JPH05318541A - Method for injection molding of plastic - Google Patents

Method for injection molding of plastic

Info

Publication number
JPH05318541A
JPH05318541A JP4132388A JP13238892A JPH05318541A JP H05318541 A JPH05318541 A JP H05318541A JP 4132388 A JP4132388 A JP 4132388A JP 13238892 A JP13238892 A JP 13238892A JP H05318541 A JPH05318541 A JP H05318541A
Authority
JP
Japan
Prior art keywords
gas
injection molding
molding
pressure
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4132388A
Other languages
Japanese (ja)
Inventor
Kiyoaki Okayama
清明 岡山
Takashi Kabashima
隆 椛嶋
Juichi Ema
重一 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP4132388A priority Critical patent/JPH05318541A/en
Publication of JPH05318541A publication Critical patent/JPH05318541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent the generation of molding inferiority such as the lowering of the strength and heat resistance due to the temp. rise of a resin material, appearance inferiority such as gas scorch or coloration, the burr in the boundary surface of a mold or the insufficient filling in a terminal part in the injection molding of plastic. CONSTITUTION:Gas is introduced into the cylinder of an injection molding machine at the time of injection molding to pressurize the cylinder and the flowability of a resin is enhanced to suppress the generation of molding inferiority. A gas vent spontaneously and forcibly removing the gas issued into a cavity is combined to still more enhance the suppressing effect of molding inferiority. A thermoplastic resin compsn. containing 10-90% of a compd. becoming gas at 40 deg.C under atmospheric pressure in a volume converted to room temp. and atmospheric pressure is injected into a mold cavity in such a state that the mold cavity is opened to the atmosphere or reduced in pressure and pressed by pressing force equal to or higher than pressure generating an air bubble.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂の射出成形
方法に関する。熱可塑性樹脂はその種類の多様性と優れ
た特性から、一般機械、輸送機器、電気電子機器等の製
造、土木建設、鉱業、農林水産業からスポーツ、レジャ
ー用品にいたる多岐にわたる分野で使用されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin injection molding method. Due to the variety and excellent characteristics of thermoplastic resins, they are used in a wide range of fields from manufacturing of general machinery, transportation equipment, electric and electronic equipment, civil engineering construction, mining, agriculture, forestry and fisheries to sports and leisure products. There is.

【0002】熱可塑性樹脂の使用時にはその成形加工性
の良さから、押出し成形、ブロー成形、回転成形、圧空
成形、プレス成形、及び射出成形等の多種類の成形方法
が適用でき、樹脂の種類、用途、コスト、生産量などか
ら最適の成形方法が選択され使用されている。なかでも
射出成形は大量生産に適しており、コスト、成形品の強
度、寸法精度、外観等に優れている点から広く普及して
いる成形方法の一つである。
When a thermoplastic resin is used, various molding methods such as extrusion molding, blow molding, rotary molding, pressure molding, press molding, and injection molding can be applied because of its good moldability. The most suitable molding method is selected and used from the application, cost, and production volume. Of these, injection molding is one of the widely used molding methods because it is suitable for mass production and is excellent in cost, strength of molded products, dimensional accuracy, and appearance.

【0003】[0003]

【従来の技術】射出成形方法は、流動性を賦与するため
にシリンダー内で熱可塑性樹脂を加熱し且つスクリュー
等で剪断力を付与することにより溶融撹拌し、一般に高
圧(100気圧以上)の射出圧力で密閉した金型のキャ
ビテイ内に押出し賦形するものである。この為に熱可塑
性樹脂は、シリンダー内又は金型内で全体ないし部分的
にその樹脂の耐熱温度を越える高温度になり、この為熱
分解、酸化劣化、ないし加水分解反応などの各種の望ま
しくない副反応を惹起し易い。
2. Description of the Related Art The injection molding method is generally a method of heating a thermoplastic resin in a cylinder to impart fluidity and applying a shearing force with a screw or the like to melt and agitate, and generally injection at high pressure (100 atm or more). It is formed by extrusion into the cavity of a mold that is closed by pressure. For this reason, the thermoplastic resin becomes a high temperature exceeding the heat resistant temperature of the resin in the cylinder or in the mold in whole or in part, which causes various undesirable reactions such as thermal decomposition, oxidative deterioration, and hydrolysis reaction. It is easy to cause side reactions.

