JPS5842421B2 - Method and device for detecting surface defects on objects - Google Patents

Method and device for detecting surface defects on objects

Info

Publication number
JPS5842421B2
JPS5842421B2 JP10714877A JP10714877A JPS5842421B2 JP S5842421 B2 JPS5842421 B2 JP S5842421B2 JP 10714877 A JP10714877 A JP 10714877A JP 10714877 A JP10714877 A JP 10714877A JP S5842421 B2 JPS5842421 B2 JP S5842421B2
Authority
JP
Japan
Prior art keywords
light amount
real image
optical system
correcting
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10714877A
Other languages
Japanese (ja)
Other versions
JPS5440689A (en
Inventor
俊彦 大道
仁栄 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP10714877A priority Critical patent/JPS5842421B2/en
Publication of JPS5440689A publication Critical patent/JPS5440689A/en
Publication of JPS5842421B2 publication Critical patent/JPS5842421B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 この発明は、物体の表面欠陥検出方法とその装置、詳し
くは主に金属加工物の表面キズ等の欠陥を光電子増倍管
等の光電変換器を用いて電気信号に変換して検出する方
法およびその装置に関する従来のこの種の検出方法は、
第1図に示す如く、光源1と集光レンズ2とからなる照
明光学系で例えば円筒状の被検物Wの表面を均一に照明
し、ハーフミラ−3、結像レンズ4、集光レンズ7等の
結像光学系をもって被検物Wの表面の実像を光電子増倍
管8等の光電変換手段の前面に結像すべくすると共に、
結像光学系中に配置した固定スリット5、回転スリット
6等からなる走査機構により前記実像を走査してその光
を光電子増倍管8に入射せしめ、電気信号に変換してそ
の信号波形により欠陥の有無を検出している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for detecting surface defects on objects, and more particularly, to converting defects such as surface scratches on metal workpieces into electrical signals using a photoelectric converter such as a photomultiplier tube. Conventional detection methods of this type regarding converting and detecting methods and devices are as follows:
As shown in FIG. 1, an illumination optical system consisting of a light source 1 and a condensing lens 2 uniformly illuminates the surface of, for example, a cylindrical object W to be inspected. A real image of the surface of the object W is formed in front of a photoelectric conversion means such as a photomultiplier tube 8 using an imaging optical system such as
The real image is scanned by a scanning mechanism consisting of a fixed slit 5, a rotating slit 6, etc. arranged in the imaging optical system, and the light is incident on the photomultiplier tube 8, where it is converted into an electrical signal and detected by the signal waveform. The presence or absence of is detected.

すなわち固定スリット5は第2図aの如くその開口を細
線状として、被検物が円筒体のときは細線状スリットを
円筒の軸方向に対し光学的に平行に配置し、回転スリッ
ト6は第2図すの如く放射方向に複数の細い開口を設け
て、前記両スリット5.6を重ね、その開口がクロスす
るように配置して、第2図Cの如く固定スリット5によ
り余分な光が除かれた被検物の実像W′を回転スリット
6の回転により走査し、固定スリット5と回転スリット
6とを通ったスポット状の光を、集光レンズ7を介して
光電子増倍管8に受光させ、光電変換して電気信号を得
るのである。
That is, the fixed slit 5 has a thin line-shaped opening as shown in FIG. As shown in Figure 2, a plurality of narrow openings are provided in the radial direction, and the two slits 5 and 6 are overlapped and arranged so that the openings cross each other, and the fixed slit 5 is used to remove excess light as shown in Figure 2C. The real image W' of the removed object is scanned by the rotation of the rotating slit 6, and the spot-shaped light that has passed through the fixed slit 5 and the rotating slit 6 is sent to the photomultiplier tube 8 via the condensing lens 7. It receives light and performs photoelectric conversion to obtain an electrical signal.

ところが、被検物Wの表面の状態は、例えば被検物が研
摩された円筒物体であると仮定した場合、そのロフト毎
に、或いは砥石のドレス、交換等により、また工作条件
の僅かな変更等にも影響されて第3図a、b、cに示す
如く変化する。
However, assuming that the test object is a polished cylindrical object, the condition of the surface of the test object W changes depending on its loft, or due to dressing or replacement of the grindstone, or even slight changes in the machining conditions. etc., and changes as shown in Figure 3 a, b, and c.

すなわち同図において、Waは両端部が暗く、中央部が
明るい被検物を示し、このときの電気信号波形は、同図
aのWa’の如くなり、wbは前記とは反対に中央部が
暗く両端部が明るい場合で、その電気信号波形は同図す
のWb′、一端部が暗く他端部に行くに従って明るくな
る被検物Wcのときは、同図Cの如き電気信号波形Wc
’が現われる。
That is, in the same figure, Wa indicates a test object that is dark at both ends and bright at the center, and the electrical signal waveform at this time is like Wa' in figure a, and wb, contrary to the above, indicates that the center is bright. When the object to be inspected is dark and both ends are bright, the electric signal waveform is Wb' as shown in the figure. When the object Wc is dark at one end and becomes brighter toward the other end, the electric signal waveform Wc is as shown in C in the figure.
' appears.

