JPS6031036A - Diagnostic method of rolling bearing - Google Patents

Diagnostic method of rolling bearing

Info

Publication number
JPS6031036A
JPS6031036A JP58139955A JP13995583A JPS6031036A JP S6031036 A JPS6031036 A JP S6031036A JP 58139955 A JP58139955 A JP 58139955A JP 13995583 A JP13995583 A JP 13995583A JP S6031036 A JPS6031036 A JP S6031036A
Authority
JP
Japan
Prior art keywords
vibration
rolling bearing
rolling
intensity
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58139955A
Other languages
Japanese (ja)
Inventor
Satoshi Ueda
智 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58139955A priority Critical patent/JPS6031036A/en
Publication of JPS6031036A publication Critical patent/JPS6031036A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Abstract

PURPOSE:To make the diagnosis of a bearing easy and highly accurate, by computing the frequency characteristics of each part of the outer race, inner race and rolling element of a rolling bearing and the ratio between the value of the root of the sum of square of the intensity of the harmonic component and the effective value of the vibration intensity of the entire frequency region. CONSTITUTION:A vibration sensor 11, which detects vibration, is attached to a rolling bearing 10 to be inspected. The detected result is amplified by a vibration processing circuit 12 and inputted to a frequency analyzing part 13. In the frequency analyzing part 13, frequency analysis is performed based on an expression representing the frequency characteristics of the outer race, inner race and rolling element of the rolling bearing. The ratio between the value of the root of the square of the intensity of the harmonic component and the effective value of the vibration intensity of the entire frequency region is computed as a deterioration index at each part. Thus the diagnosis of the rolling bearing can be performed readily and highly accurately.

Description

【発明の詳細な説明】 本発明は転がり軸受の異常の状態等の診断方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for diagnosing abnormal conditions of rolling bearings.

転がり軸受は各種機械の回転部分に用いられる一般的な
軸受であり、円形の外輪、内輪夫々の軌道を有し、その
間に、ころ、玉等を転動体として使用することにより転
がり運動を取入れて低摩擦を実現しているが、滑り運動
も残っているため、その滑り運動により軸受の摩擦が進
行する虞れがあり、またその転走面に、転がり疲れによ
るフレーキング、ごみ等の異物の侵入、潤滑不良等によ
り損傷を来し、さらには二次故障を起こす虞れがある。
Rolling bearings are general bearings used in the rotating parts of various machines, and have circular outer and inner raceways, and between them, rollers, balls, etc. are used as rolling elements to incorporate rolling motion. Although low friction has been achieved, there is still some sliding motion, which may increase the friction of the bearing, and the rolling surface may be contaminated with flaking due to rolling fatigue or foreign matter such as dirt. There is a risk of damage due to intrusion, poor lubrication, etc., and even secondary failure.

このため、転がり軸受に生じる損傷等を早期に発見して
対処すべく種々の診断方法が採用されている。
For this reason, various diagnostic methods have been adopted to detect and deal with damage to rolling bearings at an early stage.

この転がり軸受の状態を診断する有力な方法として、転
がり軸受に損傷等の異常が発生した場合に、この異常に
起因して生じる振動を捉えることにより異常の程度を検
出する振動法があり、この振動法においても、精度の向
上を図った各種の方法の開発が進んでいる。
An effective method for diagnosing the condition of rolling bearings is the vibration method, which detects the degree of abnormality by capturing the vibration caused by the abnormality when damage or other abnormality occurs in the rolling bearing. In the vibration method as well, various methods with improved accuracy are being developed.

従来の振動法としては、転がり軸受の損傷による加速度
振動のピーク値、実効値、平均値を計測し、ピーク値と
実効値の比若しくはピーク値と平均値の比をめて、この
値の時系列変化により異常判定する方法、実効値又は平
均値を転がり軸受の軸径又は回転数で補正して正規化す
る方法等が一般的であった。
The conventional vibration method measures the peak value, effective value, and average value of acceleration vibration due to damage to rolling bearings, calculates the ratio of the peak value to the effective value, or the ratio of the peak value to the average value, and calculates the value at this value. Common methods include determining abnormality based on series changes, and normalizing the effective value or average value by correcting it by the shaft diameter or rotational speed of the rolling bearing.

さらに近時では、高精度の監視方法として、転がり軸受
の振動の4次のモーメントを用いて転がり軸受の異常を
判定する方法が開発されている。
Furthermore, recently, as a highly accurate monitoring method, a method has been developed that uses the fourth-order moment of vibration of the rolling bearing to determine abnormalities in the rolling bearing.

