JPWO2019221251A1 - Bearing condition monitoring method and condition monitoring device - Google Patents

Bearing condition monitoring method and condition monitoring device Download PDF

Info

Publication number
JPWO2019221251A1
JPWO2019221251A1 JP2020519930A JP2020519930A JPWO2019221251A1 JP WO2019221251 A1 JPWO2019221251 A1 JP WO2019221251A1 JP 2020519930 A JP2020519930 A JP 2020519930A JP 2020519930 A JP2020519930 A JP 2020519930A JP WO2019221251 A1 JPWO2019221251 A1 JP WO2019221251A1
Authority
JP
Japan
Prior art keywords
bearing
row
revolution
rolling element
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020519930A
Other languages
Japanese (ja)
Inventor
湯川 謹次
謹次 湯川
伸司 西端
伸司 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of JPWO2019221251A1 publication Critical patent/JPWO2019221251A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

軸受の状態監視装置は、軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出するセンサと、該信号に対して周波数分析を行い、スペクトルデータを算出する波形処理部と、スペクトルデータのピークが現れる周波数と、軸受の内外輪と転動体に滑りがない場合の転動体の自転、及び公転による理論周波数とを比較し、軸受の転動体の自転数の変動、及び公転数の変動を求める演算部と、を備える。The bearing condition monitoring device calculates spectrum data by performing frequency analysis on the signal and a sensor that detects a signal based on vibration, sound, or strain value of the inner ring, outer ring, shaft, and housing generated from the bearing. The waveform processing unit compares the frequency at which the peak of the spectrum data appears with the rotation of the rolling element when there is no slip between the inner and outer rings of the bearing and the rolling element, and the theoretical frequency due to revolution, and the number of rotations of the rolling element of the bearing. It is provided with a calculation unit for obtaining fluctuations and fluctuations in the number of revolutions.

Description

本発明は、軸受の状態監視方法及び状態監視装置に関する。 The present invention relates to a bearing condition monitoring method and a condition monitoring device.

従来、軸受の外輪あるいは内輪等に生じる音や振動をセンサによって検出し、その検出信号に基いて異常の有無を判断する技術が提案されている。 Conventionally, a technique has been proposed in which a sensor detects a sound or vibration generated in an outer ring or an inner ring of a bearing, and the presence or absence of an abnormality is determined based on the detection signal.

特許文献1には、振動センサの出力から特徴量抽出部において周波数特徴量と時間特徴量とを抽出して異常診断部に入力し、異常診断部が周波数特徴量と時間特徴量と基準データとを照合することにより、異常の有無および異常の種別を判断可能とした回転機器の異常診断方法およびその装置が記載されている。 In Patent Document 1, the frequency feature amount and the time feature amount are extracted from the output of the vibration sensor by the feature amount extraction unit and input to the abnormality diagnosis unit, and the abnormality diagnosis unit uses the frequency feature amount, the time feature amount, and the reference data. Describes a method for diagnosing an abnormality in a rotating device and its device, which makes it possible to determine the presence or absence of an abnormality and the type of abnormality by collating.

また、特許文献2には、軸受から発生する振動を検出し、検出された信号波形にエンベロープ処理および周波数分析を施し、得られたエンベロープスペクトルのピーク値を所定の周波数範囲で測定された全スペクトルの積分値であるオーバーオール値で除算して算出値を得て、該算出値を基準値と比較して異常の有無を判断する軸受の異常診断方法及び装置が提案されている。 Further, in Patent Document 2, vibration generated from a bearing is detected, the detected signal waveform is subjected to envelope processing and frequency analysis, and the peak value of the obtained envelope spectrum is measured in a predetermined frequency range. A method and an apparatus for diagnosing an abnormality in a bearing have been proposed in which a calculated value is obtained by dividing by an overall value which is an integrated value of, and the calculated value is compared with a reference value to determine the presence or absence of an abnormality.

日本国特許第3449194号公報Japanese Patent No. 3449194 日本国特許第4120099号公報Japanese Patent No. 41209999

一方、軸受の異常診断方法においては、異常発熱、スキッディングの原因となる公転滑り、自転滑り、あるいは、予圧状態で使用される深溝玉軸受、アンギュラ玉軸受の予圧過大、予圧抜けによる公転数の変動、あるいは自動調心ころ軸受のころスキュー等による公転数の変動を監視することが望まれている。しかしながら、特許文献1及び2のいずれの軸受の異常診断方法においても、自転滑りや公転滑り、あるいは公転数の変動について考慮されていない。 On the other hand, in the method of diagnosing abnormalities in bearings, the number of revolutions due to abnormal heat generation, revolution slippage that causes skidding, rotation slippage, or excessive preload of deep groove ball bearings and angular contact ball bearings used in the preload state, and loss of preload. It is desired to monitor fluctuations or fluctuations in the number of revolutions due to roller skew of self-aligning roller bearings. However, in any of the methods for diagnosing abnormalities of bearings in Patent Documents 1 and 2, rotation slip, revolution slip, or fluctuation of the number of revolutions is not taken into consideration.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、機械装置の振動、音響、あるいは内輪、外輪、軸、ハウジングに発生するひずみ値の周波数分析を行うことで、自転数の変動、公転数の変動を測定可能な軸受の状態監視方法及び状態監視装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to perform frequency analysis of vibration and sound of a mechanical device or strain values generated in an inner ring, an outer ring, a shaft, and a housing to perform a rotation number. It is an object of the present invention to provide a bearing condition monitoring method and a condition monitoring device capable of measuring the fluctuation of the bearing and the fluctuation of the number of revolutions.

