JPS5842411A - Stabilizing treatment method for size of woody material - Google Patents

Stabilizing treatment method for size of woody material

Info

Publication number
JPS5842411A
JPS5842411A JP14151681A JP14151681A JPS5842411A JP S5842411 A JPS5842411 A JP S5842411A JP 14151681 A JP14151681 A JP 14151681A JP 14151681 A JP14151681 A JP 14151681A JP S5842411 A JPS5842411 A JP S5842411A
Authority
JP
Japan
Prior art keywords
wood
weight
temperature
paulownia
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14151681A
Other languages
Japanese (ja)
Other versions
JPS6260241B2 (en
Inventor
浜村 久満
功 藤原
啓史 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTSUKA KAGU KOGYO KK
OTSUKA KAGU KOGYO KK
Original Assignee
OOTSUKA KAGU KOGYO KK
OTSUKA KAGU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTSUKA KAGU KOGYO KK, OTSUKA KAGU KOGYO KK filed Critical OOTSUKA KAGU KOGYO KK
Priority to JP14151681A priority Critical patent/JPS5842411A/en
Publication of JPS5842411A publication Critical patent/JPS5842411A/en
Publication of JPS6260241B2 publication Critical patent/JPS6260241B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は木質材料の寸法安定化に関する。[Detailed description of the invention] The present invention relates to dimensional stabilization of wood-based materials.

木質材料は周知の如く相当大きな伸縮性を示す材料でそ
の伸縮性は、これら材料の本来の構造組織とその含有水
分に由来する。例えば木材組織中に含まれる水分の内細
胞内腔および細胞間隙に含まれて存在する水を自由水あ
るいは遊離水、細胞膜に吸着されて存在する水を結合水
あるいは吸着水と称する。伐採直後の木材、すなわち生
材は結合水および自由水を保有している。その含水率は
樹種、産地等の条件によシ可成シ相違があシ約30%以
上多いものは150%以上にも達するものがある。生材
を天然に放置して天然乾燥するか又は人工的に同様の状
態に乾燥すると気乾状態まで含水率は低下する。木材が
乾燥される過程では先ず自由水が放出され次いで吸着水
の一部が放出された状態に相当する。そしてこれが樹種
、放置乾燥される場所の温度と湿度によって決まる。平
衡含水率等により多少の差けあるが、#1ぼ一定であっ
て標準的に12〜15%である。また気乾状態に至る前
の細胞膜が結合水で飽和され自由水を含まない状態を繊
維飽和点と呼び含水率も一般にほぼ一定で28%前後で
ある。木材の含水率と伸縮性との関係は次の如くである
。すなわち木材は繊維飽和点具−Fの含水率においては
、その増減にかかわらず伸縮は起きないが繊維飽和点以
下においては含水率の増減に比例して伸縮を生ずる。
As is well known, wood materials exhibit considerable elasticity, and this elasticity is derived from the original structural organization of these materials and their moisture content. For example, water contained in the inner cell lumen and intercellular spaces of wood tissue is called free water or free water, and water adsorbed to cell membranes is called bound water or adsorbed water. Wood immediately after being felled, ie, green wood, contains bound water and free water. The moisture content varies depending on conditions such as the tree species and place of production, but in some cases it can reach 30% or more and in some cases it can reach 150% or more. When raw materials are left to dry naturally or are artificially dried to a similar state, the moisture content decreases to an air-dried state. In the process of drying wood, first free water is released and then some of the adsorbed water is released. This is determined by the tree species and the temperature and humidity of the area where it is left to dry. Although there are some differences depending on the equilibrium moisture content, etc., #1 is almost constant and is typically 12 to 15%. Furthermore, the state where the cell membrane is saturated with bound water and does not contain free water before reaching the air-dry state is called the fiber saturation point, and the water content is generally approximately constant at around 28%. The relationship between moisture content and elasticity of wood is as follows. That is, at the moisture content of the fiber saturation point -F, wood does not expand or contract regardless of its increase or decrease, but below the fiber saturation point it expands or contracts in proportion to the increase or decrease in the moisture content.

