JPS61114134A - Diagnosing method of rotary machine - Google Patents

Diagnosing method of rotary machine

Info

Publication number
JPS61114134A
JPS61114134A JP59236928A JP23692884A JPS61114134A JP S61114134 A JPS61114134 A JP S61114134A JP 59236928 A JP59236928 A JP 59236928A JP 23692884 A JP23692884 A JP 23692884A JP S61114134 A JPS61114134 A JP S61114134A
Authority
JP
Japan
Prior art keywords
deterioration
power spectrum
index
probability
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59236928A
Other languages
Japanese (ja)
Other versions
JPH0422456B2 (en
Inventor
Satoshi Ueda
智 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59236928A priority Critical patent/JPS61114134A/en
Publication of JPS61114134A publication Critical patent/JPS61114134A/en
Publication of JPH0422456B2 publication Critical patent/JPH0422456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce noises and to calculate an accurate index of deterioration by measuring the oscillation of rotary equipment, expressing its measurement signal as an autoregressive model, and calculating a power spectrum, and then calculating the probability of deterioration from the ratio (deterioration index) of effective values of the intensity and power spectrum at a specific frequency. CONSTITUTION:The oscillation of the bearing 3 of a motor is detected by a vibration meter 8, whose output signal is inputted to an arithmetic processor 10 through an AD converter 9 to perform specific arithmetic. Namely, the detection signal is composed of a superposition signal of various vibrations and an autoregressive expression is set to calculate an optimized power spectrum by a method of interaction; and the ratio of effective values of the intensity and power spectrum at the specific frequency of the power is calculated as the index of deterioration to calculate the probability of deterioration from the index of deterioration. Consequently, vibrations (noise) except vibrations due to abnormality are removed to calculate the accurate index of deterioration.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、減速機5モータ、プロワ等の回転機械、或い
は軸受5歯車等の回転機械要素における異常状態の診断
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for diagnosing an abnormal state in a rotating machine such as a reducer 5 motor, a blower, or a rotating machine element such as a bearing 5 gear.

〔従来技術〕[Prior art]

モータ、ブロワ等の回転機械、或いは転がり軸受、歯車
等の回転機械要素においては、回転による摩耗、損傷、
或いは潤滑不良による損傷、または組付り不良による損
傷等が生じる。このため、回転機械等に生しる損傷等を
早期に発見して対処する必要が生しる。
Rotating machines such as motors and blowers, or rotating machine elements such as rolling bearings and gears, are prone to wear, damage, and damage due to rotation.
Otherwise, damage may occur due to poor lubrication or poor assembly. For this reason, it is necessary to detect and deal with damage to rotating machines and the like at an early stage.

回転#B械等の異常の診断方法としては、摩耗。The method for diagnosing abnormalities in rotary #B machines, etc. is wear.

損傷等の異常に起因して生しる振動を捉える振動法が一
般的である。従来の振動法は、回転機械等の振動を測定
し、その振動を高速フーリエ変換することにより、時間
領域で表わた不規則関数である振動を、周波数領域の関
数に変換して、そのパワースペクトルを求め、求められ
たパワースペクI・ルから劣化指数を算出して、回転機
械等の異常状態を判断するものであった。
Vibration methods that capture vibrations caused by abnormalities such as damage are common. Conventional vibration methods measure the vibrations of rotating machinery, etc., and perform fast Fourier transform on the vibrations to convert the vibrations, which are irregular functions expressed in the time domain, into functions in the frequency domain, and calculate their power spectrum. was calculated, and a deterioration index was calculated from the obtained power spectrum to determine abnormal conditions in rotating machinery, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

回転機械等における振動は、摩耗、損傷等の異常に起因
する振動以外の振動(ノイズ)、特に一過性のものが含
まれているため、従来の振動法ではこれらのノイズを完
全に除去できず、正確な劣化指数を算出できなかった。
Vibration in rotating machinery, etc. includes vibrations (noise) other than vibrations caused by abnormalities such as wear and damage, especially transient vibrations, so conventional vibration methods cannot completely eliminate these noises. Therefore, it was not possible to calculate an accurate deterioration index.