これは転がり軸受の正常時の振動は不規則に変動するが
、その確率分布はガウス分布に従う。確率密度関数P 
(x)は4次のモーメントによって4乗平均と関連づけ
られるので、確率密度関数P(X)から得られる4乗平
均を、標準偏差で正規化することにより得られる値にて
軸受の損傷を判定するものである。
This is because the normal vibration of a rolling bearing fluctuates irregularly, but its probability distribution follows a Gaussian distribution. probability density function P
Since (x) is related to the fourth power mean by the fourth moment, damage to the bearing is determined by the value obtained by normalizing the fourth power mean obtained from the probability density function P(X) by the standard deviation. It is something to do.

即ち、確率密度関数P (x)は T:平均値 σ:標準偏差 で表わされ、また4乗平均Y7は、4次のモーメントに
よって で得られるので、この4乗平均7を標準偏差で正規化す
ることにより、フートシス(Kurtosis )値と
呼ばれる転がり軸受の振動に関する値がまり、このクー
トシス値に基づいて軸受の損傷の程度をjl’l+断す
る。クーミーシス値は通常、転がり軸受が正當であれば
3.0の値となり、転がり軸受に異常が生じればフート
シス値は3.0より太き(なるので、転ガリ軸受の10
傷の程度の判断が可能となる。
That is, the probability density function P (x) is expressed as T: mean value and σ: standard deviation, and since the fourth power mean Y7 is obtained by the fourth moment, this fourth power mean 7 is normalized by the standard deviation. As a result, a value related to the vibration of the rolling bearing called the Kurtosis value is calculated, and the degree of damage to the bearing is determined based on this Kurtosis value. The foot sis value will normally be 3.0 if the rolling bearing is correct, and if an abnormality occurs in the rolling bearing, the foot sis value will be greater than 3.0 (so the 10
It becomes possible to judge the extent of the injury.

一般に転がり軸受に生じる損傷形態は、フレーキング等
により代表される外輪、内輪、転動体に生しる局所的欠
陥と、潤滑不良、転勤面の摩耗等に代表される全体的欠
陥とに大別される。しかしながら前述のフートシス値を
用いて異常を判定する方法は、全体的欠陥に対しては有
効であるが一1局所的欠陥に対しては精度のよい評価は
できない。
The types of damage that occur in rolling bearings are generally divided into local defects that occur in the outer ring, inner ring, and rolling elements, such as flaking, and global defects, such as poor lubrication and wear on the rolling surfaces. be done. However, although the method of determining an abnormality using the footosis value described above is effective for general defects, it cannot accurately evaluate local defects.

これは、全体的欠陥の場合には振動の周波数成分はあま
り変化せず全域において周波数成分が増加するために、
欠陥の状態を精度よく判定することば可能であるが、局
所的欠陥の場合には転がり軸受に生じる振動の周波数は
、外輪、内輪、転動体の各特性周波数成分の変動のため
に大きく変化し、損傷の程度等を正確に捉えることがで
きないためである。
This is because in the case of a total defect, the frequency component of the vibration does not change much and increases over the entire area.
Although it is possible to accurately determine the state of a defect, in the case of a localized defect, the frequency of vibration generated in a rolling bearing changes greatly due to variations in the characteristic frequency components of the outer ring, inner ring, and rolling elements. This is because it is not possible to accurately determine the extent of damage.

本発明は斯かる事情に鑑みてなされたものであり、異常
に起因する振動の外輪、内輪、転動体の特性周波数成分
に着目して、各部に発生ずる異常の程度を的確に評価す
る転がり軸受の診断方法の提供を目的とする。
The present invention has been made in view of the above circumstances, and provides a rolling bearing that accurately evaluates the degree of abnormality occurring in each part by focusing on the characteristic frequency components of the outer ring, inner ring, and rolling elements of vibration caused by abnormality. The purpose is to provide a diagnostic method for

本発明は転がり軸受の振動を測定し、この測定振動波の
周波数分析により、転がり軸受の外輪。
The present invention measures the vibration of a rolling bearing and analyzes the frequency of the measured vibration waves to determine the outer ring of the rolling bearing.