木質材料は食器棚、タンス、鏡台等の家具類及び建築物
等に構成材料として広範に利用されている材料である。
Wood materials are widely used as constituent materials for furniture such as cupboards, chests of drawers, dressing tables, and buildings.

しかし乍らその主な欠点の一つは伸縮性が可成り大きい
こと、すなわち寸法安定性が欠けていることである。従
って通常の使用状態において最も伸縮の少ない状態、す
なわち気乾状態まで乾燥された状態で構成材料用として
供される。しかしながら使用場所の平衡含水率の変化に
応じ含水率の変動を招き、従ってなお相当の伸縮をし、
変型、狂い、割れなどを発生することは、木材加工の分
野においては重要な課題であり、しかも木質材料固有の
性質の故に解決困難な課題でもある。
However, one of its main drawbacks is its considerable stretchability, ie its lack of dimensional stability. Therefore, it is used as a constituent material in a state where it has the least expansion and contraction under normal usage conditions, that is, in a state where it has been dried to an air-dry state. However, the moisture content fluctuates in response to changes in the equilibrium moisture content at the location of use, and therefore still expands and contracts considerably.
The occurrence of deformation, warping, cracking, etc. is an important issue in the field of wood processing, and is also a difficult issue to solve due to the inherent properties of wood materials.

このために寸法安定化の方法が種々考えられて来た。即
ち高温加熱処理による方法、合成樹脂の注入による方法
、ホルムアルデヒドによるホルマール化処理方法、アセ
チル基によるアセチル化処理方法、ポリエーテル類注入
処理方法等が知られているが性能においても経済性にお
いても満足できる結果が得られていない。これらの処理
方法の中で現在利用し得る方法として最も注目されてい
るのがポリエーテル類注入処理方法であるが、この方法
に於いてはポリエーテル類はそれ自身大きな親水性を有
しているため吸湿性も大きく、また木材の寸法安定化に
使用し得る低分子量のものけ液体又は半固体のものでそ
のために処理木質材料の表面にぬれの感触を与え汚染を
ひきおこしやすく又通常使用される状態において経日的
に浸出する。更に水と接角虫させた場合、容易に溶出し
て寸法安定化の効果を減少させる欠点を有していた。
For this reason, various methods of dimensional stabilization have been considered. Namely, methods using high temperature heat treatment, methods using synthetic resin injection, formalization treatment using formaldehyde, acetylation treatment using acetyl groups, polyether injection treatment, etc. are known, but none of them are satisfactory in terms of performance and economy. I'm not getting the results I want. Among these treatment methods, the one that is currently attracting the most attention is the polyether injection treatment method, but in this method, the polyethers themselves have large hydrophilic properties. Therefore, it has a high hygroscopicity and is a liquid or semi-solid of low molecular weight that can be used for dimensional stabilization of wood.Therefore, it gives a wet feel to the surface of treated wood materials and is easy to cause contamination and is usually used. exudate over time in the condition. Furthermore, when it comes into contact with water, it easily dissolves out, reducing its dimensional stabilizing effect.

本発明者はこれ等の欠点を除くために従来から鋭意研究
を続けて来た結果、ポリエーテル類と特定の物質とを併
用するときには、所期の目的が達成されることを見出し
鼓に本発明を完成するに至った。即ち本発明はポリエー
テル類と常温で固体の物質との混合物を加熱して液状化
し、これを木質材料に含浸せしめることを特徴とする木
質材料の寸法安定化方法に係るものである。
As a result of continuing intensive research to eliminate these drawbacks, the inventor of the present invention discovered that when polyethers and specific substances are used together, the desired purpose can be achieved. The invention was completed. That is, the present invention relates to a method for dimensional stabilizing wood materials, which comprises heating a mixture of polyethers and a substance that is solid at room temperature to liquefy it, and impregnating the wood material with the mixture.