このような現象は、前記ロフト間の差、砥石のドレス、
交換、工作条件の僅かな変更等による前記被検物の表面
アラサのバラツキ、すなわち表面状態の変化の他、照明
系、結像光学系の微妙な変化等によっても起るものであ
って、前記信号波形が水平でないからといって、必ずし
もその被検物に表面欠陥があるとは限らず、もし表面欠
陥があるときは、例えば第4図aの信号波形Wa“に示
す如く、波形に突然の乱れが生じ、これが欠陥信号WL
である。
This phenomenon is caused by the difference between the lofts, the dress of the grinding wheel,
In addition to variations in the surface roughness of the object to be inspected due to replacement, slight changes in machining conditions, etc., that is, changes in the surface condition, it also occurs due to subtle changes in the illumination system, imaging optical system, etc. Just because the signal waveform is not horizontal does not necessarily mean that there is a surface defect on the object to be inspected. If there is a surface defect, the waveform may suddenly change, as shown in the signal waveform Wa" in Figure 4a, for example. This causes a disturbance in the defect signal WL.
It is.

しかしこの程度の欠陥信号では、スレッシュホールドレ
ベルを図中のLlに定めると、前記欠陥信号WI、の検
出が不可能であり、前記レベルをL2に定めると同図す
に示す如く、欠陥のない被検物の信号波形Wa’も欠陥
のある信号波形と同様に処理されてしまう不都合が生ず
る。
However, with a defect signal of this level, if the threshold level is set at Ll in the figure, it is impossible to detect the defect signal WI, and if the level is set at L2, as shown in the figure, it is impossible to detect the defect signal WI. A problem arises in that the signal waveform Wa' of the object to be inspected is also processed in the same way as a signal waveform with a defect.

そこで例えば第5図a、b、cに示す如き欠陥のない被
検物の電気信号波形Wa’ 、 Wb’ 、 Wc’が
ほぼ水平な電気信号波形(図示せず)になるように各信
号波形に対応した遮光板S、光量加減フィルタF、或い
は固定スリット5、光量補正フィルタ5F等を用意し、
光学的に前記信号の波形修正を行うことがある。
Therefore, for example, each signal waveform is adjusted so that the electrical signal waveforms Wa', Wb', and Wc' of the defect-free test object as shown in FIGS. 5a, b, and c become approximately horizontal electrical signal waveforms (not shown). Prepare a light shielding plate S, a light amount adjustment filter F, a fixed slit 5, a light amount correction filter 5F, etc. corresponding to the
The waveform of the signal may be optically modified.

すなわち遮光板Sを用いる場合、第1図におい 1−1 て、 + (但しfは集光レンズ2の焦点距bf 離、旦は増倍率)を満足する位置Aの近傍に、該A位置
より光軸方向に少しずらせて各信号波形を補正するのに
適した遮光パターンSa、Sb。
That is, when using the light shielding plate S, in the vicinity of the position A that satisfies 1-1 + (where f is the focal length bf of the condensing lens 2, and d is the multiplication factor), Light-shielding patterns Sa and Sb suitable for correcting each signal waveform by slightly shifting in the optical axis direction.

Scを有する遮光板Sを選択的に挿入し、そのボケ像を
被検物表面に形成させ、光量加減フィルタFは、同様な
補正機能をもつパターンFa、Fb。
A light shielding plate S having Sc is selectively inserted to form a blurred image on the surface of the object to be inspected, and a light amount adjusting filter F has patterns Fa and Fb having a similar correction function.

Fcを形成しておき、前記遮光板Sの代りに前記A位置
に選択的に挿入することにより、照明光学系の照度分布
を、被検物が円筒体のときはその軸方向に変化させて、
前記電気信号波形を非水平とする要素を補正し、欠陥の
ない被検物の固定スリットを通過した実像の光量を、該
スリットの長さ方向に均一ならしめ、前記信号波形を水
平に波形修正する。
By forming Fc and selectively inserting it in the A position instead of the light shielding plate S, the illuminance distribution of the illumination optical system can be changed in the axial direction when the object to be inspected is a cylinder. ,
Correcting the elements that make the electrical signal waveform non-horizontal, making the amount of light of the real image that has passed through the fixed slit of the defect-free object uniform in the length direction of the slit, and correcting the signal waveform to be horizontal. do.

一方、遮光板、光量加減フィルタを照明光学系中に介在
させる代りに、固定スリット5の開口巾をその長さ方向
に対して変化させ、5a、5b。
On the other hand, instead of interposing a light shielding plate and a light amount adjustment filter in the illumination optical system, the opening width of the fixed slit 5 is changed in the length direction, and 5a and 5b are provided.

