JPS5842823B2 - Injection molding method for thermoplastic resin molded products - Google Patents

Injection molding method for thermoplastic resin molded products

Info

Publication number
JPS5842823B2
JPS5842823B2 JP50113739A JP11373975A JPS5842823B2 JP S5842823 B2 JPS5842823 B2 JP S5842823B2 JP 50113739 A JP50113739 A JP 50113739A JP 11373975 A JP11373975 A JP 11373975A JP S5842823 B2 JPS5842823 B2 JP S5842823B2
Authority
JP
Japan
Prior art keywords
mold
thermoplastic resin
injection molding
resin
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50113739A
Other languages
Japanese (ja)
Other versions
JPS5238567A (en
Inventor
満男 林
紘一 森下
誠 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Dow Ltd
Original Assignee
Asahi Dow Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Dow Ltd filed Critical Asahi Dow Ltd
Priority to JP50113739A priority Critical patent/JPS5842823B2/en
Publication of JPS5238567A publication Critical patent/JPS5238567A/en
Publication of JPS5842823B2 publication Critical patent/JPS5842823B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、加熱溶融時に腐蝕性ガスを発生する熱可塑
性樹脂の射出成形時における金型腐蝕を防止する技術に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a technique for preventing mold corrosion during injection molding of a thermoplastic resin that generates corrosive gas when heated and melted.

従来、昇華、蒸発および分解等によって腐蝕性ガス状物
質を発生する熱可塑性樹脂を射出成形すると、ガス状物
質によって金型が腐蝕する問題があり、一度腐蝕が始ま
る°と再研磨をして使用しているが細部に至るまで研磨
することができず、従って腐蝕が進展し最終的には使用
不可能な金型になってしまう。
Conventionally, when injection molding thermoplastic resins that generate corrosive gaseous substances through sublimation, evaporation, decomposition, etc., there is a problem in that the mold corrodes due to the gaseous substances, and once corrosion begins, the mold must be repolished before use. However, it is not possible to polish down to the finest details, and as a result, corrosion progresses and the mold becomes unusable.

この問題を解決する方法として、従来、成形終了後金型
のキャビティー内表面に防錆剤を塗布する方法、中和液
にて処理する方法、クロム鋼等のメッキ仕上げ方法や更
に最近ではステンレス鋼を使用する等の対策が講じられ
ている。
Conventionally, methods to solve this problem include applying a rust preventive agent to the inner surface of the mold cavity after molding, treating it with a neutralizing solution, plating finishing of chrome steel, and more recently stainless steel. Measures such as using steel are being taken.

しかしながら、これらの方法はいずれも抜本的解決法で
はない。
However, none of these methods is a fundamental solution.

防錆剤の塗布方法は、すでに金型キャビティー内表面に
腐蝕性物質が密着しており、これらを完全に取除いた後
に塗布しなければならない。
Corrosive substances are already adhered to the inner surface of the mold cavity, and the rust preventive must be applied after these have been completely removed.

しかし複雑な形状品の多い射出成形用金型の細部まで完
全に取除くことは不可能であり、また防錆剤の有効期間
はさほど長いものではない。
However, it is impossible to completely remove the details of injection molds, which often have complex shapes, and the shelf life of the rust preventive agent is not very long.

中和液による処理方法は、中和処理→水洗→水除去の工
程が必要であり、水分を完全に除去することは難かしく
、逆に残留水分による腐蝕が発生することがある。
The treatment method using a neutralizing liquid requires the steps of neutralization → washing with water → water removal, and it is difficult to completely remove moisture, and corrosion may occur due to residual moisture.

また防錆剤塗布の場合と同様にキャビティー細部への中
和処理が困難である。
Furthermore, as in the case of applying a rust preventive agent, it is difficult to neutralize the details of the cavity.

金型キャビティー内表面をクロム鋼等でメッキ加工を施
こす方法は、多く用いられている方法であり、単層メッ
キでは腐蝕に対してその効果は極めて小さいので、通常
は三層メッキ法が行なわれている。
The method of plating the inner surface of the mold cavity with chrome steel, etc. is a widely used method, and since single-layer plating has extremely little effect on corrosion, three-layer plating is usually used. It is being done.

