JP6920604B2 - Foam molded product and its manufacturing method - Google Patents

Foam molded product and its manufacturing method Download PDF

Info

Publication number
JP6920604B2
JP6920604B2 JP2016213286A JP2016213286A JP6920604B2 JP 6920604 B2 JP6920604 B2 JP 6920604B2 JP 2016213286 A JP2016213286 A JP 2016213286A JP 2016213286 A JP2016213286 A JP 2016213286A JP 6920604 B2 JP6920604 B2 JP 6920604B2
Authority
JP
Japan
Prior art keywords
molded product
fiber
foamed
mass
insoluble fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016213286A
Other languages
Japanese (ja)
Other versions
JP2018070795A (en
Inventor
慶詞 大野
慶詞 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoraku Co Ltd
Original Assignee
Kyoraku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoraku Co Ltd filed Critical Kyoraku Co Ltd
Priority to JP2016213286A priority Critical patent/JP6920604B2/en
Priority to PCT/JP2017/038850 priority patent/WO2018079699A1/en
Priority to KR1020197013063A priority patent/KR102220282B1/en
Priority to CN201780066388.7A priority patent/CN109890885B/en
Priority to US16/345,045 priority patent/US10988584B2/en
Priority to EP17864418.3A priority patent/EP3533823B1/en
Publication of JP2018070795A publication Critical patent/JP2018070795A/en
Application granted granted Critical
Publication of JP6920604B2 publication Critical patent/JP6920604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発泡成形体及びその製造方法に関する。 The present invention relates to a foam molded product and a method for producing the same.

熱可塑性樹脂を発泡剤により発泡させた発泡樹脂を用いた発泡成形体が知られている(例えば特許文献1を参照)。 A foamed molded product using a foamed resin obtained by foaming a thermoplastic resin with a foaming agent is known (see, for example, Patent Document 1).

特開2012−030498号公報Japanese Unexamined Patent Publication No. 2012-034998

発泡成形体は、軽量であるが、非発泡成形体に比べて機械特性に劣る傾向がある。発泡樹脂にタルクなどのフィラーを添加することによって発泡成形体の機械特性を向上させる方法が考えられるが、本発明者による予備実験によると、発泡樹脂にタルクを1.5質量%添加しても機械特性がほとんど向上せず、タルクの添加量を増やすと成形性が悪化してしまうことが分かった。 Foam moldings are lightweight, but tend to be inferior in mechanical properties to non-foam moldings. A method of improving the mechanical properties of the foamed molded product by adding a filler such as talc to the foamed resin can be considered, but according to a preliminary experiment by the present inventor, even if 1.5% by mass of talc is added to the foamed resin, it is possible. It was found that the mechanical properties were hardly improved, and that the moldability deteriorated when the amount of talc added was increased.

本発明はこのような事情に鑑みてなされたものであり、成形性が良好であり且つ発泡成形体の機械特性を大幅に向上させることができる発泡成形体の製造方法を提供するものである。 The present invention has been made in view of such circumstances, and provides a method for producing a foamed molded product, which has good moldability and can significantly improve the mechanical properties of the foamed molded product.

本発明によれば、不溶繊維を含む発泡樹脂を成形する工程を備え、前記発泡樹脂中の前記不溶繊維の含有量は、0.3〜3質量%である、発泡成形体の製造方法が提供される。 According to the present invention, there is provided a method for producing a foamed molded article, which comprises a step of molding a foamed resin containing insoluble fibers, and the content of the insoluble fibers in the foamed resin is 0.3 to 3% by mass. Will be done.

本発明者が発泡成形体の機械特性を向上させるべく鋭意検討を行ったところ、発泡樹脂中の不溶繊維の含有量を0.3〜3質量%にした場合には、成形性が良好であり且つ発泡成形体の機械特性が大幅に向上することを見出し、本発明の完成に到った。 As a result of diligent studies by the present inventor to improve the mechanical properties of the foamed molded product, the moldability is good when the content of the insoluble fiber in the foamed resin is 0.3 to 3% by mass. Moreover, they have found that the mechanical properties of the foam molded product are significantly improved, and have reached the completion of the present invention.

以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
好ましくは、前記不溶繊維の含有量は、0.6〜2.1質量%である。
好ましくは、前記不溶繊維は、ガラス繊維又は炭素繊維である。
好ましくは、前記不溶繊維は、前記発泡成形体中での平均長さが50〜500μmである。
好ましくは、前記平均長さが70〜120μmである。
好ましくは、前記発泡成形体は、引張弾性率が400MPa以上である。
本発明の別の観点によれば、不溶繊維を含む発泡成形体であって、前記不溶繊維の含有量は、0.3〜3質量%である、発泡成形体が提供される。
Hereinafter, various embodiments of the present invention will be illustrated. The embodiments shown below can be combined with each other.
Preferably, the content of the insoluble fiber is 0.6 to 2.1% by mass.
Preferably, the insoluble fiber is glass fiber or carbon fiber.
Preferably, the insoluble fiber has an average length of 50 to 500 μm in the foam molded product.
Preferably, the average length is 70-120 μm.
Preferably, the foam molded product has a tensile elastic modulus of 400 MPa or more.
According to another aspect of the present invention, there is provided a foam molded product containing insoluble fibers, wherein the content of the insoluble fibers is 0.3 to 3% by mass.