5cに示す如く信号波形Wa’ 、 Wb’ 、 Wc
’に対応させるとか、固定スリット5自体に、或いはそ
れに重ねて、5Fa 、5Fb 、5Fcに示す如くス
リットの長さ方向において光の透過率が連続的または段
階的に変化する光量補正フィルタ5Fをもって、欠陥の
ない被検物Wの光電子増倍管8の前面に結像する実像W
の長さ方向の明るさを均一に補正し、前記信号波形が水
平になるよう波形修正する。
As shown in 5c, the signal waveforms Wa', Wb', Wc
', or by providing a light amount correction filter 5F on the fixed slit 5 itself or superimposed on it, whose light transmittance changes continuously or stepwise in the length direction of the slit, as shown in 5Fa, 5Fb, and 5Fc. Real image W formed on the front surface of the photomultiplier tube 8 of the test object W without defects
The brightness in the length direction is uniformly corrected, and the waveform is corrected so that the signal waveform becomes horizontal.

このような波形修正法は、極く小さな欠陥信号、すなわ
ち被検物表面の極く小さなキズ等の欠陥を極めて精度よ
く検出することができ、その誤作動を確実に防止するこ
とが可能となるが、波形修正をさらに正しく行うには、
被検物の表面状態の各ロット間の差、砥石のドレス、交
換、その他の各種条件に対応して、前記遮光板等の補正
手段の補正特性を変更する、すなわち取換えを行う必要
があり、さらには、同一ロットにおいても、例えば最初
に研削された被検物と、それからN個目の被検物では、
砥石の表面状態の変化によって表面状態に差異を生じ、
前記補正手段の補正特注を変更しなければならないよう
な事態が生ずることがある。
This type of waveform correction method can detect extremely small defect signals, such as extremely small scratches on the surface of the test object, with extremely high accuracy, making it possible to reliably prevent such malfunctions. However, to correct the waveform more correctly,
It is necessary to change the correction characteristics of the correction means such as the light shielding plate, that is, to replace it, in response to differences in the surface condition of the test object between lots, dressing of the grindstone, replacement, and other various conditions. ,Furthermore, even in the same lot, for example, for the first,nth specimen to be ground and then the Nth specimen,
Differences occur in the surface condition due to changes in the surface condition of the grinding wheel,
A situation may arise in which the custom correction of the correction means must be changed.

このような表面状態の変化の仕方は、砥石のドレス、交
流等の後は不連続的に変化し、同一ロット内における研
削個数による変化は連続的である。
The manner in which the surface condition changes is discontinuous after dressing the grindstone, alternating current, etc., and changes continuously depending on the number of grinding pieces in the same lot.

従って、例えば第5図のような信号波形もWa’からW
b′に段階的に変わるとか、W a ’の信号波形が研
削個数の増加により徐々に変化してW c’に近づいて
行くなど連続的な変化となる。
Therefore, for example, the signal waveform shown in FIG. 5 also changes from Wa' to W.
There is a continuous change, such as a stepwise change to W a ', or a gradual change in the signal waveform of W a ' as the number of pieces to be ground increases, approaching W c'.

これに対応するには、作業者が前記信号波形の変化を観
測しながら、適当な時期に前記補正手段を交換する必要
があるが、この交換をタイミングよく行うには、前記波
形観測をひんばんに、或いは常時行う必要があり、波形
修正を効果的に行うためには、経験によるところが大き
く、作業者の熟練を必要とする等、実質的には人員削減
の効果が少なく、生産ラインに設置するにはなお多くの
問題的を残している。
In order to cope with this, it is necessary for the operator to replace the correction means at an appropriate time while observing changes in the signal waveform, but in order to perform this replacement in a timely manner, it is necessary to observe the waveform frequently. In order to effectively correct the waveform, it is highly dependent on experience and requires the skill of the operator, so it has little effect on reducing the number of personnel, and it is not necessary to install it on the production line. There are still many problems left.

この発明は、以上のような物体の表面欠陥の検出に当り
、被検部の表面状況の変化等に起因して電気信号波形が
変化するのに対応し、その波形の補正を自動的に行い得
るようにし、かつこの種の装置を生産ラインに設置する
に当って生ずる既述の如き問題点を解決することを目的
とする。
In detecting surface defects of an object as described above, the present invention automatically corrects the waveform in response to changes in the electrical signal waveform due to changes in the surface condition of the inspected part. The object of the present invention is to solve the above-mentioned problems that occur when installing this type of device on a production line.

以下、第5図a、b、cに示す光量補正フィルタ5Fを
使用する場合の実施例について説明する。
Hereinafter, an embodiment in which the light amount correction filter 5F shown in FIGS. 5a, b, and c is used will be described.

