時点を表わす序数 x(t):時系列データ Δ :サンプリング周期 T  : t、+(k−1)a ta:1初にサンプリングした時点 またXの分数、m、Xの平均マもデジタル値を扱うため
に変形した下記(5)式、(6)式に基りて犬々求めら
れる。
Ni-Leaving・-! I' (x(t)-x) dt#'
TO=-! -*' j (x(t6+ (i 1)Δ)
-M)'(4),4,'f1. .. 1 Similar, t: Ordinal number representing the sampling time point The average value of is also determined based on the following equations (5) and (6), which are modified to handle digital values.

・・(5) また記憶装置it8には正常レペルル及び身命レベル関
係のデータが記憶されており、そのデータと前記計算装
置7で求められたKの値とが比較回路9へ入力され、該
比較回路9で比較された結果、被監視体が異常と判定さ
れるとv!報装置10へ電気信号が送られ、*mが発せ
られるようになっている。
(5) In addition, the storage device it8 stores data related to the normal level and the life and death level, and the data and the value of K obtained by the calculation device 7 are input to the comparison circuit 9, and the comparison circuit 9 As a result of comparison in circuit 9, if the monitored object is determined to be abnormal, v! An electrical signal is sent to the alarm device 10, and *m is emitted.

叙上の如き装置を用いて減速機の歯車に人工傷(ピッチ
ング傷)を付して本発明方法の効果を確認し逐結果を第
2図及び第3図に示す。即ち第2図#′iKの値を、第
3図は確率密度関数を夫々示している。図においてAは
正常時のデータ、BJ/′i歯車に小さな傷を付した、
状態のデータ、Cは歯車に大きな傷を付した状態のデー
タを夫々示している。
The effectiveness of the method of the present invention was confirmed by creating artificial scratches (pitting scratches) on the gears of a speed reducer using the apparatus described above, and the results are shown in FIGS. 2 and 3. That is, FIG. 2 shows the value of #'iK, and FIG. 3 shows the probability density function. In the figure, A is normal data, BJ/'i gear has small scratches,
Status data C indicates data for a gear with large scratches.

正常時忙はKの値#ia、Oに近い値を示すが、歯車に
太き・な傷を付した状態でFi8.0を越え、異常に高
い値(約8.6)を示すことが分°かった。
During normal operation, the K value #ia shows a value close to O, but when the gear has thick scratches, it can exceed Fi8.0 and show an abnormally high value (approximately 8.6). It took a minute.

次に第4図に示す減速機において軸受、歯車に欠陥を付
し、更にカップリングにミスアライメントを生じさせて
本発明方法の効果を確認した結果について説明する。’
@4図に示す減速轡は、ベアリングB、、B、に支承さ
れ九軸S、に取シ付けられた歯車aS(歯数=15)と
、ベアリングB、、B、に、支承された軸S、に取り付
けられた歯車Gl(歯数=90)及び歯車G3(歯数:
15)と、ベアリングB1.B。
Next, we will explain the results of confirming the effectiveness of the method of the present invention by creating defects in the bearings and gears in the reducer shown in FIG. 4, and causing misalignment in the coupling. '
@4 The reduction gear shown in Figure 4 consists of a gear aS (number of teeth = 15) supported by bearings B, , B, and attached to nine shafts S, and a shaft supported by bearings B, , B. Gear Gl (number of teeth = 90) and gear G3 (number of teeth:
15) and bearing B1. B.

に支承さ・れた111]S、に収り付けられた歯車G、
(m故=87)とを用いて(歯車G1と歯車G、とを、
歯車 □G、と歯車G、とを夫々噛合させて)、前方を
減速伝達するものであるが、該減速機に用いられている
111] S, supported by gear G,
Using (m = 87), (gear G1 and gear G,
Gears □G and G are meshed with each other to transmit deceleration to the front, and are used in the reduction gear.

ベアリングの外輪に振動検出装置ヲ収り付け、本発明方
法の効果を確認した結果を第1:&忙示した。
A vibration detection device was installed in the outer ring of the bearing, and the results of confirming the effectiveness of the method of the present invention were shown in the first part.