本発明に於ては常温で固体の物質とポリエーテル類との
混合物を通常40〜180℃程度で加熱して液状化せし
め、これを木質材料に含浸せしめた後冷却固化させるこ
とによシネ質材料中で固定化し、ポリエーテル類の浸出
、溶出及び吸湿を抑制し、寸法安定化を賦与しうるもの
である。
In the present invention, a mixture of a substance that is solid at room temperature and a polyether is liquefied by heating at a temperature of usually about 40 to 180°C, and the mixture is impregnated into a wood material and then cooled and solidified. It can be immobilized in materials, suppress leaching, elution, and moisture absorption of polyethers, and provide dimensional stability.

本発明に於て使用されるポリエーテル類としてはポリエ
チレンクリコール、ポリエチレンクリコール等を例示出
来、又これ等を混合使用することもできる。
Examples of polyethers used in the present invention include polyethylene glycol and polyethylene glycol, and these can also be used in combination.

本発明に於て使用される常温で固体の物質としては40
〜180℃程度では液状であるがこれを常温とすれば結
晶化、固化等により固体になる物質が使用される。好ま
しい具体例として固型パラフィシ、植物0つ、動物0つ
、石油0つ、マイクロ・クリスタリシ・ワックス、ステ
アリン酸、アセトアニリド、尿素、ジメチル尿素、エチ
レシ尿素、イソフタル酸ジメチル、テレフタル酸ジメチ
ル、ラウリン酸、アジヒシ酸、スルファミシ酸りアニ、
;シ、ステアリン酸亜鉛、安息香酸、トリメチ〇−ルプ
ロバシ、エステルガム、無水マレイル酸、オレイシ酸亜
鉛、り0トシ酸、セバシン酸、ミリスチシ酸、バルミチ
シア三ド、■チレシピスステアロアマイド、メチ0−シ
ステア0アマイド、オレイシ酸アマイド、ステアリン酸
アマイド、メチレシピスステア0アマイド、マ0..’
酸% カルナバワックス、アシスラニル酸、α−ナフチ
ルアミシ、α−ナフトール、今一を−づチルカテコール
、アセト酢酸−o−り0ルアニライド、P−アニシジン
、酢酸マクネシウム、無水フタル酸、酢酸ナトリウム、
分子量約500〜5000のポリエチレン、分子量約2
00〜5000のポリづ0ピレシ、分子量約600〜3
000の石油樹脂、分子量約300〜5000のポリエ
チレン、ナフタリシ、P−ジクロルベシセン等を例示す
ることが出来、これ等は単独で又は2種以上併用して使
用される。
The substance that is solid at room temperature used in the present invention is 40
A substance is used that is liquid at about 180° C. but becomes solid by crystallization, solidification, etc. when brought to room temperature. Preferred specific examples include solid paraphytes, 0 plants, 0 animals, 0 petroleum, microcrystalline wax, stearic acid, acetanilide, urea, dimethylurea, ethylene urea, dimethyl isophthalate, dimethyl terephthalate, lauric acid, Adhihisic acid, sulfamic acid acid,
; Zinc stearate, benzoic acid, trimethylic acid, ester gum, maleic anhydride, zinc oleic acid, lithic acid, sebacic acid, myristic acid, valmitic acid, chirecipis stearamide, methic acid 0-cystea amide, oleic acid amide, stearic acid amide, methyrecipitate stear amide, ma 0. .. '
Acid % carnauba wax, acysulanilic acid, α-naphthylaminic acid, α-naphthol, butylcatechol, acetoacetic acid-olyanilide, P-anisidine, magnesium acetate, phthalic anhydride, sodium acetate,
Polyethylene with a molecular weight of approximately 500 to 5000, molecular weight approximately 2
00 to 5000 polyester, molecular weight approximately 600 to 3
000 petroleum resin, polyethylene having a molecular weight of approximately 300 to 5000, naphthalic acid, P-dichlorobethicene, etc., which may be used alone or in combination of two or more.