第6図aは、第5図において説明した光量補正フィルタ
5Fの各パターンを1枚の円板5d上に配置し、該円板
5dをパルスモータ9により駆動するようにした1つの
例を示す図であって、該円板5dは、固定スリット5上
に重ね、そのパターンを選択的に固定スリット5の開口
位置に合致させるとか、或いは該円板5d自体の前記各
パターンを固定スリット5に代えて使用するものであり
、6は固定スリット5を通った実像を走査する回転スリ
ットである。
FIG. 6a shows an example in which each pattern of the light amount correction filter 5F explained in FIG. 5 is arranged on one disc 5d, and the disc 5d is driven by a pulse motor 9. In the figure, the disc 5d is superimposed on the fixed slit 5 and its pattern is selectively matched to the opening position of the fixed slit 5, or each pattern of the disc 5d itself is overlapped with the fixed slit 5. 6 is a rotating slit that scans the real image passing through the fixed slit 5.

円板5dに形成する多数の光量補正フィルタ5FP・・
・>5Fq・・・・・〉5FRは、第6図す。
A large number of light amount correction filters 5FP formed on the disk 5d...
・>5Fq...>5FR is shown in Figure 6.

Cに示す如く2種類の系列でほぼ連続的にその補正特性
を変化する如く円板5d上に配置1ルである3第6図す
、cにおいて、各パターン5FP・・・・・・5FQ・
・・・・・5FR・・・・・・、或いは5FPl・・・
・・・5FQ′・・・・・・5FR,′は、それぞれ図
中Y矢符方向に透過率が大きくなる構成であって、各フ
ィルタにおいて5FP、5FR,および5FP′、5F
R,′の透過率の変化が最大で、その中間に至るに従っ
て1つの光量補正フィルタでの透過率の変化が小さくな
るように配置1ルである。
In Figures 6 and 6c, each pattern 5FP...5FQ.
...5FR... or 5FPl...
...5FQ'...5FR,' have a configuration in which the transmittance increases in the direction of the Y arrow in the figure, and in each filter, 5FP, 5FR, and 5FP', 5F
The arrangement is such that the change in transmittance of R,' is maximum, and the change in transmittance of one light amount correction filter becomes smaller toward the middle.

またX方向は固定スリットの長さに対応し、この場合の
各パターンの長さは固定スリット等寸である。
Further, the X direction corresponds to the length of the fixed slit, and in this case, the length of each pattern is equal to the fixed slit.

第T図aは同様な光量補正フィルタ5 F’を示すもの
で、この場合は同図すに示す如く、1枚のフィルタの透
過率分布を連続的に変化させ、同図Cに補正特性を示す
如く、フィルタ5F’の上端部pと下端部rとにおいて
固定スリットに対応する透過率の変化が最大で、中心部
q位置で最小となる。
Figure T a shows a similar light intensity correction filter 5 F'; in this case, the transmittance distribution of one filter is continuously changed as shown in Figure C, and the correction characteristics are shown in Figure T. As shown, the change in transmittance corresponding to the fixed slit is maximum at the upper end p and lower end r of the filter 5F', and is minimum at the center q position.

また固定スリット5に対しては図中の長さlが対応する
Further, the length l in the figure corresponds to the fixed slit 5.

すなわちlがフィルタの固定スリットに対する有効長さ
であり、該フィルタ5F’をX方向に移動させることに
より、第6図における2種類の系列の透過率分布が1枚
のフィルタ5F’により得られる。
That is, l is the effective length of the filter with respect to the fixed slit, and by moving the filter 5F' in the X direction, two series of transmittance distributions in FIG. 6 can be obtained by one filter 5F'.

フィルタ5F’はXY方向に移動可能なプレート10上
に設けて図示しない固定スリットに重ね、2個のパルス
モータ9 X t 9 Yにヨリ所定の透過率の変化が
得られる位置に駆動する。
The filter 5F' is provided on a plate 10 movable in the XY directions, overlapped with a fixed slit (not shown), and driven by two pulse motors 9Xt9Y to a position where a predetermined change in transmittance can be obtained.

また該フィルタ5F’の透過率を段階的に変化させても
よい。
Further, the transmittance of the filter 5F' may be changed stepwise.

第8図は以上のパルスモータ9,9X、9Yを駆動して
所要の光量補正フィルタを固定スリット位置にセットす
るためのブロック結線図である。
FIG. 8 is a block wiring diagram for driving the above-mentioned pulse motors 9, 9X, and 9Y to set a required light amount correction filter at a fixed slit position.

光電子増倍管8により光電変換された電気信号を、増巾
器11より増巾し、その出力信号の一方を欠陥検出回路
12に送る。
The electric signal photoelectrically converted by the photomultiplier tube 8 is amplified by the amplifier 11, and one of the output signals is sent to the defect detection circuit 12.

出力信号のもう一方は、ローパスフィルタ13を経てA
D変換器14に導かれる。
The other output signal is passed through the low-pass filter 13 to A
The signal is guided to a D converter 14.