また注目すべきスペクトルが接近している場合にも正確
な劣化指数を算出できない。
Furthermore, it is not possible to accurately calculate the deterioration index even when the spectra of interest are close to each other.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、斯かる事情に鑑みてなされたものであり異常
に起因する振動以外の振動(ノイズ)を除去し得て、正
確な劣化指数を算出し得る回転機械の診断方法を提供す
ることを目的とする。本発明は、回転機械における振動
を測定し、一過性のノイズを除去すべくその測定信号を
自己回帰モデル化してパワースペクトルを求め、このパ
ワースペクトルの特定周波数にお+Jる強度とパワース
ペクトルの実効値との比を劣化指数として算出し、算出
された劣化+1数から劣化確率を算出することを特徴と
する。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for diagnosing rotating machines that can remove vibrations (noise) other than those caused by abnormalities and can calculate accurate deterioration indexes. purpose. The present invention measures vibrations in a rotating machine, calculates a power spectrum by applying an autoregressive model to the measured signal to remove transient noise, and then calculates the power spectrum and the intensity at a specific frequency of this power spectrum. It is characterized in that the ratio to the effective value is calculated as a deterioration index, and the deterioration probability is calculated from the calculated deterioration + 1 number.

(原理〕 本発明方法の原理について以下に説明する。第1図は、
回転機械における振動の検出信号を示す。
(Principle) The principle of the method of the present invention will be explained below.
A detection signal of vibration in a rotating machine is shown.

今、時刻【における振動の大きさをX、とすると、この
信号には、各種因子による振動が重畳していると考えら
れる。そこでこの信号を、各種振動の重畳信号と号え、
(1)式で示す自己回帰式を設定する。
Now, if the magnitude of vibration at time [ is X], it is considered that vibrations due to various factors are superimposed on this signal. Therefore, this signal is called a superimposed signal of various vibrations,
An autoregressive equation shown in equation (1) is set.

)i、=ij、α1 +a 2α2+°°“°゛→11
t= Σ a1α: 十u t      ・・・fl
li=1 aI ニジステムパラメータ α、;時刻りの振動におillる量子化された振動成分 u、:白色ノイズ(周波数に無関係な定数のパワースペ
クトル密度をもつようなラ ンダム信号) h ニジステム次数 ここでシステムパラメータ及びシステム次数について考
える。まずシステム次数M−1の場合には(1)式は次
のように表わされる。
) i, = ij, α1 +a 2α2+°°“°゛→11
t= Σ a1α: 10u t...fl
li = 1 aI Nijistem parameter α,; Quantized vibration component u in the clock vibration: White noise (random signal with a constant power spectral density independent of frequency) h Nijistem order here Let us consider the system parameters and system order. First, in the case of system order M-1, equation (1) is expressed as follows.

X4=a1α1+u、       ・・・(2)(2
)式においてXjを既知(測定値)とすると、uj =
xt  aI α1       ・・・(2)′とな
り、a1α宜を推定値と考えればujは誤差を表わす。
X4=a1α1+u, ...(2)(2
) In the equation, if Xj is known (measured value), then uj =
xt aI α1 (2)', and if a1α is considered as an estimated value, uj represents an error.

そこで最小2乗法によりaIのNk通値を求める。つま
りut2の期待値E (ut 2)を最小にするalの
値がal値となる。そしてこの求めた値a、に基づいて
uLの期待値E(ut)M−1を演算する。
Therefore, the Nk common value of aI is determined by the least squares method. In other words, the value of al that minimizes the expected value E (ut 2) of ut2 becomes the al value. Then, based on the obtained value a, the expected value E(ut)M-1 of uL is calculated.