本発明の上記目的は、下記の構成により達成される。
(1) 軸受の運転状態を監視する軸受の状態監視方法であって、
前記軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出する工程と、前記信号に対して周波数分析を行い、スペクトルデータを算出する工程と、前記スペクトルデータのピークが現れる周波数と、前記軸受の内外輪と転動体に滑りがない場合の前記転動体の自転による理論周波数、及び公転による理論周波数の少なくとも一つとを比較し、前記軸受の転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める工程と、
を備えることを特徴とする軸受の状態監視方法。
(2) 軸受の運転状態を監視する軸受の状態監視装置であって、
前記軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出するセンサと、前記信号に対して周波数分析を行い、スペクトルデータを算出する波形処理部と、前記スペクトルデータのピークが現れる周波数と、前記軸受の内外輪と転動体に滑りがない場合の前記転動体の自転による理論周波数、及び公転による理論周波数の少なくとも一つとを比較し、前記軸受の転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める演算部と、を備えることを特徴とする軸受の状態監視装置。
(3) 複数の軸受、あるいは複列軸受の各列の運転状態を監視する軸受の状態監視方法であって、
前記複数の軸受、あるいは前記複列軸受の各列から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出する工程と、前記信号に対して周波数分析を行い、スペクトルデータを算出する工程と、前記各軸受、あるいは前記複列軸受の各列の自転、公転による前記スペクトルデータのピーク周波数の比と、前記各軸受、あるいは前記複列軸受の各列の内外輪と転動体に滑りがない場合の前記転動体の自転により発生する理論周波数の比、及び公転により発生する理論周波数の比の少なくとも一つとを比較し、前記各軸受、あるいは前記複列軸受の各列の前記転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める工程と、を備えることを特徴とする軸受の状態監視方法。
(4) 複数の軸受、あるいは複列軸受の各列の運転状態を監視する軸受の状態監視装置であって、
前記複数の軸受、あるいは前記複列軸受の各列から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出するセンサと、前記信号に対して周波数分析を行い、スペクトルデータを算出する波形処理部と、前記各軸受、あるいは前記複列軸受の各列の自転、公転による前記スペクトルデータのピーク周波数の比と、前記各軸受、あるいは前記複列軸受の各列の内外輪と転動体に滑りがない場合の前記転動体の自転により発生する理論周波数の比、及び公転により発生する理論周波数の比の少なくとも一つとを比較し、前記各軸受、あるいは前記複列軸受の各列の前記転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める演算部と、を備えることを特徴とする軸受の状態監視装置。
The above object of the present invention is achieved by the following configuration.
(1) A bearing condition monitoring method for monitoring the bearing operating condition.
A step of detecting a signal based on vibration, acoustics, or strain values of an inner ring, an outer ring, a shaft, and a housing generated from the bearing, a step of performing frequency analysis on the signal, and calculating spectrum data, and the spectrum data. The frequency at which the peak appears is compared with at least one of the theoretical frequency due to the rotation of the rolling element and the theoretical frequency due to the revolution when the inner and outer rings of the bearing and the rolling element do not slip, and the rotation of the rolling element of the bearing is compared. The process of finding at least one of the fluctuation of the number and the fluctuation of the number of revolutions,
A method for monitoring the condition of a bearing, which comprises.
(2) A bearing condition monitoring device that monitors the operating condition of the bearing.
A sensor that detects a signal based on vibration, acoustics, or strain values of an inner ring, an outer ring, a shaft, and a housing generated from the bearing, a waveform processing unit that performs frequency analysis on the signal and calculates spectrum data, and the above. The frequency at which the peak of the spectrum data appears is compared with at least one of the theoretical frequency due to the rotation of the rolling element and the theoretical frequency due to the revolution when the inner and outer rings of the bearing and the rolling element do not slip, and the rolling element of the bearing is compared. A bearing condition monitoring device comprising: a calculation unit for obtaining at least one of a variation in the number of rotations and a variation in the number of revolutions.
(3) A bearing condition monitoring method for monitoring the operating condition of each row of a plurality of bearings or a double row bearing.
A step of detecting a signal based on vibration, acoustics, or strain values of an inner ring, an outer ring, a shaft, and a housing generated from each row of the plurality of bearings or the double row bearing, and frequency analysis of the signals are performed. The process of calculating the spectrum data, the ratio of the peak frequencies of the spectrum data due to the rotation and revolution of each row of the bearing or the double row bearing, and the inner and outer rings of each row of the bearing or the double row bearing. Compare with at least one of the ratio of the theoretical frequency generated by the rotation of the rolling element and the ratio of the theoretical frequency generated by the revolution when the rolling element does not slip, and each of the bearings or the double row bearings. A method for monitoring a state of a bearing, which comprises a step of obtaining at least one variation in the number of rotations and a variation in the number of revolutions of the rolling elements in a row.
(4) A bearing condition monitoring device that monitors the operating condition of each row of multiple bearings or double row bearings.
A sensor that detects a signal based on vibration, acoustics, or strain values of the inner ring, outer ring, shaft, and housing generated from each row of the plurality of bearings or the double row bearing, and frequency analysis are performed on the signals. The ratio of the peak frequency of the spectrum data due to the rotation and revolution of each row of the bearing or the double row bearing to the waveform processing unit that calculates the spectrum data, and each row of the bearing or the double row bearing. Comparing at least one of the ratio of the theoretical frequency generated by the rotation of the rolling element and the ratio of the theoretical frequency generated by the revolution when there is no slip between the inner and outer rings and the rolling element, each bearing or the double row bearing is compared. A bearing state monitoring device, comprising: a calculation unit for obtaining at least one of a variation in the number of rotations and a variation in the number of revolutions of the rolling element in each row of the above.

本発明の軸受の状態監視方法及び状態監視装置によれば、センサにより軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出し、波形処理部で該信号に対して周波数分析を行ってスペクトルデータを算出した後、演算部がスペクトルデータのピークが現れる周波数と、軸受の内外輪と転動体に滑りがない場合の転動体の自転による理論周波数、及び公転による理論周波数の少なくとも一つとを比較することで、軸受の転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める。これにより、軸受の不具合の原因となる転動体と内外輪の滑り、予圧過大、予圧抜け、ころのスキューによる自転数の変動、公転数の変動などの軸受の運転状態を監視することができる。 According to the bearing condition monitoring method and condition monitoring device of the present invention, a sensor detects a signal based on vibration, sound, or strain value of the inner ring, outer ring, shaft, and housing generated from the bearing, and the waveform processing unit detects the signal. After calculating the spectrum data by performing frequency analysis on the bearing, the calculation unit determines the frequency at which the peak of the spectrum data appears, the theoretical frequency due to the rotation of the rolling element when there is no slip between the inner and outer rings of the bearing and the rolling element, and the revolution. By comparing with at least one of the theoretical frequencies according to the above, at least one of the fluctuation of the rotation number of the rolling element of the bearing and the fluctuation of the revolution number can be obtained. As a result, it is possible to monitor the operating state of the bearing such as slippage of the rolling element and the inner and outer rings, excessive preload, preload release, fluctuation of the rotation number due to roller skew, and fluctuation of the revolution number, which cause a malfunction of the bearing.

本発明の軸受の状態監視方法及び状態監視装置によれば、センサにより軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出し、波形処理部で該信号に対して周波数分析を行ってスペクトルデータを算出した後、演算部がスペクトルデータのピークが現れる周波数の比と、軸受の内外輪と転動体に滑りがない場合の転動体の自転により発生する理論周波数の比、及び公転による理論周波数の比の少なくとも一つとを比較することで、軸受の転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める。これにより、軸受の不具合の原因となる転動体と内外輪の滑り、予圧過大、予圧抜け、ころのスキューによる自転数の変動、公転数の変動などの軸受の運転状態を監視することができる。 According to the bearing condition monitoring method and condition monitoring device of the present invention, a sensor detects a signal based on vibration, sound, or strain value of the inner ring, outer ring, shaft, and housing generated from the bearing, and the waveform processing unit detects the signal. After calculating the spectrum data by performing frequency analysis on the bearing, the calculation unit calculates the ratio of the frequency at which the peak of the spectrum data appears, and the theory generated by the rotation of the rolling element when there is no slip between the inner and outer rings of the bearing and the rolling element. By comparing at least one of the frequency ratio and the theoretical frequency ratio due to the revolution, at least one of the fluctuation of the rotation number of the rolling element of the bearing and the fluctuation of the revolution number can be obtained. As a result, it is possible to monitor the operating state of the bearing such as slippage of the rolling element and the inner and outer rings, excessive preload, preload release, fluctuation of the rotation number due to roller skew, and fluctuation of the revolution number, which cause a malfunction of the bearing.

本発明の第1実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing condition monitoring apparatus which concerns on 1st Embodiment of this invention. 図1の軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。It is an image diagram of the graph of the envelope spectrum measured by the bearing condition monitoring device of FIG. 本発明の第2実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing state monitoring apparatus which concerns on 2nd Embodiment of this invention. 図3の軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。It is an image diagram of the graph of the envelope spectrum measured by the bearing condition monitoring device of FIG. 本発明の第3実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing state monitoring apparatus which concerns on 3rd Embodiment of this invention. 図5の軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。It is an image diagram of the graph of the envelope spectrum measured by the bearing condition monitoring device of FIG. 本発明の第4実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing state monitoring apparatus which concerns on 4th Embodiment of this invention. 図7の2つの検出器により測定されたエンベロープスペクトルのグラフのイメージ図である。It is an image diagram of the graph of the envelope spectrum measured by the two detectors of FIG. 7. 本発明の第5実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing state monitoring apparatus which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing state monitoring apparatus which concerns on 6th Embodiment of this invention. 図10の軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。It is an image diagram of the graph of the envelope spectrum measured by the bearing condition monitoring device of FIG. 本発明の第7実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing state monitoring apparatus which concerns on 7th Embodiment of this invention. 図12の軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。It is an image diagram of the graph of the envelope spectrum measured by the bearing condition monitoring device of FIG. 本発明の第8実施形態に係る軸受の状態監視装置の概略構成図である。It is a schematic block diagram of the bearing state monitoring apparatus which concerns on 8th Embodiment of this invention. 図14の軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。It is an image diagram of the graph of the envelope spectrum measured by the bearing condition monitoring device of FIG.

以下、本発明に係る軸受の状態監視装置の各実施形態を図面に基づいて詳細に説明する。 Hereinafter, each embodiment of the bearing condition monitoring device according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は深溝玉軸受の公転滑り、自転滑りを測定する軸受の状態監視装置の概略構成図であり、図2は該軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。
(First Embodiment)
FIG. 1 is a schematic configuration diagram of a bearing condition monitoring device for measuring the revolution slip and rotation slip of a deep groove ball bearing, and FIG. 2 is an image diagram of a graph of an envelope spectrum measured by the bearing condition monitoring device.