AD変換器14は、マイクロプロセッサ15の指示信号
によりAD変換を行い、その信号をマイクロプロセッサ
−15に入力する。
The AD converter 14 performs AD conversion based on an instruction signal from the microprocessor 15, and inputs the signal to the microprocessor-15.

マイクロプロセッサ−15では、回転スリット6の同期
信号R8と呼応して、第9図に示す如きローパスフィル
タ13の出力をn分割し、各々の値を記憶するが、これ
は1つの被検物について数十個所以上測定し、最終的に
はそれらの平均値を記憶する。
In response to the synchronization signal R8 of the rotating slit 6, the microprocessor 15 divides the output of the low-pass filter 13 as shown in FIG. 9 into n parts and stores each value. Measurements are taken at dozens of locations, and the average value is finally stored.

またこの操作は、被検物の同期信号Wsに呼応して数個
以上の被検物について行い、これらすべての平均化を行
う。
Further, this operation is performed for several or more test objects in response to the test object synchronization signal Ws, and all of these are averaged.

そしてその結果の平坦度(波形のゆがみや傾き)を調べ
、それが一定範囲に入っておれば、固定スリット(およ
び光量補正フィルタ)を通った被検物笑像の明るさの補
正を行う必要がないと判断して、マイクロプロセッサ−
15からパルスモータ駆動回路16には伺も指示しない
The resulting flatness (distortion and slope of the waveform) is then checked, and if it is within a certain range, it is necessary to correct the brightness of the object image that has passed through the fixed slit (and light intensity correction filter). It is determined that there is no microprocessor.
15 to the pulse motor drive circuit 16.

もし前記の平均化の結果の平坦度が一定の範囲を越えて
いるときは、パルスモータ駆動回路16に信号を送り、
その越えた量に見合った光量補正フィルタに切り換える
(第6図の場合)か、光量補正フィルタの適正な位置を
選択する。
If the flatness of the average result exceeds a certain range, a signal is sent to the pulse motor drive circuit 16,
Either switch to a light amount correction filter suitable for the exceeded amount (in the case of FIG. 6), or select an appropriate position of the light amount correction filter.

(第8図の場合)その結果波形は一定の範囲に治まるこ
とになる。
(In the case of FIG. 8) As a result, the waveform will be within a certain range.

以上の説明から判るように、第8図の破線で示すパルス
モータ駆動回路16′は、第7図の如く光量補正フィル
タをX、Y方向に移動させるときに、一方のパルスモー
タを駆動するために使用される。
As can be seen from the above explanation, the pulse motor drive circuit 16' shown by the broken line in FIG. 8 is for driving one of the pulse motors when moving the light amount correction filter in the X and Y directions as shown in FIG. used for.

マイクロプロセッサ−15のデータ処理の方法は、第1
0図に模型的に示すように、平均化すべき被検物の個数
分だけのデータが常に記憶されており、新しいデータを
測定する毎にその時点の最も古いデータをキャンセルす
る。
The data processing method of the microprocessor-15 is as follows:
As schematically shown in Figure 0, data equal to the number of objects to be averaged are always stored, and each time new data is measured, the oldest data at that time is canceled.

すなわちN個の被検物のデータを記憶している現在の状
況で、新しい被検物N+1番目のデータを測定すると、
最初の1番目のデータをキャンセルし、2番目からN+
1番目までのN個のデータを次の状況として記憶するこ
とになる。
In other words, in the current situation where data of N test objects are stored, when data of a new test object N+1 is measured,
Cancel the first 1st data and N+ from the 2nd
The first N pieces of data are stored as the next situation.

そしてその時点のN個のデータによりパルスモータ9を
駆動するか否かの判定を行っている。
Then, it is determined whether or not to drive the pulse motor 9 based on the N pieces of data at that time.

検出信号波形の変化が連続的(主として同一ロット内に
おける連続的変化)であるときは前記の処理を行うこと
で目的を達成するが、既述の如きロット間の差、砥石の
ドレス、交換、工作条件の変更、光源の取換え等に起因
して信号波形の変化が不連続的である場合は処理できな
いことがある。
When the change in the detection signal waveform is continuous (mainly continuous change within the same lot), the purpose is achieved by performing the above processing, but the above-mentioned differences between lots, dressing of the grindstone, replacement, etc. Processing may not be possible if the signal waveform changes discontinuously due to changes in working conditions, replacement of light sources, etc.

このような場合には、研削機等の工作機械から、砥石の
ドレス指示信号、砥石交換信号Gs 、および工作個数
信号Nsをマイクロプロセッサ−15が受けてその指示
により別の仕事に入る。
In such a case, the microprocessor 15 receives a grindstone dressing instruction signal, a grindstone exchange signal Gs, and a workpiece number signal Ns from a machine tool such as a grinder, and starts another job according to the instructions.