この結果より軸受外輪にスポット欠陥を付した場合を除
き、Kの値は異常に高い値を示しており、本発明方法に
より異常が明瞭に判別できることが分かった。
From this result, it was found that the value of K was abnormally high except in the case where the bearing outer ring had a spot defect, and it was found that the abnormality could be clearly identified by the method of the present invention.

なお正常と異常とを判別するKの値は、機器の使用精度
にもよるので一概に指定できないが、一般的にみての目
安としては、経験的に得られた下記の所定値にて正常と
異常とを判別できる。
The value of K for determining normality and abnormality cannot be specified unconditionally as it depends on the accuracy of use of the equipment, but as a general guideline, the following predetermined values obtained empirically are considered normal. It is possible to distinguish between abnormalities and abnormalities.

2.5イにイ8.5:正常 8、5 < K <、 4.0 :異常(要警報)、K
≦4.0:異常(4iL解体検討) また従来から用いられているRMS値の解析を併用する
ことKより信頼性が高まることは勿論であリ、更に上述
の例では確率密度関数の4次モーメン)K基いてKの値
を求めたが、よシ高次のモーメントを用いてもよいこと
はいうまでもない。
2.5 A to A 8.5: Normal 8, 5 < K <, 4.0: Abnormal (alarm required), K
≦4.0: Abnormality (4iL disassembly examination) In addition, it goes without saying that the reliability will be higher than K by using the conventional RMS value analysis, and furthermore, in the above example, the 4th order of the probability density function Although the value of K was determined based on the moment), it goes without saying that a higher-order moment may be used.

以上詳述した如く本発明による場合は、周期運動体の振
動を一定周期でサンプリングして得たサンプリング値群
によって構成される確率密度関数を前記サンプリング値
群の分数にて正規化した値に基いて周期運動体の正常と
異常とを判別するので、周期運動体を備えた機器のサイ
ズ、負荷の大小9回転速度等に左右されない周期運動体
の監視方法が可能となり、個々の正常時のデータを蓄積
する必要がなく、普遍的な異常判定基準を設けることが
でき、利用価値が高い。
As described in detail above, in the case of the present invention, a probability density function constituted by a group of sampling values obtained by sampling the vibration of a periodic body at a constant period is based on a value normalized by a fraction of the group of sampling values. Since it distinguishes between normal and abnormal periodic moving objects, it is possible to monitor periodic moving objects that are not affected by the size of the equipment equipped with periodic moving objects, the magnitude of the load, and the rotational speed, etc. There is no need to accumulate data, and universal abnormality judgment criteria can be established, making it highly useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式図、第2図及
び第3図は本発明方法の効果を確認した結果を示すグラ
フ、第4図は本発明方法の効果を確認するのに用いた減
速機を示す模式図である。 1−・・減速機 1a、1b・・・歯車 1c、 ld
、 1eeIf・・・ベアリング 2・・・モータ 3
・・・ポンプ 4・・・振動検出装置f  Gt、 G
t、 Ga、 c、 ・[卓Bt * J e Bs 
e B4 * 13s e Bg・・・ベアリング特 
許 出 願 人   住友金属工業株式会社代理人 弁
理士  河 野 登 夫
Figure 1 is a schematic diagram showing the implementation status of the method of the present invention, Figures 2 and 3 are graphs showing the results of confirming the effects of the method of the present invention, and Figure 4 is a diagram showing the results of confirming the effects of the method of the present invention. FIG. 2 is a schematic diagram showing a reduction gear used. 1-...Reducer 1a, 1b...Gear 1c, ld
, 1eeIf...Bearing 2...Motor 3
...Pump 4...Vibration detection device f Gt, G
t, Ga, c, ・[Table Bt * J e Bs
e B4 * 13s e Bg...Bearing special
Applicant: Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Noboru Kono

Claims (1)