図1に示すように、本実施形態の軸受の状態監視装置10は、深溝玉軸受1の状態を監視するための装置である。深溝玉軸受1は、内輪2と、外輪3と、内外輪2,3間に転動自在に配設された転動体である複数の玉4と、複数の玉4を回動自在に保持する保持器5と、を備える。内輪2は回転軸6に嵌合し、外輪3は不図示のハウジングに固定されている。 As shown in FIG. 1, the bearing state monitoring device 10 of the present embodiment is a device for monitoring the state of the deep groove ball bearing 1. The deep groove ball bearing 1 rotatably holds a plurality of balls 4 which are rolling elements arranged between the inner ring 2, the outer ring 3, the inner and outer rings 2 and 3, and the plurality of balls 4. The cage 5 and the cage 5 are provided. The inner ring 2 is fitted to the rotating shaft 6, and the outer ring 3 is fixed to a housing (not shown).

軸受の状態監視装置10は、振動センサ20と、回転センサ22と、A/D変換部31と、波形処理部32と、演算部33と、判別部34とを備える。なお、A/D変換部31、波形処理部32、演算部33、及び判別部34は、例えばパーソナルコンピュータ等の情報処理装置30を主体として構成される。 The bearing condition monitoring device 10 includes a vibration sensor 20, a rotation sensor 22, an A / D conversion unit 31, a waveform processing unit 32, a calculation unit 33, and a discrimination unit 34. The A / D conversion unit 31, the waveform processing unit 32, the calculation unit 33, and the discrimination unit 34 are mainly composed of an information processing device 30 such as a personal computer.

振動センサ20は、外輪3に対向配置されて深溝玉軸受1から発生する振動を電気信号として検出し、検出された電気信号を増幅器21で増幅してA/D変換部31に入力する。回転センサ22は、回転軸6に対向配置されて回転軸6の回転を検出し、回転計23で回転軸6の回転速度を求めて演算部33に入力する。 The vibration sensor 20 detects the vibration generated from the deep groove ball bearing 1 facing the outer ring 3 as an electric signal, amplifies the detected electric signal by the amplifier 21, and inputs the detected electric signal to the A / D conversion unit 31. The rotation sensor 22 is arranged so as to face the rotation shaft 6, detects the rotation of the rotation shaft 6, obtains the rotation speed of the rotation shaft 6 with the tachometer 23, and inputs it to the calculation unit 33.

振動センサ20からA/D変換部31に入力された振動データは、A/D変換部31によりデジタル信号に変換された後、波形処理部32でエンベロープ処理および周波数分析を行い、スペクトルデータを算出する。 The vibration data input from the vibration sensor 20 to the A / D conversion unit 31 is converted into a digital signal by the A / D conversion unit 31, and then the waveform processing unit 32 performs envelope processing and frequency analysis to calculate spectrum data. To do.

演算部33は、さらに、回転センサ22で検出された回転軸6の回転速度に基づいて、内外輪2,3と玉4に滑りがない場合の玉4の自転、及び公転による理論周波数を演算し、該理論周波数と波形処理部32で求められたスペクトルデータのピークが現れる周波数(以下、「ピーク周波数」と称す)とを比較して、玉4の自転滑り、及び公転滑りを求める。
なお、ピーク周波数は、ある一定の基準値と比較するなど、従来の手法によって選定される。
The calculation unit 33 further calculates the theoretical frequency due to the rotation and revolution of the ball 4 when the inner and outer rings 2 and 3 and the ball 4 do not slip, based on the rotation speed of the rotation shaft 6 detected by the rotation sensor 22. Then, the theoretical frequency and the frequency at which the peak of the spectrum data obtained by the waveform processing unit 32 appears (hereinafter referred to as "peak frequency") are compared to obtain the rotation slip and the revolution slip of the ball 4.
The peak frequency is selected by a conventional method such as comparison with a certain reference value.

図2は、スペクトルデータのピーク周波数と、滑りが発生しない状態における理論周波数と、を比較したグラフのイメージ図であり、図中、Aは内外輪2,3と玉4に滑りがない場合の玉4の自転による理論周波数を示し、Bは内外輪2,3と玉4に滑りがない場合の玉4の公転による理論周波数を示している。玉4の自転による理論周波数Aと、波形処理部32で求められた、理論周波数Aに対応するスペクトルデータのピーク周波数との差が自転数の変動Cであり、玉4の公転による理論周波数Bと、理論周波数Bに対応するスペクトルデータのピーク周波数との差が公転数の変動Dである。
なお、理論周波数A,Bに対応するスペクトルデータのピーク周波数は、通常、理論周波数A,Bと最も隣り合わせのピーク周波数であるが、自転滑り、公転滑りが大きい場合は、この限りではなく、また、理論周波数の近傍に自転、公転とは関係のない共振が発生している可能性がある。この場合は、軸の回転数の変化に対するスペクトルデータのピーク周波数の変化を見て、該当するピーク周波数かどうか判断を行う。或いは、自転滑り、公転滑りが発生していない状態(通常は、初期状態、或いは、定常状態)との比較により、該当するピーク周波数を判断する。また、スペクトルデータの周期性により、2次以上の高調波のピーク周波数を用いて、比較が行われてもよい。或いは、軸受から発生する振動は、自転、公転の影響を受けることから、理論周波数以外のピーク周波数を用いて、自転滑り、公転滑りのない状態(通常は、初期状態、或いは、定常状態)からの変化により、自転滑り、公転滑りの状態を調べる。
FIG. 2 is an image diagram of a graph comparing the peak frequency of the spectrum data and the theoretical frequency in a state where slip does not occur. In the figure, A is a ball when the inner and outer rings 2 and 3 and the ball 4 have no slip. The theoretical frequency due to the rotation of 4 is shown, and B shows the theoretical frequency due to the revolution of the ball 4 when the inner and outer rings 2 and 3 and the ball 4 do not slip. The difference between the theoretical frequency A due to the rotation of the ball 4 and the peak frequency of the spectrum data corresponding to the theoretical frequency A obtained by the waveform processing unit 32 is the variation C of the rotation number, and the theoretical frequency B due to the revolution of the ball 4 The difference between the frequency and the peak frequency of the spectrum data corresponding to the theoretical frequency B is the variation D of the number of revolutions.
The peak frequency of the spectrum data corresponding to the theoretical frequencies A and B is usually the peak frequency most adjacent to the theoretical frequencies A and B, but this is not the case when the rotation slip and the revolution slip are large. , There is a possibility that resonance unrelated to rotation and revolution occurs in the vicinity of the theoretical frequency. In this case, it is determined whether or not it is the corresponding peak frequency by observing the change in the peak frequency of the spectrum data with respect to the change in the rotation speed of the axis. Alternatively, the corresponding peak frequency is determined by comparison with a state in which rotation slip and revolution slip do not occur (usually, an initial state or a steady state). Further, depending on the periodicity of the spectrum data, the comparison may be performed using the peak frequency of the second or higher harmonics. Alternatively, since the vibration generated from the bearing is affected by rotation and revolution, use a peak frequency other than the theoretical frequency from a state without rotation slip and revolution slip (usually, an initial state or a steady state). The state of rotation slip and revolution slip is investigated by the change of.

そして、判別部34は、自転数の変動C、又は公転数の変動Dの有無や大きさから深溝玉軸受1の異常発熱、スキッディングの原因となる内外輪2,3と玉4の滑りを監視する。 Then, the discriminating unit 34 causes abnormal heat generation of the deep groove ball bearing 1 and slippage of the inner and outer rings 2 and 3 and the ball 4 which cause skidding, depending on the presence / absence and size of the fluctuation C of the rotation number or the fluctuation D of the revolution number. Monitor.

以上説明したように、本実施形態の軸受の状態監視方法及び状態監視装置10によれば、自転数の変動及び公転数の変動を測定することで、深溝玉軸受1の異常発熱や、スキッディング、はく離の原因となる自転滑り、公転滑りの状態を監視することができる。 As described above, according to the bearing condition monitoring method and condition monitoring device 10 of the present embodiment, abnormal heat generation of the deep groove ball bearing 1 and skidding are performed by measuring fluctuations in the number of rotations and fluctuations in the number of revolutions. , It is possible to monitor the state of rotation slip and revolution slip that cause peeling.