内輪、転動体の各部の特性周波数及びその高調波の成分
の強度の2乗和平方根値と全周波数域の振動強度の実効
値との比を、各部における劣化指数として夫々算出し、
各劣化指数から各部の劣化確率を夫々算出することを特
徴とする。
Calculate the ratio of the square root of the sum of squares of the intensity of the characteristic frequency and harmonic components of each part of the inner ring and rolling elements to the effective value of the vibration intensity in the entire frequency range as a deterioration index for each part,
The method is characterized in that the deterioration probability of each part is calculated from each deterioration index.

以下本発明を図面に基づいて詳述する。The present invention will be explained in detail below based on the drawings.

第1図は転がり軸受の横断面図、第2図はその縦断面図
である。図においてlは内側にあって通常、軸に取付け
られる内輪、2は外側にあって通常ハウジングに取付け
られる外輪であり、内輪1と外輪2との間に複数の玉を
用いた転動体3,3・・・が保持器(図示せず)によっ
て所定間隔離隔して内輪1.外輪2間を転動するように
配設されている。
FIG. 1 is a cross-sectional view of the rolling bearing, and FIG. 2 is a vertical cross-sectional view thereof. In the figure, 1 is an inner ring located on the inside and is usually attached to a shaft, 2 is an outer ring on the outside and is usually attached to a housing, and between the inner ring 1 and the outer ring 2 are rolling elements 3 using a plurality of balls, 3... are separated by a predetermined interval by a retainer (not shown), and the inner ring 1. It is arranged so as to roll between the outer rings 2.

今、ピッチ円(転動体の中心がつくる円)の直径を1〕
、転動体の直径をd、接触角をαとし、内輪(軸)の回
転周波数をfaとすると、外輪の一点がIIIIJの転
動体と接触する周波数fOは次式で表わされる。
Now, the diameter of the pitch circle (the circle formed by the center of the rolling element) is 1]
, the diameter of the rolling element is d, the contact angle is α, and the rotation frequency of the inner ring (shaft) is fa, then the frequency fO at which one point of the outer ring contacts the rolling element of IIIJ is expressed by the following equation.

同様に内輪の一点が1個の転動体と接触する周波数fj
は 転動体の一点が内輪または外輪と接触する周波数fbは で夫々表わされる。
Similarly, the frequency fj at which one point of the inner ring contacts one rolling element
The frequency fb at which one point of the rolling element contacts the inner ring or the outer ring is expressed by .

さて、外輪2に傷が生じている場合に、この傷が転動体
3に接触することにより、外輪に生じる振動の特性周波
数F。は、転動体の数をZとすると、(3)式から で表わされ、同様に内輪1.転動体3に生じている傷に
基づく振動の特性周波数Fi、 Fbは夫々・・・(5
)′ で表わされる。
Now, when the outer ring 2 has a scratch, the characteristic frequency F of the vibration generated in the outer ring when the scratch comes into contact with the rolling elements 3. is expressed by equation (3), where Z is the number of rolling elements, and similarly, for inner ring 1. The characteristic frequencies Fi and Fb of vibrations caused by scratches occurring on the rolling element 3 are respectively...(5
)′.

従って外輪に異常があれば(3)2式よって、また内輪
、転動体に異常があれば+41 ’ 、 f55式によ
って夫々の異常に起因する振動の特性周波数が理論的に
算定できる。
Therefore, if there is an abnormality in the outer ring, the characteristic frequency of vibration caused by each abnormality can be calculated theoretically using equation (3)2, and if there is an abnormality in the inner ring or rolling elements, using the +41' and f55 equations.

通常、転がり軸受全体の振動には、外輪、内輪。Normally, the vibration of the entire rolling bearing involves the outer ring and inner ring.

転動体の振動が重畳しており、第3図に示すように不規
則なものである。しかしながら、外輪、内輪、転動体に
おける異常に起因する振動の特性周波数は−上述したご
と<(31’ 、 (41’ 、 (51’により理論
的にまるので、軸受全体の振動を、外輪。
The vibrations of the rolling elements are superimposed and are irregular as shown in FIG. However, the characteristic frequency of vibrations caused by abnormalities in the outer ring, inner ring, and rolling elements is theoretically calculated by - (31', (41', (51') as described above), so the vibration of the entire bearing can be reduced to the outer ring.