【特許請求の範囲】[Claims] 1、 周期運1体の振動を一定周期でサンプリングして
得たサンプリング値群によって構成される確率密度関数
の高次モーメントを前記サンプリング値群の分散にて正
規化した値と、前記周期運動体が正惜である場合におけ
る前記サンプリング値群に係る正規化高次モーメントの
理論値とを比較し、その比較結果に基き周期運動体の異
常を検知すると七を特徴とする周期運動体の監視方法。
1. A value obtained by normalizing the higher-order moment of a probability density function formed by a group of sampling values obtained by sampling the vibration of one body at a constant period by the variance of the group of sampling values, and the periodic movement body. is compared with the theoretical value of the normalized higher-order moment related to the sampled value group in the case where the sampling value group is positive and negative, and an abnormality in the periodic moving body is detected based on the comparison result.7. .
JP14216981A 1981-09-08 1981-09-08 Monitoring method for body in periodic motion Pending JPS5842949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14216981A JPS5842949A (en) 1981-09-08 1981-09-08 Monitoring method for body in periodic motion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14216981A JPS5842949A (en) 1981-09-08 1981-09-08 Monitoring method for body in periodic motion

Publications (1)

Publication Number Publication Date
JPS5842949A true JPS5842949A (en) 1983-03-12

Family

ID=15308956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14216981A Pending JPS5842949A (en) 1981-09-08 1981-09-08 Monitoring method for body in periodic motion

Country Status (1)

Country Link
JP (1) JPS5842949A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184857A (en) * 1983-04-06 1984-10-20 Hitachi Koki Co Ltd Quality discriminating device of rotary machine
JPS6321532A (en) * 1986-07-15 1988-01-29 Nissan Motor Co Ltd Misfire detector
JPH0894497A (en) * 1994-07-25 1996-04-12 Mitsubishi Electric Corp Diagnostic system for automobile component
CN111879522A (en) * 2020-07-24 2020-11-03 山东大学 Steam turbine operation monitoring and fault distinguishing method and system based on time sequence probability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184857A (en) * 1983-04-06 1984-10-20 Hitachi Koki Co Ltd Quality discriminating device of rotary machine
JPS6321532A (en) * 1986-07-15 1988-01-29 Nissan Motor Co Ltd Misfire detector
JPH0894497A (en) * 1994-07-25 1996-04-12 Mitsubishi Electric Corp Diagnostic system for automobile component
CN111879522A (en) * 2020-07-24 2020-11-03 山东大学 Steam turbine operation monitoring and fault distinguishing method and system based on time sequence probability

Similar Documents

Publication Publication Date Title
JP3609982B2 (en) Fault diagnosis method and apparatus
US7945397B2 (en) System and method for gearbox health monitoring
Aherwar An investigation on gearbox fault detection using vibration analysis techniques: A review
US8963733B2 (en) System and method for blind fault detection for rotating machinery
Decker Crack detection for aerospace quality spur gears
US20100030492A1 (en) Apparatus and method for identifying health indicators for rolling element bearings
JP2019070570A (en) Rolling bearing abnormality diagnosing device
US10895873B2 (en) Machine health monitoring of rotating machinery
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
McClintic et al. Residual and difference feature analysis with transitional gearbox data
JP6450575B2 (en) Inverter noise elimination method and diagnostic method for equipment including inverter
JPS5842949A (en) Monitoring method for body in periodic motion
Kuzin et al. Diagnostics of gearboxes of mining belt conveyors using floating spectral masks
JPH07218334A (en) Method and device for diagnosing bearing
JPH10288546A (en) Abnormality judging method for rotating apparatus
CN116448404A (en) Abnormality monitoring method, abnormality monitoring device, electronic device, and computer-readable storage medium
JPH01101418A (en) Diagnosing device for rotary machine
Hoshi Damage monitoring of ball bearing
JP4101714B2 (en) Rotating equipment state diagnosis support apparatus and program thereof, recording medium storing the program, and state diagnosis support method
Board Stress wave analysis of turbine engine faults
JP3103193B2 (en) Diagnostic equipment for rotating machinery
JPS61114134A (en) Diagnosing method of rotary machine
JPH0312533A (en) Method for estimating remaining life of bearing
JP3876976B2 (en) Evaluation apparatus and evaluation method
JPS61294214A (en) Abnormality monitor for rolling bearing