この場合においてもピンホールは完全に避けられず、そ
こからの腐蝕は当然起りうる。
Even in this case, pinholes cannot be completely avoided, and corrosion from them can naturally occur.

また複雑なデザインを有する製品が多く、直接製品面に
ならないコア、スライド部等までもメッキ加工を施こさ
なければならず、その加工が高価であるにもかかわらず
その効果は必らずしも充分とは云えなかった。
In addition, many products have complex designs, and even cores, slide parts, etc. that do not directly touch the product surface must be plated, and although the processing is expensive, its effectiveness is not always guaranteed. I couldn't say it was enough.

最近耐腐蝕性の優れているステンレス鋼を射出成形用金
型の材質として用いられる場合もあるが、金型製作上の
加工性が極めて悪く、価格も非常に高いため、射出成形
用の金型材質としては汎用性にとぼしい。
Recently, stainless steel, which has excellent corrosion resistance, is sometimes used as a material for injection molding molds, but it has extremely poor workability in mold manufacturing and is very expensive. As a material, it is extremely versatile.

これらの腐蝕防止対策は、いずれも腐蝕の要因となるガ
ス状物質を加熱溶融樹脂と共に金型キャビティー内に射
出するため、腐蝕を前提とした対症療法にすぎず抜本的
解決法とは云えないものである。
All of these corrosion prevention measures inject gaseous substances that cause corrosion into the mold cavity together with heated molten resin, so they are only symptomatic treatments based on the assumption that corrosion is occurring and cannot be called a fundamental solution. It is something.

この発明者らは、上記の問題点を完全に解決し得る新ら
しい技術を鋭意研究の結果、この発明を完成するに至っ
たものである。
The inventors have completed this invention as a result of intensive research into a new technology that can completely solve the above problems.

すなわち、この発明は、大気圧以上にあらかじめ圧気体
で加圧状態に保持された、実質的に密閉した金型キャビ
ティー内に、加熱溶融時腐蝕性ガスを発生する熱可塑性
樹脂を射出することを特徴とする射出成形方法であり、
さらに詳しくは、射出成形用金型の製品用キャビティー
と細孔を通じて通気孔を設け、少なくとも射出成形時に
熱可塑性樹脂から腐蝕性ガス状物質の発生を防止し得る
圧力の気体を製品用キャビティーに充満した状態で加熱
溶融時に腐蝕性ガス状物質を発生し得る樹脂を射出後、
十数砂径に圧気体を解放し、射出された樹脂内にガス状
物質を封じ込むことにより金型の腐蝕を完全に防止する
射出成形方法である。
That is, the present invention involves injecting a thermoplastic resin that generates corrosive gas when heated and melted into a substantially sealed mold cavity that is previously pressurized with pressurized gas above atmospheric pressure. It is an injection molding method characterized by
More specifically, vents are provided through the product cavity and pores of the injection mold to allow gas to flow into the product cavity at least at a pressure sufficient to prevent the generation of corrosive gaseous substances from the thermoplastic resin during injection molding. After injecting resin that can generate corrosive gaseous substances when heated and melted in a state filled with
This is an injection molding method that completely prevents corrosion of the mold by releasing pressurized gas to a diameter of about 10 sand and sealing the gaseous substance in the injected resin.

この発明において、細孔の寸法は、射出時に樹脂が流れ
こむことのない様な厚み、巾、距離であることが必要で
ある。
In this invention, the dimensions of the pores need to be of such thickness, width, and distance that the resin will not flow during injection.

一般的には0.01〜0,05mmの厚みで5〜107
nnの巾、10〜20關の距離であれば樹脂が細孔に流
れこむことはない。
Generally 5 to 107 with a thickness of 0.01 to 0.05 mm
If the distance is 10 to 20 degrees with a width of nn, the resin will not flow into the pores.

また、細孔の最も効果的な位置としては、製品キャビテ
ィー内の樹脂の流動末端が良い。
Furthermore, the most effective location for the pores is at the flow end of the resin within the product cavity.

すなわち製品キャビティー内に樹脂が充満され、製品表
面が固化するまで圧気体の圧力が必要であるからである
That is, the pressure of pressurized gas is required until the product cavity is filled with resin and the product surface is solidified.