内輪、転動体における異常に起因する振動の特性周波数
に基づいて周波数分析すれば、各部の特性周波数におけ
る振動強度がまる。即ち、第3図に示す軸受全体の振動
に対して、所定の方法による周波数分析をすることによ
り、各部の異常に起因する高調波の成分の強度が抽出で
き、この特性周波数における高調波の成分の強度が軸受
の全体の振動強度に対する占有率、換言すれば、高調波
の成分の強度の2乗和平方根値と、全周波数域の振0J
強度の実効値との比を算出すれば、これが転がり軸受の
各部における異常の程度を表わす劣化指数となる。
If frequency analysis is performed based on the characteristic frequencies of vibrations caused by abnormalities in the inner ring and rolling elements, the vibration intensity at the characteristic frequencies of each part will be calculated. In other words, by performing frequency analysis using a predetermined method on the vibration of the entire bearing shown in Figure 3, it is possible to extract the intensity of harmonic components caused by abnormalities in each part, and the harmonic components at this characteristic frequency can be extracted. The intensity is the share of the overall vibration intensity of the bearing, in other words, the square root of the sum of squares of the intensity of harmonic components and the vibration 0J of the entire frequency range.
If the ratio to the effective value of the strength is calculated, this becomes a deterioration index representing the degree of abnormality in each part of the rolling bearing.

即ら、外輪の特性周波数成分の3次高調波の各成分強度
をSll、S12. S13とすれば、この2乗和平方
根値は Sll +S12 +S13 で表われれ、ま
た軸受全体の振動強度の実効値をS rmsとすると、
外輪の劣化指数F41は となる。
That is, the respective component intensities of the third harmonics of the characteristic frequency components of the outer ring are set as Sll, S12 . S13, this root-sum-of-squares value is expressed as Sll +S12 +S13, and if the effective value of the vibration intensity of the entire bearing is S rms,
The deterioration index F41 of the outer ring is as follows.

同様に内輪の特性周波数成分の3次高調波の各成分強度
を夫々521. S22. S23、転動体の特性周波
数成分の3次高調波の各成分強度を夫々831゜332
、 333とすると、内輪、転動体の各劣化指数F42
. P 43は、 となる。なお、2乗和平方根値をめるに際し、3次の高
調波の成分強度を用いることとしたがこれに限らず4次
以上の高調波の成分強度、若しくは2次の高調波の成分
強度を用いてもよい。
Similarly, each component intensity of the third harmonic of the characteristic frequency component of the inner ring is set to 521. S22. S23, the intensity of each component of the third harmonic of the characteristic frequency component of the rolling element is 831°332, respectively.
, 333, each deterioration index of the inner ring and rolling element is F42
.. P43 is as follows. In addition, when calculating the square root of the sum of squares value, we decided to use the component intensity of the third harmonic, but this is not limited to the component intensity of the fourth or higher harmonic, or the component intensity of the second harmonic. May be used.

ざらに本発明においては劣化指数から劣化確率を算出し
、これに基づいて転がり軸受の異常の程度を評価するよ
うにしている。一般に信頼性理論では偶発故障確率R(
t)は 一λt R(t)=1−e でまり、指数分布に従うものとされている。そこで本1
頭発明者は実験の結果、下記(9)式を得た。
Roughly speaking, in the present invention, the probability of deterioration is calculated from the deterioration index, and the degree of abnormality of the rolling bearing is evaluated based on this. Generally, in reliability theory, random failure probability R (
t) is expressed as -λt R(t)=1−e, and is assumed to follow an exponential distribution. So book 1
As a result of experiments, the inventor obtained the following formula (9).

即ち、劣化確率をPi(x)、劣化指数をFliとする
(ただしi=l〜3の値をとり、i=lのときは外輪、
i=2のときは内輪、t=3のときは転動体における劣
化指数を夫々示す)と、11JL/Lo:N常が発生し
ていないと考えられる場合(Pi (x) −〇)の劣 化指数の最大値 Mo :寿命(Pi (x) =1.0 ) (D劣化
指数の最大値 Xo :劣化確率が0.5になるときの劣化指数 nに :指数曲線の傾き(軸受の種類等により定まる) となる。(9)式をグラフに表わすと第5図のようにな
る。
That is, let the deterioration probability be Pi(x) and the deterioration index be Fli (however, i = l to 3, and when i = l, the outer ring,
When i = 2, it shows the deterioration index of the inner ring, and when t = 3, it shows the deterioration index of the rolling element, respectively), and the deterioration when 11JL/Lo:N is considered not to occur (Pi (x) - 〇). Maximum value of index Mo: Life (Pi (x) = 1.0) (D Maximum value of deterioration index (determined by).When formula (9) is expressed in a graph, it becomes as shown in Fig. 5.