(第2実施形態)
図3は予圧状態で使用される深溝玉軸受、アンギュラ玉軸受の公転数の変動を測定する軸受の状態監視装置の概略構成図であり、図4は該軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。
(Second Embodiment)
FIG. 3 is a schematic configuration diagram of a bearing condition monitoring device for measuring fluctuations in the number of revolutions of deep groove ball bearings and angular contact ball bearings used in a preload state, and FIG. 4 is an envelope measured by the bearing condition monitoring device. It is an image diagram of the graph of the spectrum.

本実施形態の軸受の状態監視装置10は、測定対象である軸受が予圧付与された一対の軸受(深溝玉軸受、またはアンギュラ玉軸受)である点において、第1実施形態の軸受の状態監視装置と異なる。その他の部分については、本発明の第1実施形態の軸受の状態監視装置と同様であるので、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。 The bearing condition monitoring device 10 of the present embodiment is a bearing condition monitoring device of the first embodiment in that the bearing to be measured is a pair of bearings (deep groove ball bearings or angular contact ball bearings) to which a preload is applied. Different from. Since the other parts are the same as those of the bearing condition monitoring device according to the first embodiment of the present invention, the same parts are designated by the same reference numerals or equivalent reference numerals to simplify or omit the description.

図4に示すように、波形処理部32で得られたスペクトルデータのピーク周波数と、内外輪2,3と玉4に滑りがない状態における公転による理論周波数Eとを比較することで玉4の公転数の変動Fが得られる。判別部34は、公転数の変動Fから予圧付与された軸受1の予圧過大、予圧抜けを監視する。 As shown in FIG. 4, the peak frequency of the spectrum data obtained by the waveform processing unit 32 is compared with the theoretical frequency E due to revolution in the inner and outer rings 2 and 3 and the ball 4 in a state where there is no slip. The variation F of the number of revolutions is obtained. The determination unit 34 monitors the preload excess and preload release of the bearing 1 to which the preload is applied from the fluctuation F of the number of revolutions.

(第3実施形態)
図5は自動調心ころ軸受の公転数の変動を測定する軸受の状態監視装置の概略構成図であり、図6は該軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。
(Third Embodiment)
FIG. 5 is a schematic configuration diagram of a bearing condition monitoring device for measuring fluctuations in the number of revolutions of a self-aligning roller bearing, and FIG. 6 is an image diagram of a graph of an envelope spectrum measured by the bearing condition monitoring device.

本実施形態の軸受の状態監視装置10は、測定対象である軸受が自動調心ころ軸受1Aである点において、第1実施形態の軸受の状態監視装置と異なる。自動調心ころ軸受1Aは、具体的な構成を図示してしないが、2列の軌道を有する内輪と、球面の軌道を有する外輪との間に、樽型の転動体がR1列及びR2列の2列に配設された軸受であり、それぞれの列(R1列及びR2列)に対応する振動が振動センサ20により測定される。なお、振動センサ20は、各列の転動体に対応して2つ設けられてもよい。 The bearing condition monitoring device 10 of the present embodiment is different from the bearing condition monitoring device of the first embodiment in that the bearing to be measured is the self-aligning roller bearing 1A. Although the specific configuration of the self-aligning roller bearing 1A is not shown, barrel-shaped rolling elements are formed in the R1 row and the R2 row between the inner ring having two rows of orbits and the outer ring having a spherical orbit. The bearings are arranged in two rows, and the vibration corresponding to each row (R1 row and R2 row) is measured by the vibration sensor 20. Two vibration sensors 20 may be provided corresponding to the rolling elements in each row.

図6に示すように、波形処理部32から得られた各列(R1列及びR2列)のスペクトルデータのピーク周波数と、内外輪と転動体に滑りがない状態における公転による理論周波数Eとを比較することでR1列の公転数の変動F、及びR2列の公転数の変動Gが得られる。判別部34は、R1列及びR2列の公転数の変動F,Gから自動調心ころ軸受1Aのころスキュー、あるいは予圧過大、予圧抜けによる自転滑り、公転滑りを監視する。 As shown in FIG. 6, the peak frequency of the spectrum data of each row (R1 row and R2 row) obtained from the waveform processing unit 32 and the theoretical frequency E due to the revolution in the state where the inner and outer rings and the rolling element do not slip are set. By comparison, the variation F of the number of revolutions in the R1 column and the variation G of the number of revolutions in the R2 column can be obtained. The discriminating unit 34 monitors the roller skew of the self-aligning roller bearing 1A from the fluctuations F and G of the number of revolutions in the R1 row and the R2 row, or the rotation slip and the revolution slip due to the preload excess and the preload release.

(第4実施形態)
図7は2つの振動センサ20A,20Bにより2つの円すいころ軸受11C,12Cの公転滑り、自転滑りを測定する軸受の状態監視装置の概略構成図であり、図8は該軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。
(Fourth Embodiment)
FIG. 7 is a schematic configuration diagram of a bearing condition monitoring device for measuring the rolling slip and rotation slip of two tapered roller bearings 11C and 12C by two vibration sensors 20A and 20B, and FIG. 8 is a schematic configuration diagram of a bearing condition monitoring device using the bearing condition monitoring device. It is an image diagram of the graph of the measured envelope spectrum.

図7に示すように、振動センサ20Aが一方の円すいころ軸受11Cに対応して配設され、振動センサ20Bが他方の円すいころ軸受12Cに対応して配設されている。振動センサ20Aにより測定された一方の円すいころ軸受11Cの振動データは増幅器21Aで増幅され、振動センサ20Bにより測定された他方の円すいころ軸受12Cの振動データは増幅器21Bで増幅されてA/D変換部31に入力し、それぞれ第1実施形態の軸受の状態監視装置10と同様に処理される。 As shown in FIG. 7, the vibration sensor 20A is arranged corresponding to one tapered roller bearing 11C, and the vibration sensor 20B is arranged corresponding to the other tapered roller bearing 12C. The vibration data of one cone bearing 11C measured by the vibration sensor 20A is amplified by the amplifier 21A, and the vibration data of the other cone bearing 12C measured by the vibration sensor 20B is amplified by the amplifier 21B and converted to A / D. It is input to the unit 31 and processed in the same manner as the bearing condition monitoring device 10 of the first embodiment.

図8(a)に示すように、一方の円すいころ軸受11Cに関しては、波形処理部32で得られたスペクトルデータのピーク周波数と内外輪と転動体に滑りがない場合の自転に起因した理論周波数Aとが一致し、また、波形処理部32で得られたスペクトルデータのピーク周波数と内外輪と転動体に滑りがない場合の公転に起因した理論周波数Bとが一致しており、自転滑り及び公転滑りは共に認められない。 As shown in FIG. 8A, for one of the conical roller bearings 11C, the peak frequency of the spectral data obtained by the waveform processing unit 32 and the theoretical frequency due to the rotation when the inner and outer rings and the rolling elements do not slip. A matches, and the peak frequency of the spectrum data obtained by the waveform processing unit 32 matches the theoretical frequency B caused by the revolution when there is no slip between the inner and outer rings and the rolling element. Revolution slip is not allowed either.

一方、図8(b)に示すように、円すいころ軸受12Cに関しては、波形処理部32で得られたスペクトルデータのピーク周波数と内外輪と転動体に滑りがない場合の自転に起因した理論周波数Aとが異なり、自転数の変動Cが認められ、また、波形処理部32で得られたスペクトルデータのピーク周波数と内外輪と転動体に滑りがない場合の公転に起因した理論周波数Bとが異なり、公転数の変動Dが認められる。そして、判別部34は、自転数の変動C、又は公転数の変動Dの有無や大きさから円すいころ軸受12Cの異常発熱や、スキッディングの原因となる自転滑り、公転滑りの状態を監視する。 On the other hand, as shown in FIG. 8B, with respect to the conical roller bearing 12C, the peak frequency of the spectral data obtained by the waveform processing unit 32 and the theoretical frequency caused by the rotation when the inner and outer rings and the rolling element do not slip. Unlike A, fluctuation C in the number of rotations is observed, and the peak frequency of the spectral data obtained by the waveform processing unit 32 and the theoretical frequency B due to the revolution when there is no slip between the inner and outer rings and the rolling elements. Differently, the fluctuation D of the number of revolutions is recognized. Then, the discriminating unit 34 monitors the abnormal heat generation of the tapered roller bearing 12C and the state of the rotation slip and the revolution slip that cause skidding based on the presence / absence and size of the fluctuation C of the rotation number or the fluctuation D of the revolution number. ..