本発明に於て常温で固体の物質とポリエーテル類との混
合物を液状化するに際しては上記固体物質とポリエーテ
ル類との混合物を該固体物質の融点以上通常40〜18
0℃程度に加熱して熱融解すれば良い。本発明に於て液
状化したものを木質材料に含浸せしめるに際しては含浸
方法としては特に制限はなく常圧、減圧、加圧、減圧−
加圧などの各種の手段が有効に適用され、たとえば常温
で固体の物質とポリエーテル類の混合溶融物に木質材料
を浸漬し通常加圧50Kg/cr4以下の圧力で含浸せ
しめる方法を例示出来る。ポリエーテル類と固体との割
合はポリエーテルが2〜50重量%好ましくは5〜20
重量%程度である。
In the present invention, when liquefying a mixture of a substance that is solid at room temperature and polyethers, the mixture of the above-mentioned solid substance and polyethers is heated at a temperature higher than the melting point of the solid substance, usually 40 to 18
It may be thermally melted by heating to about 0°C. In the present invention, when impregnating wood materials with the liquefied material, there are no particular restrictions on the impregnation method; normal pressure, reduced pressure, pressurization, reduced pressure.
Various means such as pressurization can be effectively applied, such as a method in which a wood material is immersed in a melted mixture of a substance that is solid at room temperature and a polyether, and impregnated at a pressure of usually 50 kg/cr4 or less. The ratio of polyethers to solids is 2 to 50% by weight of polyether, preferably 5 to 20% by weight.
It is about % by weight.

本発明に於て使用される木質材料としてはたとえば木材
、繊維板、パーティクルボード、合板等を例示出来る。
Examples of wood materials used in the present invention include wood, fiberboard, particle board, and plywood.

木材としてはモミ、しノ士、スf1カラマツ、トウヒ、
マツ、トガサクラ、ツガ、]つPマ士、アガチス、カエ
デ、ハシノ士、カバ、づす、トネリコ、ユリノ+、七り
レシ、ハ]セナ甲、ニし、ケヤ+、セシ、り℃、クス、
シナノ士、ラワシ、士り、シオジ、ジョシコシ、ゼルト
ン、プライ、ネムノ士、ゴムノ士、ペシシルシター、カ
ロフイラム、タウシ、カリシ、プピシカー等が例示出来
る。
Wood is fir, shinoshi, f1 larch, spruce,
pine, togasakura, hemlock,]tsuP mashi, agathis, maple, hasinoshi, hippo, zusu, ash, yurino +, seven reshi, ha] sena ko, nishi, keya +, seshi, ri ℃, cus ,
Examples include Shinanoshi, Rawashi, Shiri, Shioji, Joshikoshi, Zeruton, Prai, Nemunoshi, Gomunoshi, Pescicilciter, Calophyllum, Taushi, Karishi, Pupishika.

本発明の寸法安定化方法で処理された木質材料は、その
表面にぬれの感触を与えず吸湿性が改善されるばかりで
なくポリエーテル類の溶出及び浸出も大巾に改善され、
その結果として表面汚染もなくなり、該木質材料で構築
された家具及び建築物等の寸法安定化がはかれるもので
ある。
Wood materials treated with the dimensional stabilization method of the present invention not only have improved hygroscopicity without giving the surface a wet feel, but also greatly improve the elution and leaching of polyethers,
As a result, surface contamination is eliminated, and the dimensions of furniture, buildings, etc. constructed using the wood material can be stabilized.

以下に実施例及び比較例を挙げて本発明を具体的に説明
する。
The present invention will be specifically explained below by giving Examples and Comparative Examples.