本発明の一実施形態の発泡成形体の製造方法で利用可能な発泡成形機1の一例を示す。An example of an effervescent molding machine 1 that can be used in the method for producing an effervescent molded article according to an embodiment of the present invention is shown. 本発明の一実施形態の発泡成形体の構成を示す模式図である。It is a schematic diagram which shows the structure of the foam molded article of one Embodiment of this invention. 不溶繊維が過剰に添加された発泡成形体の構成を示す模式図である。It is a schematic diagram which shows the structure of the foam molded article which added the insoluble fiber excessively. 実施例3の発泡成形体の断面写真である。It is a cross-sectional photograph of the foam molded product of Example 3.

以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described. The various features shown in the embodiments shown below can be combined with each other. In addition, the invention is independently established for each feature.

本発明の一実施形態の発泡成形体の製造方法は、不溶繊維を含む発泡樹脂を成形する工程を備え、前記発泡樹脂中の前記不溶繊維の含有量は、0.3〜3質量%である。 The method for producing a foamed molded article according to an embodiment of the present invention includes a step of molding a foamed resin containing insoluble fibers, and the content of the insoluble fibers in the foamed resin is 0.3 to 3% by mass. ..

以下、図1を用いて、本発明の一実施形態の発泡成形体の製造方法及びその実施に利用可能な発泡成形機1について説明する。発泡成形機1は、樹脂供給装置2と、ヘッド18と、分割金型19を備える。樹脂供給装置2は、ホッパー12と、押出機13と、インジェクタ16と、アキュームレータ17を備える。押出機13とアキュームレータ17は、連結管25を介して連結される。アキュームレータ17とヘッド18は、連結管27を介して連結される。
以下、各構成について詳細に説明する。
Hereinafter, with reference to FIG. 1, a method for producing a foam molded product according to an embodiment of the present invention and a foam molding machine 1 that can be used for carrying out the method will be described. The foam molding machine 1 includes a resin supply device 2, a head 18, and a split mold 19. The resin supply device 2 includes a hopper 12, an extruder 13, an injector 16, and an accumulator 17. The extruder 13 and the accumulator 17 are connected via a connecting pipe 25. The accumulator 17 and the head 18 are connected via a connecting pipe 27.
Hereinafter, each configuration will be described in detail.

<ホッパー12,押出機13>
ホッパー12は、原料組成物11を押出機13のシリンダ13a内に投入するために用いられる。原料組成物11の形態は、特に限定されないが、通常は、ペレット状である。原料組成物11に含まれる原料樹脂は、例えばポリオレフィンなどの熱可塑性樹脂であり、ポリオレフィンとしては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体及びその混合物などが挙げられる。原料組成物11は、ホッパー12からシリンダ13a内に投入された後、シリンダ13a内で加熱されることによって溶融されて溶融樹脂になる。また、シリンダ13a内に配置されたスクリューの回転によってシリンダ13aの先端に向けて搬送される。スクリューは、シリンダ13a内に配置され、その回転によって溶融樹脂を混練しながら搬送する。スクリューの基端にはギア装置が設けられており、ギア装置によってスクリューが回転駆動される。シリンダ13a内に配置されるスクリューの数は、1本でもよく、2本以上であってもよい。
<Hopper 12, extruder 13>
The hopper 12 is used to charge the raw material composition 11 into the cylinder 13a of the extruder 13. The form of the raw material composition 11 is not particularly limited, but is usually in the form of pellets. The raw material resin contained in the raw material composition 11 is a thermoplastic resin such as polyolefin, and the polyolefin includes low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer and the like. Examples include mixtures. The raw material composition 11 is charged into the cylinder 13a from the hopper 12 and then heated in the cylinder 13a to be melted into a molten resin. Further, it is conveyed toward the tip of the cylinder 13a by the rotation of the screw arranged in the cylinder 13a. The screw is arranged in the cylinder 13a, and the molten resin is kneaded and conveyed by its rotation. A gear device is provided at the base end of the screw, and the screw is rotationally driven by the gear device. The number of screws arranged in the cylinder 13a may be one or two or more.

原料組成物11には、後述する発泡樹脂11a中の不溶繊維の含有量が0.3〜3質量%となる量の不溶繊維が含有される。原料組成物11には、通常、発泡用の核剤として、重曹やタルクなどが含有されるが、本実施形態では不溶繊維が核剤として機能するので、核剤を別途添加する必要がない。また、図2に示すように、発泡成形体31は、樹脂部32中に多数の気泡33が分散されて構成されるが、不溶繊維が核剤として機能するために、各気泡33に対応するように不溶繊維34が配置される。そして、不溶繊維34はある程度の長さを有しているので、不溶繊維34によって各気泡が補強される。タルクなどの粒状のフィラーを添加した場合は、気泡が強化されないので、発泡成形体の機械特性がほとんど向上しない。また、図2に示すように、不溶繊維34を核剤として生成された気泡33は細長い形状になりやすく、不溶繊維34は気泡33の長手方向に沿って配向されやすい。細長い形状の気泡33が折れ曲がる方向の力が加わると気泡33が破壊されやすいが、不溶繊維34が気泡33の長手方向に沿って配向されるために細長い形状の気泡33が折れ曲がる方向の力に対する強度が特に強化されて発泡成形体31の機械特性が向上する。 The raw material composition 11 contains an insoluble fiber in an amount such that the content of the insoluble fiber in the foamed resin 11a described later is 0.3 to 3% by mass. The raw material composition 11 usually contains baking soda, talc, or the like as a nucleating agent for foaming, but in the present embodiment, since the insoluble fiber functions as a nucleating agent, it is not necessary to add the nucleating agent separately. Further, as shown in FIG. 2, the foamed molded product 31 is configured by dispersing a large number of bubbles 33 in the resin portion 32, but since the insoluble fiber functions as a nucleating agent, it corresponds to each bubble 33. The insoluble fiber 34 is arranged as described above. Since the insoluble fiber 34 has a certain length, each bubble is reinforced by the insoluble fiber 34. When a granular filler such as talc is added, the air bubbles are not strengthened, so that the mechanical properties of the foamed molded product are hardly improved. Further, as shown in FIG. 2, the bubbles 33 generated by using the insoluble fibers 34 as a nucleating agent tend to have an elongated shape, and the insoluble fibers 34 tend to be oriented along the longitudinal direction of the bubbles 33. When a force in the bending direction of the elongated bubble 33 is applied, the bubble 33 is easily destroyed. However, since the insoluble fiber 34 is oriented along the longitudinal direction of the bubble 33, the strength of the elongated bubble 33 against the bending force is applied. Is particularly strengthened to improve the mechanical properties of the foam molded body 31.