砥石交換やドレス後の最初の被検物が所定の位置に入っ
てくると、それ以前のデータのすべてがキャンセルされ
、最初の被検物の信号波形を修正するに適した光量補正
フィルタの選択が行われる。
When the first object to be inspected enters the predetermined position after replacing the grinding wheel or dressing, all previous data is canceled, and a light intensity correction filter suitable for correcting the signal waveform of the first object to be inspected must be selected. will be held.

そしてそれ以降は前記の方法と同様の処理を行うことに
なるが、データがN個に達しない間は、2゜3・・・・
・・N−1個の平均でその判定が行われる。
After that, the same processing as the above method will be performed, but until the number of data reaches N, 2゜3...
...The determination is made based on the average of N-1 items.

そしてN個に達することで前記と全く同一の処理が行わ
れる。
When the number reaches N, the same process as above is performed.

なおパルスモータに駆動信号を送り、光量補正フィルタ
の補正特注を変更したときも、前記の信号波形が不連続
的に変化したときと同じく、それ以前のデータはすべて
キャンセルされ、新しいデータがN個に達するまで、前
記不連続的変化の場合と同様に作動する。
Note that when a drive signal is sent to the pulse motor and the custom correction of the light intensity correction filter is changed, all previous data is canceled and N new data are added, just as when the signal waveform changes discontinuously. It operates in the same way as in the discontinuous change case until .

以上に述べた方法は、N個のデータについて平均化し、
意志決定を行う方法について述べたが、N個のデータに
ついて重みづけをして平均化する場合もある。
The method described above averages N data,
Although the method for making decisions has been described, N pieces of data may be weighted and averaged.

またマイクロプロセッサ−に記憶された情報とある一定
値以上異なる信号波形をもつ被検物については不良品と
して判定し排除してデータに加えない場合もある。
Further, a test object having a signal waveform that differs by more than a certain value from the information stored in the microprocessor may be judged as a defective product, excluded, and not added to the data.

以上は、第5図における光量補正フィルタ5Fを用いた
場合について説明したが、これは同じく結像光学系に挿
入される固定スリット5の開口を変化させて光量補正を
行う場合、或いは固定スリット5は細線状の一定の開口
が与えられており、照明光学系に、パターンの連続的或
いは殆んど連続的と見做し得る程度に変化する遮光板S
、光量加減フィルタF等の光量補正手段を用いる場合に
も同様に実施し得ることはいうまでもない。
The above description has been made regarding the case where the light amount correction filter 5F in FIG. is provided with a constant thin line aperture, and the illumination optical system includes a light shielding plate S whose pattern changes to the extent that it can be regarded as continuous or almost continuous.
It goes without saying that the same method can be implemented when using a light amount correction means such as a light amount adjusting filter F or the like.

この発明は以上のように、連続的、または殆んど連続的
に変化すると見做し得る光量補正手段を、被検物の照明
或いは結像光学系に挿入しておいて、被検物から得られ
た情報の平均化を行い、その指令によって光量補正特性
を波形修正に最も適した特性に設定することができ、そ
の作動をパルスモータ、或いはサーボモータ等の駆動手
段により適確に行わせ得るものであって、前記物体の生
産ライン中に設置してその表面キズ等の欠陥を全く自動
的に検出することができ、しかもその検出精度を高めて
生産の合理化、人員削減等を達成することができるもの
である。
As described above, the present invention includes a light amount correction means that can be considered to change continuously or almost continuously, and which is inserted into the illumination or imaging optical system of the object to be examined. The obtained information is averaged, and the light intensity correction characteristic can be set to the most suitable characteristic for waveform correction based on the command, and the operation can be performed accurately by a driving means such as a pulse motor or servo motor. It can be installed in the production line of the object to completely automatically detect defects such as surface scratches on the object, and also improves the detection accuracy to achieve rationalization of production, reduction of personnel, etc. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は物体の表面欠陥検出装置の構成を示す図、第2
図a、b、cは固定スリット、および回転スリットと、
それによる走査機構を示す図、第3図a、b、cはそれ
ぞれ被検物の表面状態とその検出電気信号の波形特注と
を例示する図、第4図a、bは前記波形による欠陥信号
とスレッシュホールドレベルとの関係を示す図、第5図
atbtCは前記信号波形とその波形修正に適した光量
補正手段を示す図、第6図a、b、cは光量補正手段と
その補正特性を示す図、第7図a、b、cは他の光量補
正手段とその補正特注を示す図、第8図はこの発明に係
る電気回路のブロック結線図、第9図はローパスフィル
タの出力信号を示す図、第10図はこの発明のデータ処
理方法を示す図である。 1・・・・・・光源、2・・・・・・集光レンズ、3・
・・・・・ハーフミラ−14・・・・・・結像レンズ、
5・・・・・・固定スリット、6・・・・・・回転スリ
ット、7・・・・・・集光レンズ、8・・・・・・光電
子増倍管、9 t 9x t 9y・・・・・ツ匂しス
モーク、10・・・・・・可動プレート、W・・・・・
・被検物、W′・・・・・・実像、W a’ 、 Wb
’ 、 Wc’・・・・・・電気信号波形、S・・・・
・・遮光板、F・・・・・・光量加減フィルタ、5F・
・・・・・光量補正フィルタ。
Figure 1 is a diagram showing the configuration of an object surface defect detection device, Figure 2
Figures a, b, and c show a fixed slit and a rotating slit,
Figures 3a, b and c are diagrams illustrating the surface condition of the object to be inspected and custom-made waveforms of the detected electrical signals, respectively. Figures 4a and b are defect signals based on the waveforms. FIG. 5 atbtC is a diagram showing the signal waveform and a light amount correction means suitable for modifying the waveform. FIGS. 6 a, b, and c show the light amount correction means and its correction characteristics. Figures 7a, b, and c are diagrams showing other light amount correction means and their custom-made corrections, Figure 8 is a block diagram of the electric circuit according to the present invention, and Figure 9 shows the output signal of the low-pass filter. The figure shown in FIG. 10 is a diagram showing the data processing method of the present invention. 1...Light source, 2...Condensing lens, 3.
... Half mirror 14 ... Imaging lens,
5... Fixed slit, 6... Rotating slit, 7... Condensing lens, 8... Photomultiplier tube, 9 t 9x t 9y... ...Tsu smell smoke, 10...Movable plate, W...
・Test object, W'...Real image, W a', Wb
', Wc'... Electric signal waveform, S...
・・Light shielding plate, F・・・・Light intensity adjustment filter, 5F・
...Light level correction filter.