次に、この発明の実施の一例を図面にて成形の順序にし
たがって説明する。
Next, an example of the implementation of the present invention will be explained using the drawings in accordance with the order of molding.

閉鎖しである金型1に通ずる図示のない圧気源より弁2
を開くと(この際圧気開放弁3は閉じである。
Valve 2 is connected to the closed mold 1 from a pressure source (not shown).
When opened (at this time, the pressure release valve 3 is closed).

)、圧気は通気孔4、細孔5を経て求むる製品形状の製
品キャビティー6内に充満する。
), the pressurized air passes through the ventilation holes 4 and pores 5 and fills the product cavity 6 of the desired product shape.

金型1は水等の冷媒で冷却されている。The mold 1 is cooled with a coolant such as water.

この状態で腐蝕性ガス状物質を発生する樹脂を射出する
In this state, a resin that generates corrosive gaseous substances is injected.

樹脂7は、スプルー8、ランナー9、ゲート10を通じ
て金型の製品キャビティー6に充満される。
The resin 7 fills the product cavity 6 of the mold through the sprue 8, runner 9, and gate 10.

次に製品の表面層が固化するまでの十数砂径に圧気源に
通ずる弁2を閉じ、圧気開放弁3を開き、通気孔4に残
っている圧気体を解放する。
Next, the valve 2 leading to the pressure air source is closed until the surface layer of the product has solidified, and the pressure gas remaining in the vent hole 4 is released.

製品キャビティー6内の樹脂7は、冷却固化後、金型1
を開き、取り出されて製品とする。
After cooling and solidifying the resin 7 in the product cavity 6, the resin 7 is transferred to the mold 1.
It is opened and taken out as a product.

以上で一工程を終る。なお、この発明の対象となる熱可
塑性樹脂としては、加熱溶融時に腐蝕性ガスを発生しう
るものである。
This completes one process. Note that the thermoplastic resin to which this invention is applied is one that can generate corrosive gas when heated and melted.

その−例としては硬質、軟質ポリ塩化ビニル、アクリロ
ニトリル−ブタジェン−スチレン共重合体とポリ塩化ビ
ニルとのブレンド樹脂、さらには、ハロゲン系、燐系、
水酸化金属、硫黄化合物等の各種難燃剤を添加したポリ
スチレン、ゴム強化ポリスチレン、アクリロニトリル−
ブタジェン−スチレン共重合樹脂、アクリロニトリルス
チレン共重合樹脂、ポリプロピレン、高圧、中低圧ポリ
エチレン、ナイロン、ポリカーボネート、ポリフェニレ
ンオキサイド−ポリスチレンブレンド物等の難燃性熱可
塑性樹脂が挙げられる。
Examples include hard and soft polyvinyl chloride, blend resins of acrylonitrile-butadiene-styrene copolymer and polyvinyl chloride, and halogen-based, phosphorus-based,
Polystyrene, rubber-reinforced polystyrene, acrylonitrile containing various flame retardants such as metal hydroxide and sulfur compounds.
Examples include flame-retardant thermoplastic resins such as butadiene-styrene copolymer resin, acrylonitrile styrene copolymer resin, polypropylene, high-pressure, medium-low-pressure polyethylene, nylon, polycarbonate, and polyphenylene oxide-polystyrene blends.

また、この発明に用いられる圧気は、空気、窒素、炭酸
ガス等の他、可塑化状態にある樹脂に実質的に悪影響を
与えない気体ならいずれも用い得る。
Further, the pressurized air used in the present invention may be air, nitrogen, carbon dioxide, or any other gas that does not substantially adversely affect the plasticized resin.

金型キャビティーに加えられる圧力は、発生しうる腐蝕
性ガス状物質の種類、量、成形温度、速度等の関係をみ
て定める。
The pressure applied to the mold cavity is determined based on the relationship between the type and amount of corrosive gaseous substances that may be generated, molding temperature, speed, etc.

可塑化状態にある樹脂より実質的に腐蝕性ガス状物質が
発生し得ない圧力であり、一般にゲージ圧は0.1〜8
0KP/cIF¥、好ましくは0.5〜10時/dであ
る。
The pressure is such that corrosive gaseous substances cannot be generated from the resin in the plasticized state, and the gauge pressure is generally 0.1 to 8.
0KP/cIF¥, preferably 0.5 to 10 hours/d.