(第5実施形態)
図9は、深溝玉軸受1の外輪3に取り付けられたひずみゲージ24により、外輪3のひずみゲージ取り付け位置の玉4の周期により公転滑りを測定する軸受の状態監視装置の概略構成図である。
この場合、ひずみ計測器35で検出された外輪3のひずみ値に基づく信号を波形処理部32で周波数分析して、スペクトルデータを算出し、以後、上記実施形態と同様にして、深溝玉軸受1の公転滑りの状態を監視する。
(Fifth Embodiment)
FIG. 9 is a schematic configuration diagram of a bearing condition monitoring device that measures the revolution slip by the cycle of the balls 4 at the strain gauge mounting position of the outer ring 3 by the strain gauge 24 attached to the outer ring 3 of the deep groove ball bearing 1.
In this case, the signal based on the strain value of the outer ring 3 detected by the strain measuring instrument 35 is frequency-analyzed by the waveform processing unit 32 to calculate the spectrum data, and thereafter, in the same manner as in the above embodiment, the deep groove ball bearing 1 Monitor the state of revolution slippage.

なお、ひずみ計測器35は、外輪3のひずみ値を検出するものに限定されず、内輪2、回転軸6、ハウジングのいずれかのひずみ値を検出するものであってもよい。 The strain measuring instrument 35 is not limited to the one that detects the strain value of the outer ring 3, and may detect the strain value of any one of the inner ring 2, the rotating shaft 6, and the housing.

以上説明したように、第1〜第5実施形態の軸受の状態監視方法及び状態監視装置によれば、センサ20、35により軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出し、波形処理部32で該信号に対して周波数分析を行ってスペクトルデータを算出した後、演算部33がスペクトルデータのピーク周波数と理論周波数とを比較して、軸受1の転動体4の自転数の変動、及び公転数の変動、或いは公転数の変動のみを求める。これにより、異常発熱、スキッディング、早期はく離の原因となる自転滑り、公転滑り、軸受の予圧過大、予圧抜け、ころのスキューによる自転数の変動、公転数の変動などの軸受の運転状態を監視することができる。 As described above, according to the bearing state monitoring method and the state monitoring device of the first to fifth embodiments, vibration, sound, or distortion of the inner ring, outer ring, shaft, and housing generated from the bearing by the sensors 20 and 35. After detecting a signal based on the value, the waveform processing unit 32 performs frequency analysis on the signal to calculate spectrum data, the calculation unit 33 compares the peak frequency of the spectrum data with the theoretical frequency, and the bearing 1 Only the fluctuation of the number of rotations of the rolling element 4 and the fluctuation of the number of revolutions, or the fluctuation of the number of revolutions is obtained. As a result, the operating conditions of the bearing such as rotation slip, revolution slip, excessive preload of the bearing, preload release, fluctuation of the rotation number due to roller skew, and fluctuation of the revolution number, which cause abnormal heat generation, skidding, and early peeling, are monitored. can do.

(第6実施形態)
図10は、複数の深溝玉軸受の公転滑り、自転滑りを測定する軸受の状態監視装置の概略構成図であり、図11は該軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。
(Sixth Embodiment)
FIG. 10 is a schematic configuration diagram of a bearing condition monitoring device for measuring the revolution slip and rotation slip of a plurality of deep groove ball bearings, and FIG. 11 is an image diagram of a graph of an envelope spectrum measured by the bearing condition monitoring device. is there.

図10に示すように、本実施形態の軸受の状態監視装置10は、複数(本実施形態では、1対)の深溝玉軸受1の状態を監視するための装置である。複数の深溝玉軸受1は、図3と同様、各内輪2が回転軸6に嵌合し、各外輪3は不図示のハウジングに固定されている。 As shown in FIG. 10, the bearing state monitoring device 10 of the present embodiment is a device for monitoring the state of a plurality of (one pair in this embodiment) deep groove ball bearings 1. Similar to FIG. 3, each of the plurality of deep groove ball bearings 1 has an inner ring 2 fitted to the rotating shaft 6, and each outer ring 3 is fixed to a housing (not shown).

軸受の状態監視装置10は、各深溝玉軸受1に対応する複数の振動センサ20と、各振動センサ20に対応して設けられた、複数のA/D変換部31及び複数の波形処理部32と、演算部33と、判別部34とを備える。なお、複数のA/D変換部31、複数の波形処理部32、演算部33、及び判別部34は、情報処理装置30を主体として構成される。 The bearing condition monitoring device 10 includes a plurality of vibration sensors 20 corresponding to each deep groove ball bearing 1, a plurality of A / D conversion units 31 and a plurality of waveform processing units 32 provided corresponding to each vibration sensor 20. And a calculation unit 33, and a determination unit 34. The plurality of A / D conversion units 31, the plurality of waveform processing units 32, the calculation unit 33, and the discrimination unit 34 are mainly composed of the information processing device 30.

各振動センサ20は、外輪3に対向配置されて深溝玉軸受1から発生する振動を電気信号として検出し、検出された電気信号を各増幅器21で増幅して各A/D変換部31に入力する。 Each vibration sensor 20 detects vibration generated from the deep groove ball bearing 1 as an electric signal arranged opposite to the outer ring 3, amplifies the detected electric signal by each amplifier 21, and inputs the detected electric signal to each A / D conversion unit 31. To do.

各振動センサ20から各A/D変換部31に入力された振動データは、各A/D変換部31によりデジタル信号に変換された後、各波形処理部32でエンベロープ処理および周波数分析を行い、スペクトルデータを算出する。 The vibration data input from each vibration sensor 20 to each A / D conversion unit 31 is converted into a digital signal by each A / D conversion unit 31, and then envelope processing and frequency analysis are performed by each waveform processing unit 32. Calculate the spectrum data.

演算部33は、波形処理部32で求められたそれぞれの軸受の自転、あるいは公転により発生するスペクトルデータのピーク周波数の比と、軸受の内外輪と転動体に滑りがない場合の転動体の自転、あるいは公転による理論周波数の比とを比較することで、軸受の転動体の自転数の変動、及び公転数の変動を求める。
なお、ピーク周波数は、ある一定の基準値と比較するなど、従来の手法によって選定される。
The calculation unit 33 calculates the ratio of the peak frequencies of the spectral data generated by the rotation or revolution of each bearing obtained by the waveform processing unit 32, and the rotation of the rolling element when the inner and outer rings of the bearing and the rolling element do not slip. Or, by comparing with the ratio of the theoretical frequencies due to revolution, the fluctuation of the rotation number of the rolling element of the bearing and the fluctuation of the revolution number are obtained.
The peak frequency is selected by a conventional method such as comparison with a certain reference value.

図11は、各々の軸受のスペクトルデータのピーク周波数のイメージ図であり、図中、A1は一方の軸受の公転に起因したピーク周波数であり、A2は他方の軸受の公転に起因したピーク周波数である。波形処理部32で求められたそれぞれの軸受のスペクトルデータのピーク周波数の比(A1/A2)とそれぞれの軸受の公転に起因する理論周波数の比(A1´/A2´)を比較し、どちらかの軸受、もしくは双方の軸受に公転滑りが発生していないかを調べる。なお、図11では、一方の軸受の公転に起因したピーク周波数A1が理論周波数A1´からずれている場合を示しており、上記比較により、A1/A2≠A1´/A2´となることで、公転数の変動があることが検出される。また、各々の軸受の理論周波数A1´,A2´は、それぞれ回転速度と軸受諸元によって与えられるが、理論周波数の比A1´/A2´は、軸受諸元によって与えられ、回転速度が不要となる。
なお、自転数の変動を求める場合も、同様に、各々の軸受の自転に起因したピーク周波数の比と、各々の軸受の自転に起因した理論周波数の比を比較する。
FIG. 11 is an image diagram of the peak frequency of the spectral data of each bearing. In the figure, A1 is the peak frequency caused by the revolution of one bearing, and A2 is the peak frequency caused by the revolution of the other bearing. .. Compare the peak frequency ratio (A1 / A2) of the spectral data of each bearing obtained by the waveform processing unit 32 with the theoretical frequency ratio (A1'/ A2') due to the revolution of each bearing, and either one. Check if there is any revolution slippage in the bearings or both bearings. Note that FIG. 11 shows a case where the peak frequency A1 due to the revolution of one of the bearings deviates from the theoretical frequency A1', and by the above comparison, A1 / A2 ≠ A1'/ A2'. It is detected that there is a fluctuation in the number of revolutions. Further, the theoretical frequencies A1'and A2'of each bearing are given by the rotation speed and the bearing specifications, respectively, but the ratio of the theoretical frequencies A1'/ A2' is given by the bearing specifications, and the rotation speed is unnecessary. Become.
Similarly, when determining the fluctuation of the number of rotations, the ratio of the peak frequency caused by the rotation of each bearing is compared with the ratio of the theoretical frequency caused by the rotation of each bearing.