Claims (1)

【特許請求の範囲】 1 集光レンズを介して被検物を照明し、固定スリット
とそれに交叉する回転スリットとで被検物の実像を走査
し、光電変換手段で電気信号に変換して、その信号波形
により表面欠陥を検出する方法において、欠陥のない被
検物の前記電気信号波形をほぼ水平ならしめる如く前記
実像の光量をその長さ方向に亘って均一に補正するため
の光量補正手段に連続的またはほぼ連続的と見做し得る
補正特注の変化を付与し、各被検物の電気信号波形を平
均化して次の被検物の状況に適する如く光量補正手段を
駆動して所定位置に設定し、前記電気信号の波形修正を
行うことを特徴とする物体の表面欠陥検出方法。 2 前記光量補正手段を、被検物の照明光学系の所定位
置に配置することを特徴とする特許請求の範囲1記載の
検出方法。 3 前記光量補正手段を、被検物の結像光学系の所定位
置に配置することを特徴とする特許請求の範囲1記載の
検出方法。 4 被検物の表面を均一に照明する照明光学系と、その
実像を光電変換手段の前面に結像するための結像光学系
と、前記実像を走査する機構と、走査された実像を光電
変換して電気信号とする手段を備えた物体の表面欠陥検
出装置において、前記実像の光量をその長さ方向に均一
ならしめるために設けられて、連続的にまたはほぼ連続
的と見做し得る如く変化した補正特注を有する光量補正
手段と、該補正手段を介して波形修正された電気信号波
形を記憶し、平均化して前記光量補正手段の補正特注が
次の被検物の状況に最も適するように光量補正手段を設
定する信号を与える制御回路と、該回路の指令信号で光
量補正手段を駆動する駆動手段とを有する物体の表面欠
陥検出装置。 5 前記光量補正手段は、その補正特性がほぼ連続的に
変化する多数のパターンを備え、前記駆動手段により所
要のパターンを所定位置に駆動して設定されることを特
徴とする特許請求の範囲4記載の検出装置。 6 前記光量補正手段は、その補正特注を連続的に変化
して一方向または二方向に移動可能に構成され、被検物
の実像をその全長に亘ってほぼ均一な明るさに補正する
に適した補正特性を有する部分を所定の位置に前記駆動
手段で駆動されて設定されることを特徴とする特許請求
の範囲4記載の検出装置。 7 前記光量補正手段が、前記被検物の照明光学系中の
所定位置に配置されている特許請求の範囲4ないし6の
いずれかに記載の検出装置。 8 前記光量補正手段が、前記被検物の結像光学系中の
所定位置に配置されている特許請求の範囲4ないし6の
いずれかに記載の検出装置。
[Claims] 1. Illuminating the object to be inspected through a condensing lens, scanning a real image of the object with a fixed slit and a rotating slit that intersects with the fixed slit, and converting it into an electrical signal by a photoelectric conversion means, In the method of detecting a surface defect based on the signal waveform, a light amount correction means for uniformly correcting the light amount of the real image over its length direction so as to make the electric signal waveform of the defect-free test object substantially horizontal. A custom-made correction change that can be considered to be continuous or almost continuous is applied to the signal, the electric signal waveform of each object is averaged, and the light amount correction means is driven to suit the situation of the next object. 1. A method for detecting surface defects on an object, the method comprising: setting the electric signal at a certain position, and correcting the waveform of the electric signal. 2. The detection method according to claim 1, wherein the light amount correction means is arranged at a predetermined position of an illumination optical system of the object. 3. The detection method according to claim 1, wherein the light amount correction means is arranged at a predetermined position of an imaging optical system of the object. 4 An illumination optical system that uniformly illuminates the surface of the object to be inspected, an imaging optical system that forms the real image on the front surface of the photoelectric conversion means, a mechanism that scans the real image, and a mechanism that converts the scanned real image into photoelectric converters. In a surface defect detection device for an object, which is equipped with a means for converting into an electric signal, the real image is provided to make the light amount of the real image uniform in its length direction, and can be regarded as continuous or almost continuous. A light amount correcting means having a custom-made correction that has changed as shown in FIG. A surface defect detection device for an object, comprising: a control circuit that provides a signal for setting a light amount correcting means; and a driving means that drives the light amount correcting means using a command signal from the circuit. 5. Claim 4, wherein the light amount correction means is provided with a large number of patterns whose correction characteristics change almost continuously, and is set by driving a desired pattern to a predetermined position by the driving means. The detection device described. 6. The light amount correction means is configured to be movable in one direction or two directions by continuously changing the custom-made correction, and is suitable for correcting the real image of the object to be almost uniform in brightness over its entire length. 5. The detection device according to claim 4, wherein the portion having the correcting characteristic is set at a predetermined position by being driven by the driving means. 7. The detection device according to any one of claims 4 to 6, wherein the light amount correction means is arranged at a predetermined position in an illumination optical system of the object. 8. The detection device according to any one of claims 4 to 6, wherein the light amount correction means is arranged at a predetermined position in an imaging optical system of the object.
JP10714877A 1977-09-05 1977-09-05 Method and device for detecting surface defects on objects Expired JPS5842421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10714877A JPS5842421B2 (en) 1977-09-05 1977-09-05 Method and device for detecting surface defects on objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10714877A JPS5842421B2 (en) 1977-09-05 1977-09-05 Method and device for detecting surface defects on objects