次にシステム次数M=2の場合について考えると(1)
式は、 Xt=81(Xl十a2 α2 +u、  …(alと
なる。ここに上述の最小2乗法により求めたalの値を
代入し、さらに同様の最小2乗法によりa2を求め、求
められた値al、a2に基づいてutの期待値E(ut
)+、=2を演算する。そして先に求めたU、の期待値
E(ut)M=+と、このE (ut ) +1=2と
を比較する。以下同様の手順で期待値E (ut ) 
M =1を求め、E(ut)M=+−+とE(ut)M
=+との差が所定の微小値以下になった場合におけるi
をシステム次数Mとする。
Next, considering the case of system order M = 2, (1)
The formula is: The expected value E(ut
)+,=2 is calculated. Then, the previously calculated expected value E(ut)M=+ of U is compared with this E(ut)+1=2. Following the same procedure, the expected value E (ut)
Find M = 1, E(ut)M=+-+ and E(ut)M
i when the difference from =+ is less than a predetermined small value
Let be the system order M.

つまりa1α1.a2α2.・・・+  aMαhは夫
々原因の異なる振動成分と考えられ、この振動成分が所
定値以下の微少なものはホワイトノイズとして扱う。従
って所定の次数Mにて表わされるX。
In other words, a1α1. a2α2. ...+ aMαh are considered to be vibration components with different causes, and if the vibration components are minute or less than a predetermined value, they are treated as white noise. Therefore, X expressed with a predetermined order M.

は、時刻tにおけるノイズを除去した振動を表わす値と
考えられる。
is considered to be a value representing the vibration from which noise has been removed at time t.

同様の方法により、所定の時間毎に抽出された振動信号
のノイズを除去する。
A similar method is used to remove noise from vibration signals extracted at predetermined time intervals.

このようにして得られるノイズを除去した振動信号に基
づいて、そのパワースペクトルをもとめる。パワースペ
クトルは下記(4)式で表わされる。
Based on the vibration signal obtained in this way from which noise has been removed, its power spectrum is determined. The power spectrum is expressed by the following equation (4).

但し、  f:周波数 σu2:統計量推定の分散 (4)式によりパワースペクトルが求められるが、回転
機械等に異常があれば、その異常に起因してパワースペ
クトルの強度は部分的に大きくなる。
However, f: Frequency σu2: Variance of statistical estimation The power spectrum is obtained by equation (4), but if there is an abnormality in the rotating machine or the like, the intensity of the power spectrum will partially increase due to the abnormality.

従ってバワースペク]・ルの強度が部分的に大きくなっ
ていれば、回転i8I械等に異常が生じていることが類
推されるが、回転機械等の種類、或いは異常の種類に対
応して、異常に起因するパワースペクトル強度の突出状
態の周波数特性が異なる。そこで回転機械の異常の程度
を表わす劣化指数として、パワースペクトル強度の全周
波数域での実効値と各異常により規定される特性周波数
におけるバワースペクI・生強度との比率を用いる。
Therefore, if the intensity of the power spectrum is partially increased, it can be inferred that an abnormality has occurred in the rotating i8I machine, etc., but depending on the type of rotating machine, etc. or the type of abnormality, The frequency characteristics of the prominent state of the power spectrum intensity due to the difference in frequency characteristics are different. Therefore, as a deterioration index representing the degree of abnormality in the rotating machine, the ratio between the effective value of the power spectrum intensity in the entire frequency range and the power spectrum I/raw intensity at the characteristic frequency defined by each abnormality is used.