【0004】これらの反応によって、成形品は強度の低
下、耐熱性の低下、ガス焼けや着色などの外観の不良、
金型境界面でのばり、または末端部でのショートショッ
トによる充填不足などの成形不良の原因となっている。
(射出成形技術の基本と応用−日本プラスチック加工技
術協会編集発行) これらを防止するために、従来から熱可塑性樹脂に対し
てはフェノール系やヒンダードアミン系等の各種安定剤
の添加やフタル酸エステル類等の流動性改良剤の添加、
樹脂の改質やアロイ化などの工夫がなされ、また射出成
形機ではスクリューの最適化設計を実施したり、金型の
最適化等の多くの工夫がなされているが、安定剤の添加
効果によって基本的な樹脂の特性を改良するには限界が
あり、流動性改良剤では多量に用いると機械強度の低下
を引起こし、アロイ化では耐衝撃強度の低下が認められ
るなどいずれの方法でも限界があった。(高分子添加剤
の最新技術−CMC発行)
Due to these reactions, the molded product has a decrease in strength, a decrease in heat resistance, a defective appearance such as gas burning and coloring,
This is a cause of molding defects such as burrs on the die boundary surface or insufficient filling due to short shots at the ends.
(Basics and applications of injection molding technology-Published by Japan Plastic Processing Technology Association) In order to prevent these, addition of various stabilizers such as phenol-based or hindered amine-based thermoplastic resins and phthalates have been conventionally applied to thermoplastic resins. Fluidity improver such as
There are many innovations such as resin modification and alloying, and many optimizations such as screw optimization and mold optimization have been made in the injection molding machine. There is a limit to improving the basic resin properties, and when used in a large amount with a fluidity improver, it causes a decrease in mechanical strength. there were. (Latest technology of polymer additives-issued by CMC)

【0005】一方、従来から成形時に『射出成形機のシ
リンダーのノズル部や金型キャビテイ内にガスを導入し
たり』(特公昭57−14968)、『発泡剤を使用す
ること(特公昭43−16844)により0.5%以上
成形品を発泡させる方法』は公知であるが、いずれも成
形品全体または局部的に発泡させることにより、熱可塑
性樹脂の射出成形品の欠点であった外観不良、特に偏肉
部やリブなどの補強部に現われるひけ対策、あるいは軽
量化対策として効果的な方法であるが、成形品は発泡に
伴い強度の低下やガスによるフローマーク等の外観不良
を引き起こすことがある。
On the other hand, in the past, at the time of molding, "introducing gas into the nozzle portion of a cylinder of an injection molding machine or into a mold cavity" (Japanese Patent Publication No. 57-14968), "using a foaming agent (Japanese Patent Publication No. 43- 16844), a method of foaming a molded product by 0.5% or more ”is publicly known, but in both cases, the defective appearance, which was a defect of the injection molded product of the thermoplastic resin, was caused by foaming the entire molded product or locally. This is an effective method to reduce sink marks that appear in uneven parts and ribs, and to reduce weight. However, molded products may cause deterioration in strength due to foaming and appearance defects such as flow marks due to gas. is there.

【0006】なお、『ガスまたは発泡剤を用いず射出成
形時に初め金型を一部開放させた状態で射出成形させ
て、その後圧縮成形する成形方法』(成形加工3(6)
402(1991))は成型品の残留歪を改良するため
にコンパクトデイスクの用途で採用されたり、自動車内
装用にシートとの張り合わせ成形などに採用されている
が、成型流動性の改良は必ずしも十分ではない。
Incidentally, "a molding method in which a gas is not used or a foaming agent is used, injection molding is first performed with a partly opened mold and then compression molding is performed" (molding process 3 (6)
402 (1991)) is used for compact discs to improve the residual strain of molded products, and is also used for laminating with automobile seats for automobile interiors, but the improvement of molding fluidity is not always sufficient. is not.

【0007】[0007]

【発明が解決しようとする課題】プラスチックの射出成
形時の成形不良発生の主原因は、溶融した熱可塑性樹脂
の耐熱温度に起因する温度制限下での流動性の不足にあ
ることに着目し、その改善を計ることを課題とする。
Focusing on the fact that the main cause of defective molding during injection molding of plastic is the lack of fluidity under temperature limitation due to the heat resistant temperature of the molten thermoplastic resin, The task is to measure the improvement.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するための方法について鋭意検討を取り進めた
結果、射出成形時に熱可塑性樹脂にガスを導入する事に
よって、可塑化され流動性が大幅に改良されることを見
出し、かつ金型のキャビテイで開放されるガスを自発的
または強制的に除去することを組合わせることにより、
強度の低下や外観の不良を回避して成形性を改良できる
ことが可能となり、本発明に到達した。
As a result of intensive studies on the method for solving the above-mentioned problems, the inventors of the present invention plasticized by introducing a gas into a thermoplastic resin at the time of injection molding. By finding that the fluidity is significantly improved, and combining it with the voluntary or forced removal of the gas released in the mold cavity,
It has become possible to improve the formability by avoiding a decrease in strength and a poor appearance, and has reached the present invention.