従って(9)式に転がり軸受の各部位の劣化指数を代入
すると、劣化確率が算定でき、転がり軸受の各部の異常
の程度を数値にて確実に評価することが可能となる。
Therefore, by substituting the deterioration index of each part of the rolling bearing into equation (9), the probability of deterioration can be calculated, and the degree of abnormality of each part of the rolling bearing can be reliably evaluated numerically.

第6図は本発明方法の実施に使用する装置のブロック図
である。検査対象とする転がり軸受1oには振動を検出
する振動センサ11が取付けられており、その検出結果
は振動処理回路12にて増幅されて周波数分析部13に
入力されている。周波数分析部13では、前述した(3
]’、 +41’、 (51’式に基づいて外輪、内輪
、転動体の異常に起因する振動の特性周波数の理論値を
め、軸受10全体の振動を各特性周波数に基づいて前述
した如(周波数分析して軸受各部の特性周波数における
高調波の成分の強度を抽出し、その抽出結果を演算部1
4に与え、該演算部14にて、前記(61,(71,(
81式に基づいて劣化指数を演算すると共に、(9)式
に基づいて劣化確率を演算し、これを適宜の表示部15
にて表示する。
FIG. 6 is a block diagram of the apparatus used to carry out the method of the invention. A vibration sensor 11 for detecting vibration is attached to the rolling bearing 1o to be inspected, and the detection result is amplified by a vibration processing circuit 12 and input to a frequency analysis section 13. In the frequency analysis section 13, the above-mentioned (3
]', +41', (Based on formula 51', find the theoretical values of the characteristic frequencies of vibrations caused by abnormalities in the outer ring, inner ring, and rolling elements, and calculate the vibration of the entire bearing 10 as described above based on each characteristic frequency. The frequency is analyzed to extract the intensity of harmonic components at the characteristic frequency of each part of the bearing, and the extraction results are sent to the calculation unit 1.
4, and the calculation unit 14 calculates the above (61, (71, (
The deterioration index is calculated based on Equation 81, and the probability of deterioration is calculated based on Equation (9).
Display at.

次に本発明方法の実施結果を示す。診断対象の転がり軸
受として6206仕様の軸受を用い、この転ガリ軸受の
状態が、f+1正常の場合、(2)外輪に4.1mmX
 2.1mmX深さ0.4mmのスポット欠陥がある場
合、(3)外輪に4.1mmX 5.2n+mX深さ0
.6mmのスポット欠陥がある場合、について本発明方
法により診断した。この転がり軸受の外輪、内輪2転動
体の異常に起因する振動の各特性周波数Fo、Fi。
Next, the results of implementing the method of the present invention will be shown. If a 6206 specification bearing is used as the rolling bearing to be diagnosed, and the condition of the rolling bearing is f+1 normal, (2) 4.1mmX on the outer ring.
If there is a spot defect of 2.1mm x 0.4mm depth, (3) 4.1mm x 5.2n + m x depth 0 on the outer ring.
.. A case where a spot defect of 6 mm was present was diagnosed by the method of the present invention. Characteristic frequencies Fo and Fi of vibrations caused by abnormalities in the two rolling elements of the outer ring and inner ring of this rolling bearing.

Fbは、内輪(軸)の回転数をfaとすると、Fn=3
.67fa、Fi =5.33fa、Fb =5.23
faとなる。
Fb is Fn=3, where the rotation speed of the inner ring (shaft) is fa.
.. 67fa, Fi =5.33fa, Fb =5.23
It becomes fa.

なお劣化指数は簡1′!のため、2次高調波における振
動強度の2乗和平方根値を使用した。夫々の結1 果を以下に示す。
The deterioration index is easily 1′! Therefore, the square root of the sum of squares of the vibration intensity at the second harmonic was used. The respective results are shown below.