第2図(イ)〜(ホ)に、回転機械の各異常に起因する
パワースペクトル強度と特性周波数の関係を示す。第2
図(イ)は、回転機械における回転軸がアンバランスな
状態であり、foは回転軸の周波数を示す。この場合の
劣化指数F、はSI F、−□         ・・・(5) rms 但し、 SI :周波数foにおけるパワースペクトル
強度 5rvs  :パワースペクトルの全周波数14での実
効値 で表わされる。
FIGS. 2A to 2E show the relationship between power spectrum intensity and characteristic frequency caused by each abnormality in the rotating machine. Second
In the diagram (a), the rotating shaft of the rotating machine is in an unbalanced state, and fo indicates the frequency of the rotating shaft. The deterioration index F in this case is SIF, -□ (5) rms where SI: power spectrum intensity at frequency fo, 5 rvs: expressed as an effective value at all frequencies 14 of the power spectrum.

第2図(ロ)は、回転機械におけるミスアライメンI・
又はヘンI・シャフトが生じた状態であり、劣化tit
数F2は  rms S2.S3 :周波数2 fo、  3 foにおける
パワースペクトル強度 で表わされる。
Figure 2 (b) shows misalignment I/I in a rotating machine.
Or it is a state where the shaft has deteriorated and the tit
The number F2 is rms S2. S3: Represented by power spectrum intensity at frequencies 2fo and 3fo.

第2図(ハ)は、回転機械にガタが生じている場合であ
り、劣化指数F3は  rms So、s:周波数%foにおけるパワースペクトル強度 で表わされる。
FIG. 2(c) shows a case where the rotating machine has backlash, and the deterioration index F3 is expressed by the power spectrum intensity at rms So, s: frequency %fo.

第2図(ニ)は、軸受に異常が生じている場合である。FIG. 2(d) shows a case where an abnormality has occurred in the bearing.

軸受においては、外輪、内輪、転動住人々について各別
に、この第2図(ニ)に示すようなパワースペクトル強
度となるが、夫々の周波数特性は異なる。図におけるK
l(1=1〜3)は外輪9内輪、転動体のいずれかに異
常があった場合におけるその各部に対応する定数であり
、K1が外輪異常、 K2が内輪異常、K3が転動体異
常の場合を夫々示している。K、、に、、に3は次のよ
うに表わされる。
In a bearing, the outer ring, inner ring, and rolling member each have power spectrum intensities as shown in FIG. 2 (d), but the frequency characteristics of each are different. K in the diagram
l (1 = 1 to 3) is a constant corresponding to each part when there is an abnormality in either the outer ring 9, the inner ring, or the rolling element, K1 is the outer ring abnormality, K2 is the inner ring abnormality, and K3 is the rolling element abnormality. Each case is shown. K, , , , , 3 is expressed as follows.

n           d 但し、n:転動体の数 d:転動体の直径 り8転動体のピンチ円の直径 α:転動体の接触角度 外輪、内輪、転動体の各劣化指数は次のように表わされ
る。
n d However, n: Number of rolling elements d: Diameter of rolling element 8 Diameter of pinch circle of rolling element α: Contact angle of rolling element Each deterioration index of the outer ring, inner ring, and rolling element is expressed as follows.

K41:外輪の劣化指数 F、2:内輪の劣化指数 F4〕二転動体の劣化指数 s、、s2.S3:周波数Kifo  (1−+ 、 
2 。
K41: Outer ring deterioration index F, 2: Inner ring deterioration index F4] Two rolling element deterioration index s, s2. S3: Frequency Kifo (1-+,
2.

3 ) 2 Kifo 、 3 Kifoにおけるパワ
ースペクトル強 度 第2図(ホ)は歯車が劣化した状態におけるパワースペ
クトルの強度と特性周波数の関係を示しfGは歯車のか
み合い周波数であって、fに =Z  fo     
        −(11)Z:歯数 fo:軸の回転数 となる。そして、この歯車の劣化指数F5はSI+  
82’周波数rG、2 rGにおける各バワースペク]
・生強度 この劣化指数により、異常の状態が認識されるのである
が、さらに異常の程度を評価すべく劣化確率を求める。
3) Power spectrum intensity at 2 Kifo, 3 Kifo Figure 2 (e) shows the relationship between the power spectrum intensity and characteristic frequency when the gear is in a deteriorated state. fG is the meshing frequency of the gear, and f = Z fo
-(11) Z: Number of teeth fo: Rotation speed of the shaft. And the deterioration index F5 of this gear is SI+
82' frequency rG, each power spectrum at 2 rG]
- Raw strength This deterioration index is used to recognize an abnormal state, and to further evaluate the degree of abnormality, the probability of deterioration is determined.