発泡樹脂11aに0.3質量%以上の不溶繊維を含有させることによって、発泡成形体の機械特性が向上する。また、不溶繊維の含有量が3質量%を超えると発泡樹脂11aの成形性が悪化する場合があるが、この含有量を3質量%以下にすることによって発泡樹脂11aの成形性が良好になる。また、不溶繊維の含有量が3質量%を超えると、図3に示すように、過剰に形成された気泡33が発泡成形体31の厚さ方向に連続するか又は近接して配置されることによって発泡成形体31の強度が著しく低下するが、この含有量を3質量%以下にすることによってそのような問題の発生が抑制される。 By containing 0.3% by mass or more of insoluble fibers in the foamed resin 11a, the mechanical properties of the foamed molded product are improved. Further, if the content of the insoluble fiber exceeds 3% by mass, the moldability of the foamed resin 11a may deteriorate, but by setting this content to 3% by mass or less, the moldability of the foamed resin 11a becomes good. .. Further, when the content of the insoluble fiber exceeds 3% by mass, as shown in FIG. 3, the excessively formed bubbles 33 are arranged continuously or close to each other in the thickness direction of the foamed molded product 31. Although the strength of the foamed molded product 31 is significantly reduced, the occurrence of such a problem is suppressed by reducing the content to 3% by mass or less.

ところで、発泡成形体とソリッド(非発泡)成形体では、不溶繊維やタルクなどのフィラーを含有することによる効果が大きく異なっている。発泡成形体では、不溶繊維の含有量が0.9質量%までは不溶繊維の含有量の増大に伴って機械特性が高くなるが、不溶繊維の含有量をそれ以上増やしても機械特性のさらなる改善は見られず、不溶繊維の含有量が3質量%を超えると機械特性が低下する。一方、ソリッド成形体では、不溶繊維の含有量が0.9質量%では機械特性の大幅な改善がみられず、不溶繊維の含有量が3質量%である場合に、発泡成形体が不溶繊維を3質量%含有する場合と同等の機械特性の改善が見られる。また、不溶繊維の含有量を6〜9質量%にすると、3質量%の場合よりも機械特性がさらに大幅に改善する。このため、ソリッド成形体では、不溶繊維は6〜9質量%添加されるのが通常であり、本実施形態での0.3〜3質量%という不溶繊維の含有量は、ソリッド成形体では通常は採用されない含有量である。また、タルクはソリッド成形体の機械特性を向上させるための代表的なフィラーであるが、発泡成形体にタルクを含有させても機械特性はほとんど改善されない。このため、発泡成形体ではフィラーを添加して機械特性を向上させるという試みがこれまではなされてこなかった。このような状況において、本発明者は不溶繊維の少量添加によって発泡成形体の機械特性が大幅に向上するという効果が奏することを発見したが、このような効果は従来技術からは全く予測できなかった。 By the way, the effect of containing a filler such as insoluble fiber or talc is significantly different between the foamed molded product and the solid (non-foamed) molded product. In the foam molded product, the mechanical properties increase as the content of the insoluble fibers increases up to 0.9% by mass of the insoluble fibers, but even if the content of the insoluble fibers is further increased, the mechanical properties are further increased. No improvement is seen, and when the content of the insoluble fiber exceeds 3% by mass, the mechanical properties deteriorate. On the other hand, in the solid molded product, when the content of the insoluble fiber is 0.9% by mass, the mechanical properties are not significantly improved, and when the content of the insoluble fiber is 3% by mass, the foamed molded product is the insoluble fiber. The same improvement in mechanical properties as in the case of containing 3% by mass is observed. Further, when the content of the insoluble fiber is set to 6 to 9% by mass, the mechanical properties are further significantly improved as compared with the case of 3% by mass. Therefore, in a solid molded product, 6 to 9% by mass of insoluble fiber is usually added, and the content of insoluble fiber of 0.3 to 3% by mass in the present embodiment is usually added in a solid molded product. Is the content not adopted. Further, talc is a typical filler for improving the mechanical properties of a solid molded product, but even if talc is contained in the foam molded product, the mechanical properties are hardly improved. For this reason, no attempt has been made so far to improve the mechanical properties of the foam molded product by adding a filler. In such a situation, the present inventor has found that the addition of a small amount of insoluble fiber has the effect of significantly improving the mechanical properties of the foamed molded product, but such an effect cannot be predicted from the prior art. rice field.