【0009】すなわち、(1)大気圧、40℃でガス体
となる化合物を常温常圧に換算した容量で10〜90%
含有する熱可塑性樹脂組成物を、金型キャビテイを大気
に開放又は減圧にした状態で金型キャビテイに射出する
とともに、気泡が生じる圧力以上の押圧力で後押しをす
ることを特徴とする射出成形方法、(2)ガスを射出成
形機のシリンダー内に直接導入する上記(1)の方法、
(3)ガスを射出成形機のシリンダー内で熱可塑性樹脂
組成物に対して常温常圧に換算した容量で10〜90%
発生することが出来る量の発泡剤を用いる上記(1)の
方法、である。
That is, (1) 10 to 90% by volume of a compound which becomes a gas body at atmospheric pressure and 40 ° C. converted to normal temperature and normal pressure.
The injection molding method, characterized in that the thermoplastic resin composition containing is injected into the mold cavity in a state where the mold cavity is opened to the atmosphere or depressurized, and is pushed with a pressing force higher than the pressure at which bubbles are generated. (2) The method of (1) above, wherein the gas is directly introduced into the cylinder of the injection molding machine,
(3) 10 to 90% by volume of gas converted into normal temperature and normal pressure in the cylinder of the injection molding machine with respect to the thermoplastic resin composition
The method according to (1) above, wherein an amount of the foaming agent that can be generated is used.

【0010】(具体的説明)本発明で使用する熱可塑性
樹脂とは、加熱によって軟化し外力によって変形する
が、冷却するとその時の形状を保持する性質を有する合
成樹脂のことをいい、特定の融点を持つポリエチレン
(PE)、ポリプロピレン(PP)、ポリブテン(P
B)、ポリアミド(PA)、ポリエチレンテレフタレー
ト(PET)、ポリブチレンテレフタレート(PB
T)、ポリアセタール(POM)、ポリアクリロニトリ
ル(PAN)、ポリフェニレンサルファイド(PPS)
などの結晶性樹脂や、特定の融点を持たないポリスチレ
ン(PS)、ABS、ポリカーボネート(PC)、A
S、ポリフェニレンエーテル(PPE)、ポリエーテル
エーテルケトン(PEEK)、ポリエーテルケトン(P
EK)、ポリアリレート(PAR)等の非晶性樹脂、あ
るいは液晶樹脂などの多くの材料があるが、結晶性樹脂
や非晶性樹脂など特定の熱可塑性樹脂に限定されるもの
ではなく、2種類以上の熱可塑性樹脂を組み合わせる
か、予めPPE/PS、PPE/PA、PBT/AB
S、PBT/PCなどの2種類以上のポリマーを組合わ
せてポリマーアロイとして樹脂組成物として用いること
も可能である。なかでも本発明に使用する熱可塑性樹脂
としては、非晶性樹脂が好ましい。
(Detailed Description) The thermoplastic resin used in the present invention is a synthetic resin having a property of softening by heating and being deformed by an external force, but retaining its shape when cooled, and having a specific melting point. With polyethylene (PE), polypropylene (PP), polybutene (P
B), polyamide (PA), polyethylene terephthalate (PET), polybutylene terephthalate (PB)
T), polyacetal (POM), polyacrylonitrile (PAN), polyphenylene sulfide (PPS)
Crystalline resin such as polystyrene (PS), ABS, polycarbonate (PC), A that does not have a specific melting point
S, polyphenylene ether (PPE), polyether ether ketone (PEEK), polyether ketone (P
There are many materials such as amorphous resin such as EK) and polyarylate (PAR), or liquid crystal resin, but the material is not limited to a specific thermoplastic resin such as a crystalline resin or an amorphous resin. Combine more than one type of thermoplastic resin, or use PPE / PS, PPE / PA, PBT / AB in advance.
It is also possible to combine two or more kinds of polymers such as S and PBT / PC and use them as a polymer composition as a polymer alloy. Among them, the thermoplastic resin used in the present invention is preferably an amorphous resin.

【0011】非晶性とは一般に明確な融点や測定可能な
融解熱を有しないことを意味するが、本発明においては
ゆっくり冷却する場合には多少の結晶性を示すものを含
み、また本発明の効果を大きく損なわない範囲で結晶性
を示すものを含んでもよい。ガラス転位温度、融点及び
融解熱は、示差走差熱量計を用いて測定することができ
る。
The term "amorphous" generally means that there is no definite melting point or measurable heat of fusion, but in the present invention, it includes those which show some crystallinity when slowly cooled, and the present invention Those exhibiting crystallinity may be included within the range of not significantly impairing the effect of. The glass transition temperature, melting point, and heat of fusion can be measured using a differential scanning calorimeter.

【0012】この例としてはPERKIN−ELMER
社製 DSC−IIがある。この装置を用いて、融解熱
は、1分間当り10℃の昇温速度で、試料を予測される
融点以上の温度に加熱し、次に試料を1分間当り10℃
の速度で降温し、30℃まで冷却し、そのまま約1分間
放置した後、再び1分間当り10℃の速度で加熱昇温す
る。融解熱は、昇温と降温のサイクルで測定した値が実
験誤差範囲内で一定値となるものを採用する。本発明に
おける非晶性熱可塑性樹脂とは、上記方法により測定さ
れる融解熱が1cal/g 未満のものと定義する。
An example of this is PERKIN-ELMER
There is DSC-II manufactured by the company. Using this device, the heat of fusion heats the sample at a temperature above the expected melting point at a rate of 10 ° C per minute, then the sample is heated to 10 ° C per minute.
The temperature is lowered at a rate of 30 ° C., the temperature is cooled to 30 ° C., the temperature is left for about 1 minute, and then the temperature is raised again at a rate of 10 ° C. per minute. As the heat of fusion, the one that the value measured in the cycle of temperature increase and temperature decrease becomes constant within the experimental error range is adopted. The amorphous thermoplastic resin in the present invention is defined as one having a heat of fusion of less than 1 cal / g measured by the above method.