当然ながらこの発明に前述した従来の腐蝕防止法を加味
すれば、さらにその効果は顕著である。
Naturally, if the conventional corrosion prevention method described above is added to this invention, the effect will be even more remarkable.

以下に実施例、比較例によってこの発明の熱可塑性樹脂
成形品の射出成形方法を具体的に比較説明する。
The injection molding method for thermoplastic resin molded products of the present invention will be specifically and comparatively explained below using Examples and Comparative Examples.

実施例 1 金属に対する腐蝕を観察する目的で、表面を良く研磨し
た銅板を第11図の11に示す位置に配した金型を用い
て、試験を行なった。
Example 1 For the purpose of observing corrosion of metal, a test was conducted using a mold in which a copper plate with a well-polished surface was placed at the position shown at 11 in FIG. 11.

使用した圧気はゲージ圧で7.5 KS’/iの空気で
あり、使用原料としては、スタイロン492(旭ダウ■
、登録商標)100重量部と、難燃剤として市販の臭素
置換有機化合物5.0重量部とを混合した難燃性ゴム強
化ポリスチレンを用いた。
The pressure air used was air with a gauge pressure of 7.5 KS'/i, and the raw material used was Styron 492 (Asahi Dow ■).
, registered trademark) and 5.0 parts by weight of a commercially available bromine-substituted organic compound as a flame retardant were used.

この熱可塑性樹脂を、210℃であらかじめ圧気が充満
している製品キャビティーに射出し、射出終了十砂径に
圧気源に通ずる弁2を閉じ、開放弁3を開き、圧気を開
放した。
This thermoplastic resin was injected into a product cavity previously filled with pressurized air at 210° C., and at the end of the injection, valve 2 communicating with the pressurized air source was closed, and release valve 3 was opened to release the pressurized air.

これを1サイクルとし、5000サイクルくり返して銅
板11を観察したところ、何らの変色もなく腐蝕は全く
認められなかった。
This was regarded as one cycle, and when the copper plate 11 was observed after 5,000 cycles, no discoloration was observed and no corrosion was observed.

またその銅板を室内で72時間以上放置しておいたが、
伺ら変化は見られなかった。
Also, the copper plate was left indoors for more than 72 hours,
No changes were observed.

比較例 1 通気孔4、細孔5が設けられていない他は第1図と同様
の構造を有する金型を用いて、圧気を使用せず、成形条
件、使用原料は実施例1と全く同様にして試験を行なっ
た。
Comparative Example 1 A mold having the same structure as in Figure 1 was used, except that the ventilation holes 4 and pores 5 were not provided, no pressurized air was used, and the molding conditions and raw materials used were exactly the same as in Example 1. The test was conducted as follows.

その結果、250サイクル前後から鋼板11は変色をし
はじめ、500サイクルではさらに変色は濃くなり、そ
の後銅板を室内放置したところ約48時間で完全に黒く
変色し、明らかに腐蝕が認められた。
As a result, the steel plate 11 began to discolor around 250 cycles, and the discoloration became even darker after 500 cycles.After that, when the copper plate was left indoors, it completely turned black in about 48 hours, and corrosion was clearly observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を実施するに際して用いられる射出
成形用金型の断面図である。 1・・・・・・金型、2・・・・・・弁、3・・・・・
・圧気開放弁、4・・・・・・通気孔、5・・・・・・
細孔、6・・・・・・製品キャビティ、7・・・・・・
樹脂、8・・・・・・スプルー、9・・・・・・ランナ
、10・・・・・・ゲート、11・・・・・・銅板。
FIG. 1 is a sectional view of an injection mold used in carrying out the present invention. 1...Mold, 2...Valve, 3...
・Pressure release valve, 4...Vent hole, 5...
Pore, 6...Product cavity, 7...
Resin, 8...Sprue, 9...Runner, 10...Gate, 11...Copper plate.