一般に、信頼性理論では偶発故障確率R(t)は、 一λ t R口→=1−e          ・・・(13)で
求まり、指数分布に従うものとされていて、劣化確率は
劣化指数Fの関数として下記(14)式にて表わされる
。即ち、劣化確率をP (F)、劣化指数をFとすると
、 但し、Lo;異常が発生していないと考えられる場合+
P (F)=O1の劣化指数の 最大値 Mo :寿命fP (F) =1.0 +の劣化指数の
最大値 Xo:劣化確率が0.5になるときの劣化指数 nX=指数曲線の傾き(異常の種類等により定まる) となる。(14)式をグラフにて表わすと、第3図の如
き曲線となる。
In general, in reliability theory, the random failure probability R(t) is found as λ t R → = 1 - e (13) and is assumed to follow an exponential distribution, and the deterioration probability is determined by the deterioration index F. It is expressed as a function by the following equation (14). In other words, if the probability of deterioration is P (F) and the deterioration index is F, then Lo; + if no abnormality is considered to have occurred;
Maximum value of deterioration index of P (F) = O1 Mo: Maximum value of deterioration index of life fP (F) = 1.0 + Xo: Deterioration index when deterioration probability becomes 0.5 = slope of exponential curve (Determined by the type of abnormality, etc.) When equation (14) is expressed graphically, it becomes a curve as shown in FIG.

本願発明者は、基礎実験、フィールI゛データの確証試
験により、第2図(イ)〜(ホ)に示し、また前記(5
)〜(12)式にて求めた各回転機械等、或いは回転機
械等の各種異常における劣化ti数に対する劣化確率曲
線を得た。これをj84〜8図に示す。第4図は回転軸
がアンバランスな状態である場合における劣化指数と劣
化確率との関係を示し、第5図は回転機械のミスアライ
メント又はベントシャフト状態である場合における劣化
指数と劣化確率との関係を示し、第6図は回転機械にガ
タが生している場合における劣化指数と劣化確率との関
係を示している。第7図(イ)〜(ハ)は軸受に異常が
生じた場合を示し、第7図(イ)は軸受の外輪における
異常が生じている場合、第7図(ロ)は軸受の内輪に異
常が生じている場合、第7図(ハ)は軸受の転動体に異
常が生じている場合の劣化fft数に対する劣化確率を
夫々示している。第8図は歯車において異常が生じた場
合の劣化m数に対する劣化確率を示している。
Through basic experiments and confirmatory tests of the Feel I data, the inventor of the present application has found the results shown in FIGS.
) to (12) Formulas were obtained for each rotary machine or the like, or a deterioration probability curve for the deterioration ti number for various abnormalities in the rotary machine. This is shown in figures j84-8. Figure 4 shows the relationship between the deterioration index and the probability of deterioration when the rotating shaft is in an unbalanced state, and Figure 5 shows the relationship between the deterioration index and the probability of deterioration when the rotating machine is in a misaligned or bent shaft state. FIG. 6 shows the relationship between the deterioration index and the deterioration probability when there is play in the rotating machine. Figures 7 (a) to (c) show cases where an abnormality occurs in the bearing. Figure 7 (a) shows a case where an abnormality occurs in the outer ring of the bearing, and Figure 7 (b) shows a case where an abnormality occurs in the inner ring of the bearing. When an abnormality occurs, FIG. 7(c) shows the deterioration probability with respect to the deterioration fft number when an abnormality occurs in the rolling elements of the bearing. FIG. 8 shows the probability of deterioration versus the number m of deterioration when an abnormality occurs in the gear.