【0013】又、熱可塑性樹脂には繊維状や粒状または
粉状の有機、無機物、およびこれらの2種以上を組み合
わせたフィラーを配合させた熱可塑性樹脂組成物を用い
ることもできる。またそれぞれの目的に対応して、難燃
剤や酸化防止剤、紫外線防止剤、着色剤、流動性改良
剤、結晶化核剤、結晶化促進剤、離型剤や安定剤などの
各種添加剤を使用することも可能である。フィラーとし
てはガラス繊維、炭素繊維、ポリイミド繊維、アルミナ
繊維等の繊維、チタン酸カリウム、炭化珪素、アルミ
ナ、窒化珪素、等のウイスカー類、タルク、クレー、シ
リカ、マイカ、炭酸カルシウム、硫酸バリウム、水酸化
マグネシウム、水酸化バリウム、シラス、ガラスバルー
ン等の粒状や板状のもの等が挙げられる。
As the thermoplastic resin, a fibrous, granular or powdery organic or inorganic material, or a thermoplastic resin composition containing a filler in which two or more kinds of these are combined may be used. In addition, various additives such as flame retardants, antioxidants, UV inhibitors, colorants, fluidity improvers, crystallization nucleating agents, crystallization accelerators, release agents and stabilizers are added according to each purpose. It is also possible to use. Examples of the filler include glass fibers, carbon fibers, polyimide fibers, fibers such as alumina fibers, whiskers such as potassium titanate, silicon carbide, alumina, and silicon nitride, talc, clay, silica, mica, calcium carbonate, barium sulfate, and water. Examples thereof include granular and plate-shaped materials such as magnesium oxide, barium hydroxide, shirasu, and glass balloons.

【0014】難燃剤としてはジフェニルクレジルホスフ
ェートなどの燐酸エステル類、塩素化パラフィン等の塩
素化合物、デカプロモヂフェニルエーテル等の臭素化合
物、三酸化アンチモン等が挙げられる。酸化防止剤とし
てはアルキルフェノール類やチオプロピオン酸エステル
類が、紫外線防止剤としてはベンゾフェノン誘導体や各
種のサリチル酸エステルなどがあり、着色剤としては酸
化チタンなどの顔料や染料が用いられる。
Examples of the flame retardant include phosphoric acid esters such as diphenyl cresyl phosphate, chlorine compounds such as chlorinated paraffin, bromine compounds such as decapromodiphenyl ether, and antimony trioxide. Alkylphenols and thiopropionates are used as antioxidants, benzophenone derivatives and various salicylates are used as UV inhibitors, and pigments and dyes such as titanium oxide are used as colorants.

【0015】流動性改良剤としてはフタル酸エステル類
などが、滑剤としては流動パラフィン類や高級脂肪酸、
ポリグリコール等のアルコール類、ステアリン酸カルシ
ウム等の金属石鹸等が挙げられる。結晶化核剤としては
硫酸化アルミや燐酸ソーダ等が、離型剤としてはシリコ
ーン系化合物や、ワックス類が、熱安定剤としては各種
金属石鹸やエポキシ化合物などが使用される。
Phthalates are used as fluidity improvers, and liquid paraffins and higher fatty acids are used as lubricants.
Examples thereof include alcohols such as polyglycol and metal soaps such as calcium stearate. Sulfated aluminum, sodium phosphate, etc. are used as the crystallization nucleating agent, silicone compounds and waxes are used as the release agent, and various metal soaps and epoxy compounds are used as the heat stabilizer.

【0016】次に本発明で使用するガスとは、1気圧で
の沸点が40℃以下の化合物、即ち大気圧、40℃でガ
ス体となる化合物であり、好ましくは火災爆発や労働衛
生上、および環境保安上問題が少なく、射出成形機に対
する腐食性、さらには個別の熱可塑性樹脂に対して悪影
響の少ないガスが望ましい。
Next, the gas used in the present invention is a compound having a boiling point of 40 ° C. or less at 1 atm, that is, a compound which becomes a gas at atmospheric pressure and 40 ° C., preferably from the viewpoint of fire explosion and occupational health. Also, a gas that is less problematic in terms of environmental safety, corrosive to the injection molding machine, and less adversely affecting the individual thermoplastic resin is desirable.