(1)の場合 511=1.25xlO’ 512=5.27xlO−
5S rn+s = 1.038 X 10−5外輪の
劣化指数 外輪の劣化確率P 1(x ) =0.0337(2)
の場合 511=2.049 xlO’ 512=2.022 
xlO−’Srm5 =6.581 Xl0−2 F41=3.12X10’ P+ (x) =0.378 (3)の場合 5ll=5.23xlO’ 512=4.338 xl
o−’S rrns = 1.07 X 1O−2F4
1=4.906 xlO’ P+ (x) =0.775 +11. (21,(31の結果を第7.第8.第9図
のグラフに夫々示す。
In the case of (1), 511 = 1.25xlO' 512 = 5.27xlO-
5S rn+s = 1.038
In case 511=2.049 xlO' 512=2.022
xlO-'Srm5 = 6.581
o-'S rrns = 1.07 X 1O-2F4
1=4.906 xlO' P+ (x) =0.775 +11. The results of (21, (31) are shown in the graphs of Figures 7, 8, and 9, respectively.

2 各種実験から、外輪の劣化確率が0.1以上になると外
輪に何らかの異常が発生していることが判明しており、
上述の実施結果においても正常時には0.1以上、異常
時には0.1以下となっている。
2. From various experiments, it has been found that when the probability of deterioration of the outer ring is 0.1 or higher, some kind of abnormality has occurred in the outer ring.
In the above-mentioned implementation results, it is 0.1 or more in normal times and 0.1 or less in abnormal times.

従来から実施されている振動の平均値、ピーク値を用い
て軸受の異常を表現する方法により、前記i11. (
21,+31の場合を表わすと次のようになる。
The above-mentioned i11. (
The case of 21, +31 is expressed as follows.

(11の場合(圧密時) 平均値=0.1g ピーク値=1.5g(2)の場合(
スポット欠陥4.1x2.1 xO,4)平均値−1,
5g ピーク値−25g (3)の場合(スポット欠陥4.1x5.2 xo、6
 )平均値−3,0g ピーク値−130g欠陥の大き
さに比例して夫々の値が大きくなっていくことがわかる
が、どの部分におけるどの程度の損傷であるかを推定す
ることは困難であり、またこれらの値は回転数、軸径等
で補正しなければならず、軸受の状態を的確に把握でき
なかった。
(In the case of 11 (at the time of consolidation) Average value = 0.1g Peak value = 1.5g (2) (
Spot defect 4.1x2.1 xO, 4) Average value -1,
5g Peak value -25g In the case of (3) (spot defect 4.1x5.2 xo, 6
) Average value - 3.0 g Peak value - 130 g It can be seen that each value increases in proportion to the size of the defect, but it is difficult to estimate the extent of damage in which part. Furthermore, these values had to be corrected based on the rotational speed, shaft diameter, etc., making it impossible to accurately grasp the condition of the bearing.

しかしながら本発明方法によれば、転がり軸受の異常が
各部の確率として表わされているために軸受の各部にお
ける状態を的確に捉えることができ、転がり軸受の診断
が容易にかつ高精度に行うことができる。
However, according to the method of the present invention, since abnormalities in rolling bearings are expressed as probabilities for each part, it is possible to accurately grasp the condition of each part of the bearing, and diagnosis of rolling bearings can be performed easily and with high precision. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転がり軸受の横断面図、第2図はその縦断面図
、第3図は転がり軸受の振動を表わすグラフ、第4図は
特性周波数に基づく周波数分析結果を示すグラフ、第5
図は劣化指数を劣化確率との関係を示すグラフ、第6図
は本発明方法の実施に使用する装置のブロック図、第7
〜第9図は本発明方法の実施例における劣化指数と劣化
確率との関係を示すグラフである。 ■・・・内輪 2・・・外輪 3・・・転動体 10・
・・転がり軸受 11・・・振動センサ 特 許 出願人 住友金属工業株式会社代理人 弁理士
 河 野 登 夫 5 第3図 第4図 −196− タ6 イl−オー 番梵 第9図
Figure 1 is a cross-sectional view of the rolling bearing, Figure 2 is its longitudinal cross-sectional view, Figure 3 is a graph showing the vibration of the rolling bearing, Figure 4 is a graph showing the results of frequency analysis based on the characteristic frequency, and Figure 5 is a graph showing the vibration of the rolling bearing.
Figure 6 is a graph showing the relationship between the deterioration index and the probability of deterioration; Figure 6 is a block diagram of the device used to implement the method of the present invention;
9 is a graph showing the relationship between the deterioration index and the deterioration probability in an embodiment of the method of the present invention. ■...Inner ring 2...Outer ring 3...Rolling element 10.
...Rolling bearing 11...Vibration sensor patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 5 Figure 3 Figure 4-196-T6 Il-O Banbon Figure 9

Claims (1)