従って、l1iI記(5)〜(12)式にて劣化指数を
求めると第4図〜第8図のグラフにより劣化確率が求ま
り、各回転機械における具体的な異常の程度が把迩でき
ることになる。
Therefore, by calculating the deterioration index using equations (5) to (12) in I1iI, the probability of deterioration can be determined from the graphs in Figures 4 to 8, and the specific degree of abnormality in each rotating machine can be understood. .

〔実施例〕〔Example〕

第9図は本発明方法の実施に使用される装置の模式的ブ
ロック図である。図において1はモータであり、該モー
タ1の出力軸はカンプリング2にて軸5に連結されてい
る。該軸5は両端を軸受3゜3にて夫々回転自在に支持
されており、軸5には油圧シリンダ6にて荷重が負荷さ
れている。
FIG. 9 is a schematic block diagram of the apparatus used to carry out the method of the invention. In the figure, 1 is a motor, and the output shaft of the motor 1 is connected to a shaft 5 through a compression ring 2. The shaft 5 is rotatably supported at both ends by bearings 3.3, and a load is applied to the shaft 5 by a hydraulic cylinder 6.

一方の軸受3には、振動ピンクアップ7が取付けられて
おり、軸受3の振動を捉えて振動計8に所定信号を出力
する。振動計8の出力はA/D変変 換29を介して演算処理部10に与えられており、演算
処理部10は前述した如<A/D変換器9の出力に基づ
いて、所定の時間毎に軸受3の振動を抽出し、各時間に
おける振動を量子化して振動に重畳されたノイズを除去
する。そして各時間におけるノイズを除去した振動に基
づいてパワースペクトルを演算して夫々の劣化指数を算
出する。さらに予め設定された劣化指数と劣化確率との
関係から、劣化確率を演算する。演算処理部IOの演算
結果は、表示・印字部11にて表示・印字される。
A vibration pink-up 7 is attached to one of the bearings 3, which captures vibrations of the bearing 3 and outputs a predetermined signal to a vibration meter 8. The output of the vibrometer 8 is given to the arithmetic processing unit 10 via the A/D converter 29, and the arithmetic processing unit 10 performs the The vibrations of the bearing 3 are extracted, and the vibrations at each time are quantized to remove noise superimposed on the vibrations. Then, a power spectrum is calculated based on the vibration from which noise has been removed at each time, and each deterioration index is calculated. Furthermore, the deterioration probability is calculated from the relationship between the preset deterioration index and the deterioration probability. The calculation results of the calculation processing unit IO are displayed and printed by the display/print unit 11.

この装置を用いて正常な軸受を診断した場合における自
己回帰モデルにより得られたパワースペクトルを第10
図に示す、また、第11図に外輪に人工欠陥を付与した
軸受の自己回帰モデルにより得られたパワースペクトル
を示す。
The power spectrum obtained by the autoregressive model when diagnosing a normal bearing using this device is the 10th
Furthermore, FIG. 11 shows a power spectrum obtained by an autoregressive model of a bearing with an artificial defect added to the outer ring.

さらに正常、外輪異常の各軸受の劣化指数、及び劣化指
数から求められた劣化確率を夫々第1表に示す。第1表
より明らかなように、外輪の劣化確率が100%となり
、外輪に異常が生じていることが明らかになる。
Further, Table 1 shows the deterioration index of each bearing, normal and abnormal, and the deterioration probability determined from the deterioration index. As is clear from Table 1, the probability of deterioration of the outer ring is 100%, and it becomes clear that an abnormality has occurred in the outer ring.

なお、第12図に、正常な軸受の振動を高速フーリエ変
換した結果を、また第13図に外輪に人工欠陥を付与し
た軸受の振動を高速フーリエ変換した結果を夫々に示す
Note that FIG. 12 shows the results of fast Fourier transform of the vibrations of a normal bearing, and FIG. 13 shows the results of fast Fourier transform of the vibrations of a bearing with an artificial defect on the outer ring.