【0017】具体的には、ヘリウム、アルゴン、窒素、
二酸化炭素、アンモニアなどの無機ガス類、メタン、エ
タン、プロパン、ブタン、ネオペンタン、エチレン、プ
ロピレン、ブテン、ペンテン、ブタジエンなどの炭化水
素類およびその混合物、クロロメタン、クロロエタン、
クロロブタンなどの塩素系化合物、トリクロロフロロメ
タンなどの弗素系化合物、メチルアミン、ヂメチルアミ
ン、トリメチルアミンなどのアミン類等が挙げられる。
Specifically, helium, argon, nitrogen,
Carbon dioxide, inorganic gases such as ammonia, methane, ethane, propane, butane, neopentane, ethylene, propylene, butene, pentene, hydrocarbons such as butadiene and mixtures thereof, chloromethane, chloroethane,
Examples thereof include chlorine compounds such as chlorobutane, fluorine compounds such as trichlorofluoromethane, amines such as methylamine, dimethylamine and trimethylamine.

【0018】又、シリンダー内でガスを発生させるもの
(発泡剤)であっても良くこの場合、発泡剤としては二
酸化炭素を発生させるものとして重炭酸ナトリウム、重
炭酸アンモニウム、クエン酸ナトリウムなど、窒素を発
生させる発泡剤としてはアゾジカルボンアミド(ADC
A)、p,p−オキシビス(ベンゼンスルフォニルヒド
ラジド)(OBSH)、ジニトロソペンタメチレンテト
ラミン(DPT)、アゾビスホルムアミド(ABF
A)、アゾビスイソブチロニトリル(AIBN)、p−
トルエンスルフォニルセミカルバジド(TSSC)、ト
リヒドラジノトリアジン(THT)などが挙げられる。
Further, a gas generating agent (foaming agent) in the cylinder may be used. In this case, as a foaming agent, a carbon dioxide generating agent such as sodium bicarbonate, ammonium bicarbonate, sodium citrate or the like is used. Azodicarbonamide (ADC
A), p, p-oxybis (benzenesulfonylhydrazide) (OBSH), dinitrosopentamethylenetetramine (DPT), azobisformamide (ABF)
A), azobisisobutyronitrile (AIBN), p-
Examples thereof include toluenesulfonyl semicarbazide (TSSC) and trihydrazinotriazine (THT).

【0019】尚、ガス又は発泡剤は単独だけでなく2種
類以上の混合物を用いることも可能である。添加するガ
スの量(発泡剤を使用する場合その添加量はシリンダー
内で発生するガスの量に換算して)はシリンダー内で常
温常圧換算で、樹脂組成物全体に対して10〜90容量
%であり、好ましくは20〜90容量%、更に好ましく
は20〜60容量%である。
The gas or the foaming agent may be used alone or as a mixture of two or more kinds. The amount of gas to be added (when a foaming agent is used, the amount added is converted to the amount of gas generated in the cylinder) is 10 to 90 volumes with respect to the entire resin composition in normal temperature and pressure in the cylinder. %, Preferably 20 to 90% by volume, more preferably 20 to 60% by volume.

【0020】ガスを使用する場合は、逆止弁を設置した
導管から流量計でガスの体積を制御しながらシリンダー
のメルテイングゾーンに導入することが望ましく、一方
発泡剤を使用する場合は、予め所定量を樹脂組成物に混
合してシリンダー内に供給するか、又は単独に樹脂組成
物とは別の供給口から所定量を定量的にシリンダー内に
供給することが望ましい。なお射出成形機のシリンダー
内に導入したガスを射出成形前にノズルなどから系外に
散逸させないことが重要であり、この為ノズル先端にバ
ルブ機構などを設ける事が必要となる。
When a gas is used, it is desirable to introduce it into the melting zone of the cylinder while controlling the volume of the gas with a flow meter from a conduit equipped with a check valve. It is desirable to mix a predetermined amount with the resin composition and supply it into the cylinder, or to supply the predetermined amount quantitatively into the cylinder independently from a supply port separate from the resin composition. It is important not to let the gas introduced into the cylinder of the injection molding machine escape from the system from the nozzle or the like before the injection molding. Therefore, it is necessary to install a valve mechanism or the like at the tip of the nozzle.

【0021】成形品を実質的に発泡させないことが本発
明の今一つの要件であるが、その具体的方法としては、
射出成形時に樹脂を射出成形する前に、金型のキャビテ
イ内の気体を金型を閉じた状態で、金型キャビテイの一
部から樹脂が流出しない限度で、間隙の流路から強制的
に真空ポンプなどを用いて減圧して排除し、かつ樹脂の
射出時および保圧中真空ポンプを稼働させることにより
キャビテイ内にでるガスを強制的に排除するか、または
射出成形と圧縮成形とを組合わせた射出圧縮成型機を用
い、射出成形時にまず金型を部分的に開放した状態で射
出しガス抜きするとともに次に圧縮成形する事が必要で
ある。
It is another requirement of the present invention that the molded product is not substantially foamed.
Before injection-molding resin during injection molding, the gas inside the cavity of the mold is forcibly evacuated from the flow path of the gap while the mold is closed and the resin does not flow out from part of the mold cavity. Use a pump or the like to reduce the pressure and eliminate it, and forcibly eliminate the gas that is generated in the cavity by operating the vacuum pump during resin injection and during pressure retention, or combine injection molding and compression molding. At the time of injection molding, it is necessary to inject and degas the mold with the mold partially opened and then perform compression molding.