不溶繊維は、そのまま投入してもよいが、取扱いの容易性の観点から不溶繊維を含むマスターバッチの形態にして投入することが好ましい。不溶繊維とは、発泡成形工程において溶融して消失することがない繊維であり、無機繊維であることが好ましく、ガラス繊維又は炭素繊維であることがさらに好ましい。不溶繊維の含有量は、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましい。この場合、発泡成形体の機械特性の向上が著しい。不溶繊維の含有量は、2.5質量%以下が好ましく、2.1質量%以下がさらに好ましい。この場合、発泡樹脂11aの成形性がさらに良好になるからである。不溶繊維の含有量は、具体的には例えば、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The insoluble fiber may be added as it is, but from the viewpoint of ease of handling, it is preferable to add the insoluble fiber in the form of a master batch containing the insoluble fiber. The insoluble fiber is a fiber that does not melt and disappear in the foam molding step, and is preferably an inorganic fiber, more preferably a glass fiber or a carbon fiber. The content of the insoluble fiber is preferably 0.5% by mass or more, more preferably 0.6% by mass or more. In this case, the mechanical properties of the foam molded product are significantly improved. The content of the insoluble fiber is preferably 2.5% by mass or less, more preferably 2.1% by mass or less. In this case, the moldability of the foamed resin 11a is further improved. Specifically, the content of the insoluble fiber is, for example, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2. , 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5 It is 2.6, 2.7, 2.8, 2.9, and 3% by mass, and may be within the range between any two of the numerical values exemplified here.

発泡成形体中での不溶繊維の平均長さは、例えば50〜500μmであり、70〜120μmが好ましく、具体的には例えば、50、70、100、120、150、200、250、300、350、400、450、500μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。発泡成形体中での不溶繊維の平均直径は、例えば1〜30μmであり、具体的には例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。発泡成形体中での不溶繊維の平均アスペクト比は、例えば3〜100であり、5〜25が好ましく、具体的には例えば、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The average length of the insoluble fiber in the foam molded product is, for example, 50 to 500 μm, preferably 70 to 120 μm, and specifically, for example, 50, 70, 100, 120, 150, 200, 250, 300, 350. , 400, 450, 500 μm, and may be within the range between any two of the numerical values exemplified here. The average diameter of the insoluble fiber in the foam molded product is, for example, 1 to 30 μm, and specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... It is 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 μm, and is between any two of the numerical values exemplified here. It may be within the range. The average aspect ratio of the insoluble fiber in the foam molded product is, for example, 3 to 100, preferably 5 to 25, and specifically, for example, 3, 5, 10, 15, 20, 25, 30, 35, 40. , 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, and may be within the range between any two of the numerical values exemplified here.

発泡成形体中での不溶繊維の平均長さ、平均直径、及び平均アスペクト比は、発泡成形体の断面において、(発泡成形体の厚さ)×(発泡成形体の厚さの2倍)で構成される画像を切り出し、その画像内で視認できる長さ30〜1000μmである繊維を全てピックアップし、各繊維について長さ、直径、及びアスペクト比(長さ/直径)を測定して、測定値を算出平均することによって算出することができる。 The average length, average diameter, and average aspect ratio of the insoluble fiber in the foamed molded body are (thickness of the foamed molded body) × (twice the thickness of the foamed molded body) in the cross section of the foamed molded body. The constituent image is cut out, all the fibers having a length of 30 to 1000 μm that can be visually recognized in the image are picked up, and the length, diameter, and aspect ratio (length / diameter) of each fiber are measured, and the measured value is measured. Can be calculated by averaging.

ペレットの状態での不溶繊維の平均長さは、例えば1〜10mmであり、2〜5mmが好ましく、具体的には例えば、1、2、3、4、5、6、7、8、9、10mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ペレットの状態での不溶繊維の平均直径は、発泡成形体中での不溶繊維の平均直径と同様である。ペレットの状態での不溶繊維の平均アスペクト比は、例えば100〜2000であり、具体的には例えば、100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ペレットの状態での不溶繊維の平均長さ、平均直径、及び平均アスペクト比は、ペレットの表面で観察される不溶繊維をランダムに10本抜き出し、各繊維について長さ、直径、及びアスペクト比を測定して、測定値を算出平均することによって算出することができる。 The average length of the insoluble fiber in the pellet state is, for example, 1 to 10 mm, preferably 2 to 5 mm, specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, and so on. It is 10 mm and may be within the range between any two of the numerical values exemplified here. The average diameter of the insoluble fiber in the pellet state is the same as the average diameter of the insoluble fiber in the foam molded product. The average aspect ratio of the insoluble fiber in the pellet state is, for example, 100 to 2000, specifically, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, It is 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, and may be within the range between any two of the numerical values exemplified here. For the average length, average diameter, and average aspect ratio of insoluble fibers in the pellet state, 10 insoluble fibers observed on the surface of the pellet were randomly extracted, and the length, diameter, and aspect ratio of each fiber were measured. Then, it can be calculated by calculating and averaging the measured values.