そして、判別部34は、スペクトルデータのピーク周波数の比とそれぞれの軸受の理論周波数の比の比較結果より、自転数の変動、又は公転数の変動の有無や大きさから深溝玉軸受1の異常発熱、スキッディングの原因となる内外輪2,3と玉4の滑りを監視する。 Then, the discriminating unit 34 determines the abnormality of the deep groove ball bearing 1 from the presence / absence and magnitude of the fluctuation of the rotation number or the fluctuation of the revolution number based on the comparison result of the ratio of the peak frequency of the spectrum data and the ratio of the theoretical frequency of each bearing. Monitor the slippage of the inner and outer rings 2 and 3 and the ball 4 that cause heat generation and skidding.

このようにして、自転数の変動及び公転数の変動を測定することで、深溝玉軸受1の異常発熱や、スキッディング、はく離の原因となる自転滑り、公転滑りの状態を監視することができる。 By measuring the fluctuation of the rotation number and the fluctuation of the revolution number in this way, it is possible to monitor the abnormal heat generation of the deep groove ball bearing 1, the rotation slip that causes skidding and peeling, and the state of the revolution slip. ..

(第7実施形態)
図12は、予圧付与された2つの円すいころ軸受を一つの振動センサで監視を行う状態監視装置の概略構成図であり、図13は該軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。
(7th Embodiment)
FIG. 12 is a schematic configuration diagram of a condition monitoring device that monitors two preloaded tapered roller bearings with one vibration sensor, and FIG. 13 is a graph of an envelope spectrum measured by the bearing condition monitoring device. It is an image diagram.

本実施形態は、第6実施形態がそれぞれの軸受に振動センサ20を用いていたのに対し、ハウジング7の振動を検出する一つの振動センサ20で監視を行う点が異なる。その他の部分については、本発明の第6実施形態の軸受の状態監視装置と同様であるので、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。 This embodiment is different from the sixth embodiment in which the vibration sensor 20 is used for each bearing, whereas the one vibration sensor 20 that detects the vibration of the housing 7 monitors the bearing. Since the other parts are the same as those of the bearing condition monitoring device according to the sixth embodiment of the present invention, the same parts are designated by the same reference numerals or equivalent reference numerals to simplify or omit the description.

図13に示すように、波形処理部32で得られたスペクトルデータの一方の軸受11Cの公転に起因したピーク周波数A3と、他方の軸受12Cの公転に起因したピーク周波数A4の比(A3/A4)と、それぞれの軸受11C,12Cの公転に起因した理論周波数の比(A3´/A4´)の比較結果より、公転数の変動を求める。
なお、自転数の変動を求める場合も、同様に、各々の軸受の自転に起因したピーク周波数の比と、各々の軸受の自転に起因した理論周波数の比を比較する。
そして、本実施形態も、自転数の変動、又は公転数の変動の有無や大きさから異常発熱、スキッディングの原因となる滑りを監視する。
As shown in FIG. 13, the ratio (A3 / A4) of the peak frequency A3 caused by the revolution of one bearing 11C and the peak frequency A4 caused by the revolution of the other bearing 12C in the spectrum data obtained by the waveform processing unit 32. ) And the ratio of the theoretical frequencies (A3'/ A4') caused by the revolution of the respective bearings 11C and 12C, the variation of the number of revolutions is obtained.
Similarly, when determining the fluctuation of the number of rotations, the ratio of the peak frequency caused by the rotation of each bearing is compared with the ratio of the theoretical frequency caused by the rotation of each bearing.
Then, also in this embodiment, the slippage that causes abnormal heat generation and skidding is monitored from the presence / absence and magnitude of the fluctuation of the rotation number or the fluctuation of the revolution number.

(第8実施形態)
図14は自動調心ころ軸受の公転数の変動を測定する軸受の状態監視装置の概略構成図であり、図15は該軸受の状態監視装置により測定されたエンベロープスペクトルのグラフのイメージ図である。
(8th Embodiment)
FIG. 14 is a schematic configuration diagram of a bearing condition monitoring device for measuring fluctuations in the number of revolutions of a self-aligning roller bearing, and FIG. 15 is an image diagram of a graph of an envelope spectrum measured by the bearing condition monitoring device.

本実施形態の軸受の状態監視装置10は、測定対象である軸受が自動調心ころ軸受1Aである点において、第6実施形態の軸受の状態監視装置と異なる。自動調心ころ軸受1Aは、具体的な構成を図示してしないが、2列の軌道を有する内輪と、球面の軌道を有する外輪との間に、樽型の転動体がR1列及びR2列の2列に配設された軸受であり、それぞれの列(R1列及びR2列)に対応する振動が振動センサ20により測定される。 The bearing condition monitoring device 10 of the present embodiment is different from the bearing condition monitoring device of the sixth embodiment in that the bearing to be measured is the self-aligning roller bearing 1A. Although the specific configuration of the self-aligning roller bearing 1A is not shown, barrel-shaped rolling elements are formed in the R1 row and the R2 row between the inner ring having two rows of orbits and the outer ring having a spherical orbit. The bearings are arranged in two rows, and the vibration corresponding to each row (R1 row and R2 row) is measured by the vibration sensor 20.

図15に示すように、波形処理部32から得られた各列(R1列及びR2列)のスペクトルデータのピーク周波数A5、A6の比(A5/A6)と、内外輪と転動体に滑りがない状態における各列の公転による理論周波数の比(A5´/A6´)を比較することでR1列、あるいはR2列の公転数の変動が得られる。判別部34は、R1列及びR2列の公転数の変動から自動調心ころ軸受1Aのころスキュー、あるいは予圧過大、予圧抜けによる自転滑り、公転滑りを監視する。 As shown in FIG. 15, the ratio (A5 / A6) of the peak frequencies A5 and A6 of the spectrum data of each row (R1 row and R2 row) obtained from the waveform processing unit 32, and the inner / outer ring and the rolling element slip. By comparing the ratio of the theoretical frequencies (A5'/ A6') due to the revolution of each row in the absence state, the variation of the number of revolutions of the R1 row or the R2 row can be obtained. The discriminating unit 34 monitors the roller skew of the self-aligning roller bearing 1A from the fluctuation of the number of revolutions in the R1 row and the R2 row, or the rotation slip and the revolution slip due to the preload excess and the preload release.