第  1  表 第12図及び第13図からは、欠陥が住じていること、
特に外輪に欠陥が生じていることをi[1Iikするこ
とが困難である。
From Table 1, Figures 12 and 13, it is clear that there are defects;
In particular, it is difficult to determine that a defect has occurred in the outer ring.

なお、この実施例では軸受における外輪の異常について
説明したが、軸受の内輪、転動体についても同様に判定
でき、さらには他の回転機械についても異常の状懇の判
定が可能である。
In this embodiment, the abnormality of the outer ring of the bearing has been explained, but the inner ring of the bearing and the rolling elements can be determined in the same way, and the state of the abnormality can also be determined for other rotating machines.

〔効果〕〔effect〕

本発明によれば、回転機械の異常の種類5程度をノイズ
等の影響を受けることなく、明確に捉えることができ、
回転機械等の診断を高精度に行える。
According to the present invention, it is possible to clearly grasp about 5 types of abnormalities in rotating machinery without being affected by noise etc.
Diagnosis of rotating machinery, etc. can be performed with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明のためのグラフ、WS2図(
イ)〜(ホ)は、劣化指数算出方法説明のためのグラフ
、第3図〜第8図は劣化指数と劣化確率との関係を示す
グラフ、第9図は本発明方法の実[1に使用する装置の
模式的プロ、り図、第10図、第1]図は軸受の振動を
本発明方法における自己回帰モデル化したグラフ、第1
2図、第13図は、軸受の振動を従来方法における高速
フーリエ変換したグラフである。 I・・・モータ 2・・カップリング 3・・・軸受 
5・・・軸 7・・振動ピンクアンプ 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫0旬(’10 Q   S e 物 f。 Oco〜0 ?  @4f!  軒     0 −〜!l!0 1Q曇 ?  殻4 筬掛     0 0:  昶9 胃計    0 ;!88 ニ  筏e耀世    −
Figure 1 is a graph for explaining the method of the present invention, Figure WS2 (
A) to (E) are graphs for explaining the deterioration index calculation method, FIGS. 3 to 8 are graphs showing the relationship between the deterioration index and the deterioration probability, and FIG. Figure 1 is a schematic diagram of the equipment used;
FIG. 2 and FIG. 13 are graphs obtained by fast Fourier transforming the vibration of the bearing using the conventional method. I...Motor 2...Coupling 3...Bearing
5...Axis 7...Vibration pink amplifier patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono !l!0 1Q cloudy? Shell 4 Reed 0 0: Sho 9 Stomach meter 0 ;!88 ni Raft e Yayo -

Claims (1)

【特許請求の範囲】[Claims] 1、回転機械における振動を測定し、一過性のノイズを
除去すべくその測定信号を自己回帰モデル化してパワー
スペクトルを求め、このパワースペクトルの特定周波数
における強度とパワースペクトルの実効値との比を劣化
指数として算出し、算出された劣化指数から劣化確率を
算出することを特徴とする回転機械の診断方法。
1. Measure the vibration in a rotating machine, create a power spectrum by modeling the measured signal into an autoregressive model to remove transient noise, and calculate the ratio of the intensity at a specific frequency of this power spectrum to the effective value of the power spectrum. A method for diagnosing a rotating machine, comprising: calculating the deterioration index as a deterioration index, and calculating a deterioration probability from the calculated deterioration index.
JP59236928A 1984-11-09 1984-11-09 Diagnosing method of rotary machine Granted JPS61114134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236928A JPS61114134A (en) 1984-11-09 1984-11-09 Diagnosing method of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236928A JPS61114134A (en) 1984-11-09 1984-11-09 Diagnosing method of rotary machine

Publications (2)