<インジェクタ16>
シリンダ13aには、シリンダ13a内に発泡剤を注入するためのインジェクタ16が設けられる。インジェクタ16から注入される発泡剤は、物理発泡剤、化学発泡剤、及びその混合物が挙げられるが、物理発泡剤が好ましい。物理発泡剤としては、空気、炭酸ガス、窒素ガス、水等の無機系物理発泡剤、およびブタン、ペンタン、ヘキサン、ジクロロメタン、ジクロロエタン等の有機系物理発泡剤、さらにはそれらの超臨界流体を用いることができる。超臨界流体としては、二酸化炭素、窒素などを用いて作ることが好ましく、窒素であれば臨界温度−149.1℃、臨界圧力3.4MPa以上、二酸化炭素であれば臨界温度31℃、臨界圧力7.4MPa以上とすることにより得られる。化学発泡剤としては、酸(例:クエン酸又はその塩)と塩基(例:重曹)との化学反応により炭酸ガスを発生させるものが挙げられる。化学発泡剤は、インジェクタ16から注入する代わりに、ホッパー12から投入してもよい。
<Injector 16>
The cylinder 13a is provided with an injector 16 for injecting a foaming agent into the cylinder 13a. Examples of the foaming agent injected from the injector 16 include a physical foaming agent, a chemical foaming agent, and a mixture thereof, and a physical foaming agent is preferable. As the physical foaming agent, inorganic physical foaming agents such as air, carbon dioxide, nitrogen gas, and water, organic physical foaming agents such as butane, pentane, hexane, dichloromethane, and dichloroethane, and their supercritical fluids are used. be able to. As the supercritical fluid, it is preferable to use carbon dioxide, nitrogen, etc., for nitrogen, the critical temperature is -149.1 ° C, the critical pressure is 3.4 MPa or more, and for carbon dioxide, the critical temperature is 31 ° C, the critical pressure. It is obtained by setting the pressure to 7.4 MPa or more. Examples of the chemical foaming agent include those that generate carbon dioxide gas by a chemical reaction between an acid (eg, citric acid or a salt thereof) and a base (eg, baking soda). The chemical foaming agent may be injected from the hopper 12 instead of being injected from the injector 16.

<アキュームレータ17、ヘッド18>
原料組成物11と発泡剤が溶融混練されてなる発泡樹脂11aが形成される。発泡樹脂11a中の不溶繊維の含有量は0.3〜3質量%である。発泡樹脂11aは、シリンダ13aの樹脂押出口から押し出され、連結管25を通じてアキュームレータ17内に注入される。アキュームレータ17は、シリンダ17aとその内部で摺動可能なピストン17bを備えており、シリンダ17a内に発泡樹脂11aが貯留可能になっている。そして、シリンダ17a内に発泡樹脂11aが所定量貯留された後にピストン17bを移動させることによって、連結管27を通じて発泡樹脂11aをヘッド18内に設けられたダイスリットから押し出して垂下させて発泡パリソン23を形成する。発泡パリソン23の形状は、特に限定されず、円筒状であってもよく、シート状であってもよい。
<Accumulator 17, head 18>
A foamed resin 11a formed by melt-kneading the raw material composition 11 and the foaming agent is formed. The content of the insoluble fiber in the foamed resin 11a is 0.3 to 3% by mass. The foamed resin 11a is extruded from the resin extrusion port of the cylinder 13a and injected into the accumulator 17 through the connecting pipe 25. The accumulator 17 includes a cylinder 17a and a piston 17b slidable inside the cylinder 17a, and the foamed resin 11a can be stored in the cylinder 17a. Then, by moving the piston 17b after the foamed resin 11a is stored in the cylinder 17a in a predetermined amount, the foamed resin 11a is pushed out from the die slit provided in the head 18 through the connecting pipe 27 and hung down to form the foamed parison 23. To form. The shape of the foamed parison 23 is not particularly limited, and may be cylindrical or sheet-shaped.

<分割金型19>
発泡パリソン23は、一対の分割金型19間に導かれる。分割金型19を用いて発泡パリソン23の成形を行うことによって、発泡成形体が得られる。分割金型19を用いた成形の方法は特に限定されず、型締め後に発泡パリソン23内にエアーを吹き込んで成形を行うブロー成形であってもよく、分割金型19のキャビティの内面からキャビティ内を減圧して発泡パリソン23の成形を行う真空成形であってもよく、その組み合わせであってもよい。発泡成形体の発泡倍率は、例えば1.5〜6倍であり、具体的には例えば、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6倍であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。発泡倍率は、下記数式(1)に基づいて算出することができる。
発泡倍率=(未発泡の原料組成物11の比重)/(発泡成形体の比重)・・・(1)
<Split mold 19>
The foamed parison 23 is guided between a pair of split molds 19. A foamed molded product is obtained by molding the foamed parison 23 using the split mold 19. The molding method using the split mold 19 is not particularly limited, and may be blow molding in which air is blown into the foamed parison 23 after mold clamping to perform molding, from the inner surface of the cavity of the split mold 19 to the inside of the cavity. May be vacuum molding in which the foamed parison 23 is molded by reducing the pressure, or a combination thereof may be used. The foaming ratio of the foam molded product is, for example, 1.5 to 6 times, and specifically, for example, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5. It is 5 or 6 times, and may be within the range between any two of the numerical values exemplified here. The foaming ratio can be calculated based on the following mathematical formula (1).
Foaming ratio = (specific gravity of unexpanded raw material composition 11) / (specific gravity of foamed molded product) ... (1)

発泡成形体の引張弾性率は、例えば250MPa〜800MPaであり、400MPa以上であることが好ましい。発泡成形体に適量の不溶繊維を含有させることによって発泡成形体の引張弾性率を400MPa以上にすることができる。引張弾性率は、具体的には例えば、250、300、350、400、450、500、550、600、650、700、750、800MPaであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The tensile elastic modulus of the foam molded product is, for example, 250 MPa to 800 MPa, preferably 400 MPa or more. By including an appropriate amount of insoluble fiber in the foamed molded product, the tensile elastic modulus of the foamed molded product can be 400 MPa or more. Specifically, the tensile elastic modulus is, for example, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 MPa, and is in the range between any two of the numerical values exemplified here. It may be inside.