以上説明したように、第6〜第8実施形態の軸受の状態監視方法及び状態監視装置によれば、センサ20、35により軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出し、波形処理部32で該信号に対して周波数分析を行ってスペクトルデータを算出した後、演算部33が各軸受、あるいは複列軸受の各列の自転、公転によるスペクトルデータのピーク周波数の比と各軸受、あるいは複列軸受の各列の自転により発生する理論周波数の比、及び公転により発生する理論周波数の比の少なくとも一つを比較して、軸受の自転数の変動、及び公転数の変動の少なくとも一つを求める。これにより、回転センサによる回転速度を用いることなく、異常発熱、スキッディング、早期はく離の原因となる自転滑り、公転滑り、軸受の予圧過大、予圧抜け、ころのスキューによる自転数の変動、公転数の変動などの軸受の運転状態を監視することができる。 As described above, according to the bearing state monitoring method and the state monitoring device of the sixth to eighth embodiments, vibration, sound, or distortion of the inner ring, outer ring, shaft, and housing generated from the bearing by the sensors 20 and 35. After detecting a signal based on the value and performing frequency analysis on the signal in the waveform processing unit 32 to calculate spectrum data, the calculation unit 33 rotates and revolves in each row of each bearing or double-row bearing. Comparing at least one of the peak frequency ratio of the data with the ratio of the theoretical frequency generated by the rotation of each row of each bearing or the double row bearing and the ratio of the theoretical frequency generated by the revolution, the number of rotations of the bearing Find at least one of the fluctuations and the fluctuations of the number of bearings. As a result, without using the rotation speed of the rotation sensor, rotation slip, revolution slip, bearing preload overload, preload release, rotation number fluctuation due to roller skew, and revolution number, which cause abnormal heat generation, skidding, and premature peeling. It is possible to monitor the operating condition of the bearing such as the fluctuation of the bearing.

尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、測定精度を高めるため、寿命、許容回転数などの必要性能を確保した状態で、軸受のいずれかの構成部品に圧痕や傷をつけることも許容される。これにより、スペクトルデータのピーク周波数の絶対値が大きくなり、自転数の変動、公転数の変動の監視が容易となる。
また、回転数の測定は、回転計を用いず、回転と同期して信号を発するものを用いてもよい。或いは、外部の信号を用いず、回転と同期して発生する振動(例えば、歯車の振動)を用いてもよい。
The present invention is not limited to the above-described embodiments, and can be appropriately modified, improved, and the like.
For example, in order to improve the measurement accuracy, it is permissible to indent or scratch any component of the bearing while ensuring the required performance such as life and allowable rotation speed. As a result, the absolute value of the peak frequency of the spectrum data becomes large, and it becomes easy to monitor the fluctuation of the rotation number and the fluctuation of the revolution number.
Further, the rotation speed may be measured by using a tachometer that emits a signal in synchronization with the rotation without using a tachometer. Alternatively, vibration generated in synchronization with rotation (for example, vibration of gears) may be used without using an external signal.

また、上記した各実施形態では、振動センサにより軸受から発生する振動を検出するようにしたが、マイクロフォン等の音響センサによって軸受から発生する音響を検出するようにしてもよい。 Further, in each of the above-described embodiments, the vibration sensor is used to detect the vibration generated from the bearing, but an acoustic sensor such as a microphone may be used to detect the sound generated from the bearing.

さらに、上記実施形態では、軸受の転動体の自転数の変動、及び公転数の変動の両方を求める場合と、軸受の転動体の公転数の変動を求める場合について説明しているが、本発明は、軸受の転動体の自転数の変動を求めるようにしてもよい。 Further, in the above embodiment, the case where both the fluctuation of the rotation number of the rolling element of the bearing and the fluctuation of the revolution number are obtained and the case where the fluctuation of the revolution number of the rolling element of the bearing is obtained are described. May obtain the fluctuation of the number of rotations of the rolling element of the bearing.

なお、上記実施形態では、測定対象として、深溝玉軸受、アンギュラ玉軸受、自動調心ころ軸受、円すいころ軸受が使用されているが、任意の軸受が測定可能であり、例えば、円筒ころ軸受が測定されてもよい。 In the above embodiment, deep groove ball bearings, angular contact ball bearings, self-aligning roller bearings, and tapered roller bearings are used as measurement targets, but any bearing can be measured, for example, a cylindrical roller bearing. It may be measured.

本出願は、2018年5月16日出願の日本特許出願2018−094544に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application 2018-094544 filed May 16, 2018, the contents of which are incorporated herein by reference.

1 深溝玉軸受(軸受)
1A 自動調心ころ軸受(軸受)
11C,12C 円すいころ軸受(軸受)
10 軸受の状態監視装置
20,20A,20B 振動センサ(センサ)
24 ひずみゲージ
32 波形処理部
33 演算部
34 判別部
35 ひずみ計測器(センサ)
A 内外輪と転動体に滑りがない場合の自転による理論周波数
B 内外輪と転動体に滑りがない場合の公転による理論周波数
C 自転滑り
D 公転滑り
E,F,G 公転数の変動
A1 図10の左列軸受の転動体の公転によるピーク周波数
A1´ 図10の左列軸受の転動体の公転による理論周波数
A2 図10の右側軸受の転動体の公転によるピーク周波数
A2´ 図10の右列軸受の転動体の公転による理論周波数
A3 図12の左側軸受の転動体の公転によるピーク周波数
A3´ 図12の左側軸受の転動体の公転による理論周波数
A4 図12の右側軸受の転動体の公転によるピーク周波数
A4´ 図12の右側軸受の転動体の公転による理論周波数
A5 図14のR1列の転動体の公転によるピーク周波数
A5´ 図14のR1列の転動体の公転による理論周波数
A6 図14のR2列の転動体の公転によるピーク周波数
A6´ 図14のR2列の転動体の公転による理論周波数
1 Deep groove ball bearing (bearing)
1A self-aligning roller bearing (bearing)
11C, 12C Tapered Roller Bearings (Bearings)
10 Bearing condition monitoring device 20, 20A, 20B Vibration sensor (sensor)
24 Strain gauge 32 Waveform processing unit 33 Calculation unit 34 Discrimination unit 35 Strain measuring instrument (sensor)
A Theoretical frequency due to rotation when there is no slip between the inner and outer rings and the rolling element B Theoretical frequency due to revolution when there is no slip between the inner and outer rings and the rolling element C Revolution slip D Revolution slip E, F, G Fluctuations in the number of revolutions A1 Fig. 10 Peak frequency A1 ′ due to the revolution of the rolling element of the left column bearing of Fig. 10 Theoretical frequency A2 due to the revolution of the rolling element of the left column bearing of Fig. 10 Peak frequency A2 ′ due to the revolution of the rolling element of the right column bearing of Fig. 10 Right row bearing of Fig. Theoretical frequency due to the revolution of the rolling element A3 Peak frequency due to the revolution of the rolling element of the left bearing in Fig. 12 A3'Theoretical frequency due to the revolution of the rolling element of the left bearing in Fig. 12 Peak due to the revolution of the rolling element of the right bearing in Fig. Frequency A4'Theoretical frequency due to the revolution of the rolling element of the right side bearing in FIG. 12 A5 Peak frequency due to the revolution of the rolling element in the R1 row of FIG. 14 A5'Theoretical frequency due to the revolution of the rolling element in the R1 row of FIG. Peak frequency due to revolution of the rolling elements in the row A6'Theoretical frequency due to the revolution of the rolling elements in the R2 row in FIG.

Claims (4)