Publication Number Publication Date
JPS61114134A true JPS61114134A (en) 1986-05-31
JPH0422456B2 JPH0422456B2 (en) 1992-04-17

Family

ID=17007826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236928A Granted JPS61114134A (en) 1984-11-09 1984-11-09 Diagnosing method of rotary machine

Country Status (1)

Country Link
JP (1) JPS61114134A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187971A (en) * 1992-01-17 1993-07-27 Hitachi Electron Service Co Ltd Acoustically diagnosing device for air-cooling fan
JP2004069480A (en) * 2002-08-06 2004-03-04 Mitsubishi Electric Corp Oscillation characteristic method and its apparatus
CN113454363A (en) * 2019-02-22 2021-09-28 株式会社日本制钢所 Abnormality detection system and abnormality detection method
KR102648646B1 (en) * 2023-05-23 2024-03-15 호서대학교 산학협력단 Apparatus for predicting failure based on artificial intelligence and method therefor
KR102649659B1 (en) * 2023-05-23 2024-03-19 호서대학교 산학협력단 Apparatus for training artificial intelligence model for failure prediction and method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187971A (en) * 1992-01-17 1993-07-27 Hitachi Electron Service Co Ltd Acoustically diagnosing device for air-cooling fan
JP2004069480A (en) * 2002-08-06 2004-03-04 Mitsubishi Electric Corp Oscillation characteristic method and its apparatus
CN113454363A (en) * 2019-02-22 2021-09-28 株式会社日本制钢所 Abnormality detection system and abnormality detection method
KR20210126617A (en) * 2019-02-22 2021-10-20 더 재팬 스틸 워크스 엘티디 Abnormality detection system and abnormality detection method
JPWO2020170409A1 (en) * 2019-02-22 2021-12-16 株式会社日本製鋼所 Anomaly detection system and anomaly detection method
KR102648646B1 (en) * 2023-05-23 2024-03-15 호서대학교 산학협력단 Apparatus for predicting failure based on artificial intelligence and method therefor
KR102649659B1 (en) * 2023-05-23 2024-03-19 호서대학교 산학협력단 Apparatus for training artificial intelligence model for failure prediction and method therefor

Also Published As

Publication number Publication date
JPH0422456B2 (en) 1992-04-17

Similar Documents

Publication Publication Date Title
Baydar et al. Detection of gear deterioration under varying load conditions by using the instantaneous power spectrum
EP0442020B1 (en) Method and apparatus for detecting gear defects
JP3609982B2 (en) Fault diagnosis method and apparatus
JP4003088B2 (en) Rotating body abnormality diagnosis method and apparatus
JPS59174732A (en) Apparatus for judging abnormality of gear unit
CN109596349B (en) Reducer fault diagnosis method based on VMD and PCT
JPH1026580A (en) Method and device for diagnosing speed-change-type rotary mechanical equipment
JPS6293620A (en) Diagnostic device for rotary machine
JPS61114134A (en) Diagnosing method of rotary machine
JP7383367B1 (en) Vibration data analysis method and analysis system for rotating equipment
JPH0843257A (en) Method for diagnosing planetary gear
JPH03257332A (en) Diagnostic method for vibration detection mechanism
JP3318246B2 (en) Fan motor diagnosis method and diagnosis device
JP3918931B2 (en) Rotating body abnormality diagnosis method and apparatus
JP3390087B2 (en) Bearing diagnosis system
JPS6260011B2 (en)
GB2260815A (en) Condition monitoring systems
JPS644611B2 (en)
JPH0399234A (en) Diagnosing method for abnormality of rotary machine
JPS61288126A (en) Abnormal detector for rolling bearing
JPS6157491B2 (en)
JPS5997015A (en) Sound inspector for rotary body
JPH01219653A (en) Diagnostic apparatus of abnormality of gear device
JPS6031036A (en) Diagnostic method of rolling bearing
JPS5842949A (en) Monitoring method for body in periodic motion