図1に示す発泡成形機1を用いて、円筒状の発泡成形体を作製した。押出機13のシリンダ13aの内径は50mmであり、L/D=34であった。原料組成物には、ポリプロピレン系樹脂A(ポレアリス社(Borealis AG)製、商品名「Daploy WB140」)と、ポリプロピレン系樹脂B(日本ポリプロ株式会社製、商品名「ノバテックPP・BC4BSW」)を質量比60:40で混合し、樹脂100質量部に対して、表1に示す種類及び質量部の無機フィラーを添加した。不溶繊維は、樹脂と不溶繊維を含むペレットの状態で添加されているが、表1中の不溶繊維の質量部は、ペレット全体の質量部ではなく、不溶繊維のみの質量部である。発泡パリソン23の温度が190〜200℃になるように各部位の温度制御を行った。スクリューの回転数は、60rmmとし、押出量は、20kg/hrとした。発泡剤は、Nガスを用い、インジェクタ16を介して注入した。Nは、最終的に成形される成形体の発泡倍率が2.8〜3.0になる量注入した。発泡パリソン23は、成形体としての厚さが約2mmになるように形成した。 A cylindrical foam molded product was produced using the foam molding machine 1 shown in FIG. The inner diameter of the cylinder 13a of the extruder 13 was 50 mm, and L / D = 34. The raw material composition contains polypropylene-based resin A (manufactured by Borealis AG, trade name "Daple WB140") and polypropylene-based resin B (manufactured by Japan Polypropylene Corporation, trade name "Novatec PP / BC4BSW") by mass. The mixture was mixed at a ratio of 60:40, and an inorganic filler of the type and parts by mass shown in Table 1 was added to 100 parts by mass of the resin. The insoluble fiber is added in the form of pellets containing the resin and the insoluble fiber, but the mass part of the insoluble fiber in Table 1 is not the mass part of the whole pellet but the mass part of only the insoluble fiber. The temperature of each part was controlled so that the temperature of the foamed parison 23 was 190 to 200 ° C. The rotation speed of the screw was 60 rmm, and the extrusion rate was 20 kg / hr. Blowing agent, using N 2 gas was injected through the injector 16. N 2 was injected in an amount such that the foaming ratio of the finally molded molded product was 2.8 to 3.0. The foamed parison 23 was formed so that the thickness of the molded product was about 2 mm.

以上の条件で形成された発泡パリソン23を分割金型19の間に配置し、型締めの後に発泡パリソン23内にエアーを吹き込むことによってブロー成形を行って厚さが約2mmの発泡成形体を形成し、この発泡成形体について引張試験を行い、以下の基準で評価を行った。引張試験は、JIS K 7113に準拠して行った。引張の試験速度は、50mm/minとし、試験用のダンベル形状は2号形とした。 The foamed parison 23 formed under the above conditions is placed between the split molds 19, and after molding, blow molding is performed by blowing air into the foamed parison 23 to obtain a foamed molded product having a thickness of about 2 mm. After forming, the foam molded product was subjected to a tensile test and evaluated according to the following criteria. The tensile test was performed in accordance with JIS K 7113. The tensile test speed was 50 mm / min, and the dumbbell shape for the test was No. 2.

(成形性)
◎:所望形状の発泡成形体が得られた。
○:所望形状の発泡成形体が得られたが発泡成形体の表面に気泡溜まりが発生した。
×:所望形状の発泡成形体が得られなかった。
(Moldability)
⊚: A foam molded product having a desired shape was obtained.
◯: A foamed molded product having a desired shape was obtained, but air bubbles were accumulated on the surface of the foamed molded product.
X: A foam molded product having a desired shape could not be obtained.

(破断点強度)
◎:7.5MPa以上
○:6.5MPa以上7.5MPa未満
△:5.5MPa以上6.5MPa未満
×:5.5MPa未満
(Breaking point strength)
⊚: 7.5 MPa or more ○: 6.5 MPa or more and less than 7.5 MPa Δ: 5.5 MPa or more and less than 6.5 MPa ×: less than 5.5 MPa

(引張弾性率)
◎:500MPa以上
○:400MPa以上500MPa未満
△:270MPa以上400MPa未満
×:270MPa未満
(Tensile modulus)
⊚: 500 MPa or more ○: 400 MPa or more and less than 500 MPa Δ: 270 MPa or more and less than 400 MPa ×: less than 270 MPa

Figure 0006920604
Figure 0006920604

表1中に無機フィラーとしては、以下のものを用いた。
炭素繊維(短繊維):三菱レーヨン製 PYROFIL PP-C-30A、ペレット状態での長さ3mm、直径6μm
炭素繊維(長繊維):中央化成品製 PPLCF30、ペレット状態での長さ7mm、直径6μm
ガラス繊維:旭ファイバーガラス製社製、GF PP-MG60、ペレット状態での長さ3mm、直径17μm
タルク:白石カルシウム製、 MAT-725TP
The following are used as the inorganic fillers in Table 1.
Carbon fiber (short fiber): Mitsubishi Rayon PYROFIL PP-C-30A, pellet length 3 mm, diameter 6 μm
Carbon fiber (long fiber): PPLCF30 manufactured by Chuo Kasei, length 7 mm in pellet state, diameter 6 μm
Glass fiber: Asahi Fiber Glass Co., Ltd., GF PP-MG60, length 3 mm in pellet state, diameter 17 μm
Talc: Made of Shiraishi Calcium, MAT-725TP