軸受の運転状態を監視する軸受の状態監視方法であって、
前記軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出する工程と、
前記信号に対して周波数分析を行い、スペクトルデータを算出する工程と、
前記スペクトルデータのピークが現れる周波数と、前記軸受の内外輪と転動体に滑りがない場合の前記転動体の自転による理論周波数、及び公転による理論周波数の少なくとも一つとを比較し、前記軸受の転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める工程と、
を備えることを特徴とする軸受の状態監視方法。
A bearing condition monitoring method that monitors the operating condition of bearings.
A process of detecting vibration, sound, or a signal based on the strain value of the inner ring, outer ring, shaft, and housing generated from the bearing, and
The process of performing frequency analysis on the signal and calculating the spectrum data,
The frequency at which the peak of the spectral data appears is compared with at least one of the theoretical frequency due to the rotation of the rolling element and the theoretical frequency due to the revolution when the inner and outer rings of the bearing and the rolling element do not slip, and the rolling of the bearing is compared. The process of finding at least one of the fluctuations in the number of rotations and the number of revolutions of a moving body,
A method for monitoring the condition of a bearing, which comprises.
軸受の運転状態を監視する軸受の状態監視装置であって、
前記軸受から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出するセンサと、
前記信号に対して周波数分析を行い、スペクトルデータを算出する波形処理部と、
前記スペクトルデータのピークが現れる周波数と、前記軸受の内外輪と転動体に滑りがない場合の前記転動体の自転による理論周波数、及び公転による理論周波数の少なくとも一つとを比較し、前記軸受の転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める演算部と、
を備えることを特徴とする軸受の状態監視装置。
A bearing condition monitoring device that monitors the operating condition of bearings.
A sensor that detects vibration, sound, or a signal based on the strain values of the inner ring, outer ring, shaft, and housing generated from the bearing.
A waveform processing unit that performs frequency analysis on the signal and calculates spectrum data,
The frequency at which the peak of the spectral data appears is compared with at least one of the theoretical frequency due to the rotation of the rolling element and the theoretical frequency due to the revolution when the inner and outer rings of the bearing and the rolling element do not slip, and the rolling of the bearing is compared. An arithmetic unit that obtains at least one of the fluctuations in the number of rotations and the number of revolutions of a moving object,
A bearing condition monitoring device comprising.
複数の軸受、あるいは複列軸受の各列の運転状態を監視する軸受の状態監視方法であって、
前記複数の軸受、あるいは前記複列軸受の各列から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出する工程と、
前記信号に対して周波数分析を行い、スペクトルデータを算出する工程と、
前記各軸受、あるいは前記複列軸受の各列の自転、公転による前記スペクトルデータのピーク周波数の比と、前記各軸受、あるいは前記複列軸受の各列の内外輪と転動体に滑りがない場合の前記転動体の自転により発生する理論周波数の比、及び公転により発生する理論周波数の比の少なくとも一つとを比較し、前記各軸受、あるいは前記複列軸受の各列の前記転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める工程と、
を備えることを特徴とする軸受の状態監視方法。
A bearing condition monitoring method that monitors the operating condition of each row of multiple bearings or double row bearings.
A step of detecting a signal based on vibration, acoustics, or strain values of an inner ring, an outer ring, a shaft, and a housing generated from each row of the plurality of bearings or the double row bearings.
The process of performing frequency analysis on the signal and calculating the spectrum data,
When there is no slip between the ratio of the peak frequencies of the spectral data due to the rotation and revolution of each row of the bearing or the double row bearing and the inner and outer rings and the rolling element of each row of the bearing or the double row bearing. Compare with at least one of the ratio of the theoretical frequency generated by the rotation of the rolling element and the ratio of the theoretical frequency generated by the revolution, and the number of rotations of the rolling element in each row of the bearing or the double row bearing. And the process of finding at least one of the fluctuations in the number of revolutions,
A method for monitoring the condition of a bearing, which comprises.
複数の軸受、あるいは複列軸受の各列の運転状態を監視する軸受の状態監視装置であって、
前記複数の軸受、あるいは前記複列軸受の各列から発生する振動、音響、もしくは内輪、外輪、軸、ハウジングのひずみ値に基づく信号を検出するセンサと、
前記信号に対して周波数分析を行い、スペクトルデータを算出する波形処理部と、
前記各軸受、あるいは前記複列軸受の各列の自転、公転による前記スペクトルデータのピーク周波数の比と、前記各軸受、あるいは前記複列軸受の各列の内外輪と転動体に滑りがない場合の前記転動体の自転により発生する理論周波数の比、及び公転により発生する理論周波数の比の少なくとも一つとを比較し、前記各軸受、あるいは前記複列軸受の各列の前記転動体の自転数の変動、及び公転数の変動の少なくとも一つを求める演算部と、
を備えることを特徴とする軸受の状態監視装置。
A bearing condition monitoring device that monitors the operating condition of each row of multiple bearings or double row bearings.
A sensor that detects vibration, acoustics, or signals based on strain values of the inner ring, outer ring, shaft, and housing generated from each row of the plurality of bearings or the double row bearings.
A waveform processing unit that performs frequency analysis on the signal and calculates spectrum data,
When there is no slip between the ratio of the peak frequencies of the spectral data due to the rotation and revolution of each row of the bearing or the double row bearing and the inner and outer rings and the rolling element of each row of the bearing or the double row bearing. Compare with at least one of the ratio of the theoretical frequency generated by the rotation of the rolling element and the ratio of the theoretical frequency generated by the revolution, and the number of rotations of the rolling element in each row of the bearing or the double row bearing. And the arithmetic unit that obtains at least one of the fluctuations of the number of revolutions,
A bearing condition monitoring device comprising.
JP2020519930A 2018-05-16 2019-05-16 Bearing condition monitoring method and condition monitoring device Pending JPWO2019221251A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018094544 2018-05-16
JP2018094544 2018-05-16
PCT/JP2019/019589 WO2019221251A1 (en) 2018-05-16 2019-05-16 Bearing state monitoring method and state monitoring device

Publications (1)

Publication Number Publication Date
JPWO2019221251A1 true JPWO2019221251A1 (en) 2021-06-10

Family

ID=68540143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020519930A Pending JPWO2019221251A1 (en) 2018-05-16 2019-05-16 Bearing condition monitoring method and condition monitoring device

Country Status (2)

Country Link
JP (1) JPWO2019221251A1 (en)
WO (1) WO2019221251A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503527B2 (en) * 2021-07-14 2024-06-20 株式会社神戸製鋼所 Rolling bearing abnormality detection device and rolling bearing abnormality detection method
CN114018204A (en) * 2021-10-09 2022-02-08 北京交通大学 Method for testing skew angle of rolling bearing roller
EP4235197A1 (en) 2022-02-24 2023-08-30 Hitachi, Ltd. Method and system for diagnosing a machine
CN116026598B (en) * 2023-03-30 2023-07-14 山东梁轴科创有限公司 Bearing vibration detecting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017291A (en) * 2004-06-03 2006-01-19 Nsk Ltd Monitoring device and monitoring method
JP2006125475A (en) * 2004-10-27 2006-05-18 Jtekt Corp Bearing device
JP2007298080A (en) * 2006-04-28 2007-11-15 Nsk Ltd Double row roller bearing with displacement sensor and abnormality diagnostic method for double row roller bearing
JP2019070570A (en) * 2017-10-10 2019-05-09 日本精工株式会社 Rolling bearing abnormality diagnosing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277836A (en) * 1995-03-31 1996-10-22 Mitsubishi Heavy Ind Ltd Roller bearing autorotation slip rate restraining device
JP5835616B2 (en) * 2011-12-28 2015-12-24 株式会社ジェイテクト Ball behavior measuring method and ball behavior measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017291A (en) * 2004-06-03 2006-01-19 Nsk Ltd Monitoring device and monitoring method
JP2006125475A (en) * 2004-10-27 2006-05-18 Jtekt Corp Bearing device
JP2007298080A (en) * 2006-04-28 2007-11-15 Nsk Ltd Double row roller bearing with displacement sensor and abnormality diagnostic method for double row roller bearing
JP2019070570A (en) * 2017-10-10 2019-05-09 日本精工株式会社 Rolling bearing abnormality diagnosing device

Also Published As

Publication number Publication date
WO2019221251A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JPWO2019221251A1 (en) Bearing condition monitoring method and condition monitoring device
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP5725833B2 (en) Rolling bearing abnormality diagnosis device, wind power generation device and abnormality diagnosis system
JP2006077938A (en) Abnormality diagnosing device
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
JP5442553B2 (en) Bearing damage detection method
JP4003088B2 (en) Rotating body abnormality diagnosis method and apparatus
WO2008117765A1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
JP2001021453A (en) Method and device for diagnosing anomaly in bearing
US5811683A (en) Method and apparatus for location of anomalous signal in a radial bearing
EP3425225B1 (en) Detecting apparatus for detecting axial displacement of bearing unit
US11714028B2 (en) System and method for health monitoring of a bearing system
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP2017032467A (en) Abnormality diagnosis device, bearing, machinery, and vehicle
JP4529602B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP2006118869A (en) Defect detector for rolling bearing, and defect detection method for the rolling bearing
JP2013250204A (en) Load measuring device and measuring method for pin type holder
JP6686625B2 (en) Rolling bearing diagnostic device
JP2016170085A (en) Abnormality diagnostic device and abnormality diagnostic method
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
JP2004156779A (en) Method and apparatus for determining bearing parameter
JP6733838B1 (en) Rolling bearing abnormality diagnosis method and abnormality diagnosis device
JP4753654B2 (en) Evaluation method for rolling bearing parts
JP2019128179A (en) Method for detecting falling of vibration sensor and apparatus for diagnosing abnormalities
JPH112239A (en) Device to measure various property of rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314