【0022】このとき、成形品の重量がガスを用いない
ときの密度に対して0.5%以上減少していないことを
ガスが除去され発泡していないことの目安にするのが望
ましい。なお射出成形機の種類、形式、複合組合せなど
については特に制限の必要はない。
At this time, it is desirable that the fact that the weight of the molded product does not decrease by 0.5% or more with respect to the density when gas is not used is used as a standard that the gas has been removed and foaming has not occurred. It should be noted that there is no particular limitation on the type, type, complex combination, etc. of the injection molding machine.

【0023】以下、本発明を実施例によって説明する
が、本発明はこれによりその範囲を限定されるものでは
ない。各実施例での発泡剤としては、ファインブロー
(三菱油化製発泡剤、商品名)ADCA(アゾジカルボ
ンアミド)、クエン酸ソーダ、又ガスとしては窒素ガス
を用いた。
The present invention will be described below with reference to examples, but the scope of the present invention is not limited thereby. Fineblowing (foaming agent manufactured by Mitsubishi Yuka, trade name) ADCA (azodicarbonamide), sodium citrate, and nitrogen gas were used as the foaming agent in each example.

【実施例】【Example】

実施例1−1〜1−4及び比較例1 Examples 1-1 to 1-4 and Comparative Example 1

【表1】 [Table 1]

【0024】30%のガラス繊維で強化したポリエチレ
ンテレフタレート樹脂(三菱油化製レマペット330)
と発泡剤又はガスとを表1のように日本製鋼所(株)J
−100型射出成形機を用い、幅8mm、厚さ2mmの渦巻
状のいわゆるスパイラル金型の端末を真空ポンプで56
0Torrに減圧し、成形温度265℃、金型温度を90℃
で成形し、その流動長を測定した。又成形品の比重とそ
の物性を測定し、比較例として発泡剤及びガスを用いな
い事以外は実施例と同様に実施しそれぞれを対比した。
結果を表1に示す。
Polyethylene terephthalate resin reinforced with 30% glass fiber (Mitsubishi Petrochemical Remappet 330)
And the blowing agent or gas as shown in Table 1 of Japan Steel Works, Ltd. J
Using a -100 type injection molding machine, the end of a spiral so-called spiral die having a width of 8 mm and a thickness of 2 mm is 56
Reduced pressure to 0 Torr, molding temperature 265 ℃, mold temperature 90 ℃
Was molded, and its flow length was measured. Further, the specific gravity of the molded product and its physical properties were measured, and as comparative examples, the same procedure as in the example was carried out except that the foaming agent and gas were not used, and the comparison was made.
The results are shown in Table 1.

【0025】実施例2−1〜2−4及び比較例2Examples 2-1 to 2-4 and Comparative Example 2

【表2】 [Table 2]

【0026】ポリカーボネート(三菱瓦斯化学製ユーピ
ロンS−2000)を用いて実施例1と同様の方法で表
2の内容で成形温度290℃金型温度90℃で成形し、
その流動長を測定した。結果を表2に示す。
Molding was carried out in the same manner as in Example 1 using polycarbonate (Iupilon S-2000 manufactured by Mitsubishi Gas Chemical Co., Ltd.) at the molding temperature of 290 ° C. and the mold temperature of 90 ° C.
The flow length was measured. The results are shown in Table 2.

【0027】実施例3−1〜3−4及び比較例3Examples 3-1 to 3-4 and Comparative Example 3

【表3】 [Table 3]

【0028】ポリフェニレンエーテル(日本ポリエーテ
ル製H−40)を用いて表3のように東洋機械金属
(株)TU−15型射出成形機を用い、幅8mm、厚さ
0.5mmのバーフロー金型の端末を真空ポンプで560
Torrに減圧にし、成形温度310℃、金型温度を120
℃で成形した。結果を表3に示す。
As shown in Table 3, polyphenylene ether (H-40 manufactured by Nippon Polyether) was used with a TU-15 type injection molding machine manufactured by Toyo Kikai Kinzoku Co., Ltd., and a bar flow metal having a width of 8 mm and a thickness of 0.5 mm was used. Type end with vacuum pump 560
Reduce the pressure to Torr, molding temperature 310 ℃, mold temperature 120
Molded at ° C. The results are shown in Table 3.