比較例5〜7に示すようにタルクを0.3〜1.5質量%添加しても機械特性(破断点強度・引張弾性率)がほとんど改善されなかった。一方、タルクを3質量%添加すると成形性が著しく悪化した。一方、実施例1〜10に示すように、不溶繊維を0.3〜3質量%添加すると破断点強度が著しく向上した。また、不溶繊維を0.6〜3質量%添加すると破断点強度がさらに向上するとともに引張弾性率も著しく向上した。また、不溶繊維を3質量%添加すると成形性が若干悪くなったが、炭素繊維が短繊維である場合には不溶繊維の添加量が2.1質量%以下の場合は成形性の悪化は見られなかった。炭素繊維が長繊維である場合には短繊維の場合に比べて成形性が悪かった。 As shown in Comparative Examples 5 to 7, even if 0.3 to 1.5% by mass of talc was added, the mechanical properties (breaking point strength / tensile elastic modulus) were hardly improved. On the other hand, when 3% by mass of talc was added, the moldability was significantly deteriorated. On the other hand, as shown in Examples 1 to 10, when 0.3 to 3% by mass of insoluble fiber was added, the breaking point strength was remarkably improved. Further, when 0.6 to 3% by mass of insoluble fiber was added, the breaking point strength was further improved and the tensile elastic modulus was also remarkably improved. Further, when 3% by mass of insoluble fiber was added, the moldability was slightly deteriorated, but when the carbon fiber was a short fiber, the moldability was deteriorated when the addition amount of the insoluble fiber was 2.1% by mass or less. I couldn't. When the carbon fiber was a long fiber, the moldability was worse than that of the short fiber.

実施例3の発泡成形体の断面写真を図4に示す。細長い形状の気泡が形成されていて、不溶繊維が気泡の長手方向に沿って配向されていることが分かる。実施例3の発泡成形体に含まれる炭素繊維(短繊維)の平均長さは100μmであった。実施例7の発泡成形体に含まれる炭素繊維(長繊維)の平均長さは150μmであった。なお、溶融混練等の際に不溶繊維が折れるので、発泡成形体の含まれる不溶繊維の平均長さは、ペレットの状態での不溶繊維の長さよりも短くなっている。 A cross-sectional photograph of the foam molded product of Example 3 is shown in FIG. It can be seen that elongated bubbles are formed and the insoluble fibers are oriented along the longitudinal direction of the bubbles. The average length of the carbon fibers (short fibers) contained in the foam molded product of Example 3 was 100 μm. The average length of the carbon fibers (long fibers) contained in the foam molded product of Example 7 was 150 μm. Since the insoluble fibers are broken during melt kneading or the like, the average length of the insoluble fibers contained in the foamed molded product is shorter than the length of the insoluble fibers in the pellet state.

1 :発泡成形機
2 :樹脂供給装置
11 :原料組成物
11a :発泡樹脂
12 :ホッパー
13 :押出機
13a :シリンダ
16 :インジェクタ
17 :アキュームレータ
17a :シリンダ
17b :ピストン
18 :ヘッド
19 :分割金型
23 :発泡パリソン
25 :連結管
27 :連結管
31 :発泡成形体
32 :樹脂部
33 :気泡
34 :不溶繊維
1: Foam molding machine 2: Resin supply device 11: Raw material composition 11a: Foam resin 12: Hopper 13: Extruder 13a: Cylinder 16: Injector 17: Accumulator 17a: Cylinder 17b: Piston 18: Head 19: Split mold 23 : Foamed parison 25: Connecting pipe 27: Connecting pipe 31: Foamed molded product 32: Resin part 33: Bubbles 34: Insoluble fiber

Claims (6)

不溶繊維を含む、ポリオレフィンの発泡樹脂をブロー成形する工程を備え、
前記発泡樹脂中の前記不溶繊維の含有量は、0.3〜3質量%である、発泡成形体の製造方法。
A step of blow molding a polyolefin foam resin containing insoluble fiber is provided.
A method for producing a foamed molded product, wherein the content of the insoluble fiber in the foamed resin is 0.3 to 3% by mass.
前記不溶繊維の含有量は、0.6〜2.1質量%である、請求項1に記載の方法。 The method according to claim 1, wherein the content of the insoluble fiber is 0.6 to 2.1% by mass. 前記不溶繊維は、ガラス繊維又は炭素繊維である、請求項1又は請求項2に記載の方法。 The method according to claim 1 or 2, wherein the insoluble fiber is glass fiber or carbon fiber. 前記不溶繊維は、前記発泡成形体中での平均長さが50〜500μmである、請求項1〜請求項3の何れか1つに記載の方法。 The method according to any one of claims 1 to 3, wherein the insoluble fiber has an average length of 50 to 500 μm in the foamed molded product. 前記平均長さが70〜120μmである、請求項4に記載の方法。 The method according to claim 4, wherein the average length is 70 to 120 μm. 前記発泡成形体は、引張弾性率が400MPa以上である、請求項1〜請求項5の何れか1つに記載の方法。 The method according to any one of claims 1 to 5, wherein the foamed molded product has a tensile elastic modulus of 400 MPa or more.
JP2016213286A 2016-10-31 2016-10-31 Foam molded product and its manufacturing method Active JP6920604B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016213286A JP6920604B2 (en) 2016-10-31 2016-10-31 Foam molded product and its manufacturing method
PCT/JP2017/038850 WO2018079699A1 (en) 2016-10-31 2017-10-27 Resin for foam molding, foam-molded article, and production method therefor
KR1020197013063A KR102220282B1 (en) 2016-10-31 2017-10-27 Resin for foam molding, foam molded article, and manufacturing method thereof
CN201780066388.7A CN109890885B (en) 2016-10-31 2017-10-27 Resin for foam molding, foam molded body, and method for producing same
US16/345,045 US10988584B2 (en) 2016-10-31 2017-10-27 Resin for foam molding, foam molded article, and method for producing same
EP17864418.3A EP3533823B1 (en) 2016-10-31 2017-10-27 Resin for foam molding, foam-molded article, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213286A JP6920604B2 (en) 2016-10-31 2016-10-31 Foam molded product and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018070795A JP2018070795A (en) 2018-05-10
JP6920604B2 true JP6920604B2 (en) 2021-08-18