Claims (1)

【特許請求の範囲】[Claims] 1 大気圧以上にあらかじめ圧気体で加圧状態に保持さ
れた、実質的に密閉した金型キャビティー内に、加熱溶
融時腐蝕性ガスを発生する熱可塑性樹脂を射出すること
を特徴とする射出成形方も
1. Injection characterized by injecting a thermoplastic resin that generates corrosive gas when heated and melted into a substantially sealed mold cavity that is previously pressurized with gas above atmospheric pressure. The molding method
JP50113739A 1975-09-22 1975-09-22 Injection molding method for thermoplastic resin molded products Expired JPS5842823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50113739A JPS5842823B2 (en) 1975-09-22 1975-09-22 Injection molding method for thermoplastic resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50113739A JPS5842823B2 (en) 1975-09-22 1975-09-22 Injection molding method for thermoplastic resin molded products

Publications (2)

Publication Number Publication Date
JPS5238567A JPS5238567A (en) 1977-03-25
JPS5842823B2 true JPS5842823B2 (en) 1983-09-22

Family

ID=14619895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50113739A Expired JPS5842823B2 (en) 1975-09-22 1975-09-22 Injection molding method for thermoplastic resin molded products

Country Status (1)

Country Link
JP (1) JPS5842823B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB116394A (en) * 1916-08-24 1918-06-13 Fred Molyneux Improvements in Variable Speed Transmission Gear.
GB1169394A (en) * 1966-01-14 1969-11-05 Giuseppe Ferrari Improvements in or relating to the Production of an Article by Injection Moulding of Plastics Material.
US3693698A (en) * 1968-04-05 1972-09-26 Inst Po Metalloznanie I Tekno Method of casting volatile metals
JPS496385A (en) * 1972-05-12 1974-01-21
JPS5017476A (en) * 1973-06-19 1975-02-24

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB116394A (en) * 1916-08-24 1918-06-13 Fred Molyneux Improvements in Variable Speed Transmission Gear.
GB1169394A (en) * 1966-01-14 1969-11-05 Giuseppe Ferrari Improvements in or relating to the Production of an Article by Injection Moulding of Plastics Material.
US3693698A (en) * 1968-04-05 1972-09-26 Inst Po Metalloznanie I Tekno Method of casting volatile metals
JPS496385A (en) * 1972-05-12 1974-01-21
JPS5017476A (en) * 1973-06-19 1975-02-24

Also Published As

Publication number Publication date
JPS5238567A (en) 1977-03-25

Similar Documents

Publication Publication Date Title
US4096218A (en) Method of producing foamed thermoplastic resin articles having smooth and glossy surfaces free from swirl marks and hair cracks
US5972276A (en) Method for the injection molding of a resin
ATE85937T1 (en) PROCESS FOR COATING NON-RIGID FILMS BY INJECTION MOLDING OF THERMOPLASTIC PLASTICS TO MANUFACTURE COMPOSITE PARTS.
US3531553A (en) Method of injection molding olefin plastic articles with a foamed interior and unfoamed surface
JPS5842823B2 (en) Injection molding method for thermoplastic resin molded products
KR20100050396A (en) Molding apparatus for hollow item and molding method for the same
JPH05301251A (en) In-mold painting method of thermoplastic resin
JPH05318541A (en) Method for injection molding of plastic
US5798063A (en) Molding process using gas under pressure
JPH0358568B2 (en)
JP3798436B2 (en) Thermoplastic resin injection molding method
JPS634496B2 (en)
JP3104712B2 (en) Manufacturing method of polyacetal hollow body
JPS583816B2 (en) Japanese palm tree
JPH07299841A (en) Molding of double-layered molded object
JPH04294132A (en) Manufacture of hollow product of fiber reinforced thermoplastic plastic
EP0785855B1 (en) Molding process
EP3022033A1 (en) Method for producing molded foam parts in a packaging wrapper and sales unit
JPH0459211A (en) Molding method for injection molding
JP6022856B2 (en) Fan manufacturing method
US671501A (en) Candy-mold.
US3293345A (en) Process for the ejection of molded plastic parts from hot molds
JP2004223879A (en) Gas pressurizing injection molding method
JPH1190953A (en) Injection molding method of resin molding having hollow part and molding apparatus
JPH04329112A (en) In-mold coating method of plastic