Publications (2)

Publication Number Publication Date
JPS5440689A JPS5440689A (en) 1979-03-30
JPS5842421B2 true JPS5842421B2 (en) 1983-09-20

Family

ID=14451719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10714877A Expired JPS5842421B2 (en) 1977-09-05 1977-09-05 Method and device for detecting surface defects on objects

Country Status (1)

Country Link
JP (1) JPS5842421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432496Y2 (en) * 1984-12-27 1992-08-05

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280402A (en) * 1991-03-07 1992-10-06 Sony Tektronix Corp Tool for adjustment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432496Y2 (en) * 1984-12-27 1992-08-05

Also Published As

Publication number Publication date
JPS5440689A (en) 1979-03-30

Similar Documents

Publication Publication Date Title
US4999510A (en) Apparatus for detecting foreign particles on a surface of a reticle or pellicle
EP1070243B1 (en) Method for the automatic inspection of optically transmissive planar objects
US8111905B2 (en) Autofocus video tool and method for precise dimensional inspection
US7016525B2 (en) Systems and methods for continuously varying wavelength illumination
JPWO2007074770A1 (en) Defect inspection equipment that performs defect inspection by image analysis
JPH09178663A (en) Method and device for detecting unevenness of reflecting surface
JP4235284B2 (en) Pattern inspection apparatus and method
US6696679B1 (en) Method for focusing of disk-shaped objects with patterned surfaces during imaging
EP0731350A1 (en) Apparatus for the optical detection of surface defects, particularly in rolled strips
JP5320936B2 (en) Inspection condition setting method and inspection apparatus in periodic pattern unevenness inspection apparatus
JPS5842421B2 (en) Method and device for detecting surface defects on objects
JP2006242759A (en) Method for inspecting unevenness in periodic pattern
JPH07270327A (en) Pattern defect inspector
JPH11166901A (en) Inspecting device and method
JPH07229845A (en) Dust particle inspection system
JP2647051B2 (en) Appearance inspection device
JP2012194022A (en) Unevenness inspection device, unevenness inspection method and unevenness determination method
JP2000292133A (en) Pattern-projecting device
JP4162319B2 (en) Defect inspection equipment
JPH10206337A (en) Automatic visual inspection device for semiconductor wafer
JP5531405B2 (en) Periodic pattern unevenness inspection method and inspection apparatus
JPH0735703A (en) Image processing method
JP2701537B2 (en) Surface defect inspection equipment
JP2757890B2 (en) Light intensity adjustment device in optical inspection
JP2911619B2 (en) Surface defect inspection method and apparatus for periodic pattern