Family

ID=62113907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213286A Active JP6920604B2 (en) 2016-10-31 2016-10-31 Foam molded product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6920604B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000773A (en) * 2019-06-21 2021-01-07 株式会社ブリヂストン Reinforced fiber composite resin laminate
JP2021000774A (en) * 2019-06-21 2021-01-07 株式会社ブリヂストン Reinforced fiber composite resin laminate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751250A (en) * 1986-05-14 1988-06-14 Mobay Corporation Process for foaming thermoplastic
DE3815723C1 (en) * 1988-05-07 1989-06-01 Basf Ag, 6700 Ludwigshafen, De
US5696176A (en) * 1995-09-22 1997-12-09 Eastman Chemical Company Foamable polyester compositions having a low level of unreacted branching agent
JP3711183B2 (en) * 1996-03-04 2005-10-26 三井化学株式会社 Expandable olefinic thermoplastic elastomer composition and foamed product thereof
JP2004098613A (en) * 2002-09-12 2004-04-02 Nishikawa Rubber Co Ltd Manufacturing method of foam molded body
JP5025549B2 (en) * 2008-03-31 2012-09-12 キョーラク株式会社 Foam blow molded article and method for producing the same
JP5393356B2 (en) * 2008-11-20 2014-01-22 日本ポリプロ株式会社 Linear polypropylene resin composition, injection-foamed molded article, and method for producing the same
US8227547B2 (en) * 2008-12-15 2012-07-24 Exxonmobil Chemical Patents Inc. Foamable thermoplastic reactor blends and foam article therefrom
JP2013010890A (en) * 2011-06-30 2013-01-17 Japan Polypropylene Corp Polypropylene resin composition and foamed sheet
WO2013031989A1 (en) * 2011-08-31 2013-03-07 住友化学株式会社 Method for producing foam molded article, resin material, foam article, heat-insulating member, and fluid retention member
CN104023940B (en) * 2012-01-26 2016-05-18 京洛株式会社 The manufacture method of expansion-molded article and expansion-molded article
JP6025241B2 (en) * 2012-03-07 2016-11-16 住友化学株式会社 Method for producing foam molded article and resin composition
JP2015218327A (en) * 2014-05-21 2015-12-07 ユニチカ株式会社 Polylactic acid resin composition for injection foam, injection foamed body and manufacturing method of injection foamed body

Also Published As

Publication number Publication date
JP2018070795A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6536280B2 (en) Resin for foam molding, method for producing foam molded article
JP6514576B2 (en) Method for producing surface material coated foamed particle molded body
KR102220282B1 (en) Resin for foam molding, foam molded article, and manufacturing method thereof
JP6920604B2 (en) Foam molded product and its manufacturing method
JP6170765B2 (en) Method for producing polyolefin resin foam molding with skin
WO2019044650A1 (en) Resin for foam molding, foam molded article, and method for producing foam molded article
JP6845426B2 (en) Foam molding resin, foam molding and its manufacturing method
JP2016053139A (en) Polyamide resin composition and foam molded body containing the same
JP7201910B2 (en) Foam blow molding resin, method for manufacturing foam blow molding
CN110461923B (en) Foaming pipeline
JP6770228B2 (en) Manufacturing method of foam molded product
WO2004003065A1 (en) Foamed injection molded item and method of foam injection molding
JP6773967B2 (en) Manufacturing method of foam molded product
JP2019051649A (en) Structure and method of manufacturing the same
JP2004098613A (en) Manufacturing method of foam molded body
JP2024005769A (en) Method for producing foam molded body
JP6593065B2 (en) Method for producing foam molded article
JP2024023621A (en) Polyolefin resin composition, recycled carbon fiber reinforced resin molded article, method for producing recycled carbon fiber reinforced resin pellets, and method for manufacturing recycled carbon fiber reinforced resin molded article
JP2023094897A (en) Manufacturing method of foam molded body
JP2021105115A (en) Foam molded body
JP2000355036A (en) Extrusion molding method for fiber-containing thermoplastic resin, and extrusion molded product
JP2023054621A (en) Resin for foam molding and method for producing the same, as well as method for manufacturing foam molding
JP2001353749A (en) Injection multilayered molded article and method for manufacturing the same
JP2021187039A (en) Method for molding foam resin sheet
JP2022040726A (en) Polyolefin resin composition, carbon fiber-reinforced resin molded body, method for producing carbon fiber-reinforced resin pellet and method for producing carbon fiber-reinforced resin molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210507

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20210507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210518

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6920604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150