【特許請求の範囲】 1、転がり軸受の振動を測定し、この測定振動波の周波
数分析により、転がり軸受の外輪。 内輪、転動体の各部の特性周波数及びその高調波の成分
の強度の2乗和平方根値と全周波数域の振動強度の実効
値との比を、各部における劣化指数として夫々算出し、
各劣化指数から各部の劣化確率を夫々算出することを特
徴とする転がり軸受の診断方法。
[Claims] 1. The outer ring of the rolling bearing is determined by measuring the vibration of the rolling bearing and frequency analysis of the measured vibration waves. Calculate the ratio of the square root of the sum of squares of the intensity of the characteristic frequency and harmonic components of each part of the inner ring and rolling elements to the effective value of the vibration intensity in the entire frequency range as a deterioration index for each part,
A method for diagnosing a rolling bearing, characterized by calculating the probability of deterioration of each part from each deterioration index.
JP58139955A 1983-07-29 1983-07-29 Diagnostic method of rolling bearing Pending JPS6031036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139955A JPS6031036A (en) 1983-07-29 1983-07-29 Diagnostic method of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139955A JPS6031036A (en) 1983-07-29 1983-07-29 Diagnostic method of rolling bearing

Publications (1)

Publication Number Publication Date
JPS6031036A true JPS6031036A (en) 1985-02-16

Family

ID=15257559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139955A Pending JPS6031036A (en) 1983-07-29 1983-07-29 Diagnostic method of rolling bearing

Country Status (1)

Country Link
JP (1) JPS6031036A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270820A (en) * 1986-05-16 1987-11-25 Nippon Kokan Kk <Nkk> Method and device for bearing failure diagnosis by vibratory sound
JPS63297813A (en) * 1987-05-28 1988-12-05 Fuji Electric Co Ltd Diagnosing device for abnormality of rolling bearing
JPS6449708A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Abnormality diagnosing device for rolling bearing
JPS6491031A (en) * 1987-10-02 1989-04-10 Japan Tobacco Inc Method and apparatus for nondestructive inspection of roller bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270820A (en) * 1986-05-16 1987-11-25 Nippon Kokan Kk <Nkk> Method and device for bearing failure diagnosis by vibratory sound
JPS63297813A (en) * 1987-05-28 1988-12-05 Fuji Electric Co Ltd Diagnosing device for abnormality of rolling bearing
JPS6449708A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Abnormality diagnosing device for rolling bearing
JPS6491031A (en) * 1987-10-02 1989-04-10 Japan Tobacco Inc Method and apparatus for nondestructive inspection of roller bearing
JPH0616001B2 (en) * 1987-10-02 1994-03-02 日本たばこ産業株式会社 Non-destructive inspection method and device for rolling bearing

Similar Documents

Publication Publication Date Title
KR101178962B1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
Batista et al. A classifier fusion system for bearing fault diagnosis
Gustafsson et al. Detection of damage in assembled rolling element bearings
EP0693176B1 (en) Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
US10724995B2 (en) Viscosity estimation from demodulated acoustic emission
WO2006025404A1 (en) State detection device, state detection method, state detection program, and information recording medium; state display device, state display method, state display program, and information recording medium
JP5067121B2 (en) Rolling bearing abnormality determination method and abnormality determination apparatus
JP2007108189A (en) Method and device for diagnosing abnormality in rotor
JP2017032520A (en) State monitoring device and state monitoring method
EP0800072A2 (en) Method and apparatus for location of anomalous signal in a radial bearing
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
JPWO2019221251A1 (en) Bearing condition monitoring method and condition monitoring device
JPS6293620A (en) Diagnostic device for rotary machine
CN114065820A (en) Multidimensional data fault decision method, multidimensional data fault decision device and storage medium
JPH07218334A (en) Method and device for diagnosing bearing
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP2006118869A (en) Defect detector for rolling bearing, and defect detection method for the rolling bearing
JPS6031036A (en) Diagnostic method of rolling bearing
JPH01127934A (en) Damage diagnosing device
JP4013056B2 (en) Bearing load condition diagnosis method
JP2007040815A (en) Method for evaluating antifriction bearing component
JP7351142B2 (en) Rolling bearing condition monitoring method and condition monitoring device
JPH05281094A (en) Inspection method of directly moving type guide provided with circulating type rolling guide and its apparatus
JPH068774B2 (en) Bearing remaining life estimation method
JPH112239A (en) Device to measure various property of rolling bearing