【0029】実施例4Example 4

【表4】 [Table 4]

【0030】実施例1と同じ30%ガラス繊維強化ポリ
エチレンテレフタレート樹脂を表4のように小松製作所
(株)製200T射出圧縮成形機を用い、200×15
0×50mmで厚さ3mmの箱状の金型を用い、成形温度2
60℃、金型温度80℃で射出成形した。次に5mm/sの
プレス速度でプレスを実施し、ばりの発生がなくフル充
填する条件を選択した。比較例−4として発泡剤を添加
しないこと以外は実施例4と同様に実施し、その成形条
件と成形品の比重とを対比した。結果を表4に示す。
The same 30% glass fiber reinforced polyethylene terephthalate resin as in Example 1 was used, as shown in Table 4, using a 200T injection compression molding machine manufactured by Komatsu Ltd. to produce 200 × 15.
Use a box-shaped die with a thickness of 0 x 50 mm and a thickness of 3 mm to set the molding temperature to 2
Injection molding was performed at 60 ° C and a mold temperature of 80 ° C. Next, pressing was carried out at a pressing speed of 5 mm / s, and the conditions for full filling without generation of flash were selected. Comparative Example 4 was carried out in the same manner as in Example 4 except that the foaming agent was not added, and the molding conditions were compared with the specific gravity of the molded product. The results are shown in Table 4.

【0031】[0031]

【発明の効果】実施例1〜3の結果から、物性の低下を
起こすことなく、実施例は比較例に対して2倍以上の流
動性を示した。また実施例4で明らかなように射出圧縮
成形では発泡剤を用いることにより4分の1以下の射出
および圧縮条件で成形できることが判明した。又いずれ
の実施例でも成形品の比重はガスを導入したにもかかわ
らず発泡率(成形品の密度の変化)は0.5%以下であ
り実質上発泡していないことを確認した。
From the results of Examples 1 to 3, the Example showed fluidity more than double that of the Comparative Example without causing deterioration of physical properties. Further, as is clear from Example 4, it was found that in injection compression molding, it is possible to perform molding under injection and compression conditions of 1/4 or less by using a foaming agent. In each of the examples, it was confirmed that the specific gravity of the molded product was 0.5% or less in terms of the foaming ratio (change in density of the molded product) despite the introduction of gas, and that substantially no foaming occurred.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 大気圧、40℃でガス体となる化合物を
常温常圧に換算した容量で10〜90%含有する熱可塑
性樹脂組成物を、金型キャビテイを大気に開放又は減圧
にした状態で金型キャビテイに射出すると共に、気泡が
生じる圧力以上の押圧力で後押しをすることを特徴とす
る射出成形方法。
1. A thermoplastic resin composition containing 10 to 90% of a compound which becomes a gas at 40 ° C. at atmospheric pressure at room temperature and atmospheric pressure, with a mold cavity open to the atmosphere or a reduced pressure. The injection molding method is characterized in that the resin is injected into the mold cavity and is back-pressed with a pressing force equal to or higher than the pressure at which bubbles are generated.
【請求項2】 ガスを射出成形機のシリンダー内に直接
導入する請求項1記載の方法。
2. A method according to claim 1, wherein the gas is introduced directly into the cylinder of the injection molding machine.
【請求項3】 ガスを射出成形機のシリンダー内で熱可
塑性樹脂組成物に対して常温常圧に換算した容量で10
〜90%発生することが出来る量の発泡剤を用いる請求
項1記載の方法。
3. The volume of gas in a cylinder of an injection molding machine converted into normal temperature and normal pressure with respect to the thermoplastic resin composition is 10
The method of claim 1 wherein an amount of blowing agent capable of generating .about.90% is used.
【請求項4】 熱可塑性樹脂として、非晶性樹脂を用い
る請求項1記載の方法。
4. The method according to claim 1, wherein an amorphous resin is used as the thermoplastic resin.
JP4132388A 1992-05-25 1992-05-25 Method for injection molding of plastic Pending JPH05318541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4132388A JPH05318541A (en) 1992-05-25 1992-05-25 Method for injection molding of plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4132388A JPH05318541A (en) 1992-05-25 1992-05-25 Method for injection molding of plastic

Publications (1)

Publication Number Publication Date
JPH05318541A true JPH05318541A (en) 1993-12-03

Family

ID=15080222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4132388A Pending JPH05318541A (en) 1992-05-25 1992-05-25 Method for injection molding of plastic

Country Status (1)

Country Link
JP (1) JPH05318541A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826477A2 (en) * 1996-09-03 1998-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Method for molding thermoplastic resin
NL1004268C2 (en) * 1996-10-14 1998-04-15 Dsm Nv Shell-shaped molded part, a method for its manufacture and applications.
WO1998052734A1 (en) * 1997-05-21 1998-11-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for injection molding of thermoplastic resins
JP2001353743A (en) * 2000-06-14 2001-12-25 Canon Inc Molded object, placing object, and method and apparatus for manufacturing resin molded article
EP1219400A1 (en) * 2000-06-14 2002-07-03 Asahi Kasei Kabushiki Kaisha Method of injection molding of thermoplastic resin
JP2003080548A (en) * 2001-06-27 2003-03-19 Daikin Ind Ltd Method for manufacturing resin molded article
JP2003154567A (en) * 2001-11-22 2003-05-27 Sumitomo Chem Co Ltd Method for manufacturing injection foamed molded object
US7107601B2 (en) 2000-06-14 2006-09-12 Canon Kabushiki Kaisha Foam molding method and apparatus
WO2006129522A1 (en) * 2005-05-30 2006-12-07 Shiga Industrial Support Center Method for producing non-foamed molded body and non-foamed molded body

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826477A2 (en) * 1996-09-03 1998-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Method for molding thermoplastic resin
EP0826477A3 (en) * 1996-09-03 2000-04-12 Asahi Kasei Kogyo Kabushiki Kaisha Method for molding thermoplastic resin
US6337039B1 (en) 1996-09-03 2002-01-08 Asahi Kasei Kabushiki Kaisha Method for making optical disk by injection molding
NL1004268C2 (en) * 1996-10-14 1998-04-15 Dsm Nv Shell-shaped molded part, a method for its manufacture and applications.
WO1998016366A1 (en) * 1996-10-14 1998-04-23 Dsm N.V. Thermoplastic moulded part, a process for the production thereof and applications thereof
CZ298638B6 (en) * 1996-10-14 2007-12-05 Dsm N. V. Process for producing thermoplastic molded part and thermoplastic molded part per se
WO1998052734A1 (en) * 1997-05-21 1998-11-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for injection molding of thermoplastic resins
US6146577A (en) * 1997-05-21 2000-11-14 Asahi Kasei Kogyo Kabushiki Kaisha Method for injection molding of thermoplastic resins
EP1219400A1 (en) * 2000-06-14 2002-07-03 Asahi Kasei Kabushiki Kaisha Method of injection molding of thermoplastic resin
EP1219400A4 (en) * 2000-06-14 2002-12-04 Asahi Chemical Ind Method of injection molding of thermoplastic resin
US6884380B2 (en) 2000-06-14 2005-04-26 Asahi Kasei Kabushiki Kaisha Method of injection molding of thermoplastic resin
US7107601B2 (en) 2000-06-14 2006-09-12 Canon Kabushiki Kaisha Foam molding method and apparatus
JP2001353743A (en) * 2000-06-14 2001-12-25 Canon Inc Molded object, placing object, and method and apparatus for manufacturing resin molded article
JP2003080548A (en) * 2001-06-27 2003-03-19 Daikin Ind Ltd Method for manufacturing resin molded article
JP2003154567A (en) * 2001-11-22 2003-05-27 Sumitomo Chem Co Ltd Method for manufacturing injection foamed molded object
WO2006129522A1 (en) * 2005-05-30 2006-12-07 Shiga Industrial Support Center Method for producing non-foamed molded body and non-foamed molded body
US7897092B2 (en) 2005-05-30 2011-03-01 Shinsei Kagaku Co., Ltd. Method for producing non-foamed molded body

Similar Documents

Publication Publication Date Title
US4331619A (en) Ethylene-chlorotrifluoroethylene copolymer foam
KR20170017611A (en) Foamable master batch and Polyolefin resin compositions with excellent expandability and direct metallizing property
US20100201016A1 (en) Foaming polypropylene resin composition and process for producing injection-molded foams from the composition
US4048275A (en) Cross-linking and foaming injection molding process for ethylenic polymers
JPH05318541A (en) Method for injection molding of plastic
WO2017179754A1 (en) Polyolefin-based composite resin composition for vehicle parts
JP5368148B2 (en) Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition
JP3374356B2 (en) Method for producing foam molded article and foam molded article
US3547839A (en) Foamable resin composition and process for preparing foamed resins
JPH11179752A (en) Method for molding automotive interior finish component
JP2002018887A (en) Foamed molded body of polypropylene resin
JP6920604B2 (en) Foam molded product and its manufacturing method
JP3967212B2 (en) Foam injection molded article and foam injection molding method
KR102298955B1 (en) Injection molding method of plastic article using polypropylene resin composition
JP2002059473A (en) Foamed sheet made of polypropylene resin composition and moldings formed of foamed sheet
JP2002264164A (en) Resin composition for injection foaming
JP3538441B2 (en) Method for producing polypropylene resin foam
CN114026167A (en) Polypropylene resin composition and molded article comprising same
JPH073065A (en) Expandable thermoplastic resin composition and production of foamed molded article
US4406846A (en) Foamed thermoplastic resin comprising poly(p-methylenebenzoate)
JP2002337186A (en) Method for supplying material to injection molding machine or extrusion machine
JPH08511055A (en) Improved styrene resin molding composition and foam
JP3727182B2 (en) Foamed sheet comprising modified polypropylene resin composition, method for producing the same, and molded article thereof
JPH1119961A (en) Manufacture of fiber-reinforced, thermoplastic resin light-weight molding
JP2002192518A (en) Long fiber reinforced resin pellet and molded object