実施例 1 加圧容器中で95℃に加熱溶融したステアリン酸50重
量%、バラフィシ(融点70℃)40重量%及びポリエ
チレンクリコール(平均分子量200)10重量%の混
合溶融物中に繊維方向う鰭、半径方向30113+、接
線方向30iu+に切断した桐を浸漬した後、9 ”f
 / cniで3時間加圧含浸させた後、常圧となし含
浸材をとシ出し冷却し混合溶融物を桐材中に固定化させ
た(混合溶融物の含浸量は、桐の体積に対し0.64t
/ctlであった)。
Example 1 In a mixed melt of 50% by weight of stearic acid, 40% by weight of rosefish (melting point 70°C) and 10% by weight of polyethylene glycol (average molecular weight 200) heated and melted at 95°C in a pressurized container, fiber direction fibers were added. After soaking the paulownia cut in the fin, radial direction 30113+, tangential direction 30iu+, 9”f
/ cni for 3 hours, the impregnation material was drained out and cooled to fix the mixed melt in the paulownia wood (the impregnated amount of the mixed melt is based on the volume of paulownia wood). 0.64t
/ctl).

この様にして得られた木質材料の寸法安定化の程度を確
認するために収縮率、抗収縮率を以下の計算式にもとす
いて算出、又従来ポリエーテル類注入処理による欠点で
ある溶出性、吸湿性、ぬれの感触がどの程度改善された
か確認するためにそれぞれ溶出量、吸湿量、ぬれの感触
を以下の計算式及び方法にもとすいて算出した。試験結
果は第1表に示すとおシ良好な結果を得た。
In order to confirm the degree of dimensional stabilization of the wood material obtained in this way, the shrinkage rate and anti-shrinkage rate were calculated using the following formula. In order to confirm the extent to which the moisture absorption, hygroscopicity, and wet feel were improved, the amount of elution, moisture absorption, and wet feel were calculated using the following formulas and methods. The test results are shown in Table 1. Good results were obtained.

〈収縮率並びに抗収縮率〉 試験片を温度25℃、関係湿度85%に調整されたデシ
ケータ−中に30日間放置した後の寸法を測定し、次に
温度25℃、関係湿度30%に調整されたデシケータ−
中に30日間放置した後の寸法を測定し、下記式により
計算した。
<Shrinkage rate and anti-shrinkage rate> Dimensions were measured after the test piece was left in a desiccator adjusted to a temperature of 25°C and relative humidity of 85% for 30 days, and then adjusted to a temperature of 25°C and relative humidity of 30%. desiccator
The dimensions after being left in the container for 30 days were measured and calculated using the following formula.

L工:温度25℃、関係湿度85チ時 (平衡含水率18%)の寸法 L2:温度25℃、関係湿度30チ時 (平衡含水率6%)の寸法 Do:無処理材の収縮率(%) D :処理材の収縮率(優) 〈溶出性〉 試験片を温度25℃、関係湿度50チ(平衡含水率9%
)に調整されたデシケータ−中にIO日間放置し重量を
測定し、次に温度25℃の水中に8時間浸漬した後再び
温度25℃、関係湿度5゜チに調整されたデシケータ−
中に10日間放置し重量を測定し下記式により計算した
L work: Dimension L2 at temperature 25°C and relative humidity 85°C (equilibrium moisture content 18%): Dimension Do at temperature 25°C and relative humidity 30°C (equilibrium moisture content 6%): Shrinkage rate of untreated material ( %) D: Shrinkage rate of treated material (excellent) <Dissolution> The test piece was placed at a temperature of 25℃ and a relative humidity of 50℃ (equilibrium water content 9%).
) and then left in a desiccator adjusted to 10 days and weighed, then immersed in water at a temperature of 25°C for 8 hours, and then placed in a desiccator adjusted to a temperature of 25°C and relative humidity of 5°C.
The weight was measured after being left in the container for 10 days, and the weight was calculated using the following formula.

溶出量−W□−’2 (mg) W□:浸漬前の温度25℃、関係湿度 50%時の重量(mq) W2:浸漬後の温度25℃、関係湿度 50%時の重量(η) 〈吸湿性〉 試験片を温度25℃、関係湿度30チ(平衡含水率6q
6)に調整されたデシケータ−中に10日間放置した後
の重量を測定し、次に温度25℃、関係湿度85%(平
衡含水率18チ)に調整されたデシケータ−中に24時
間放置した後の重量を測定し、下記式により計算し六〇 吸湿量−F3− F4(η) W3:温度25℃、関係湿度85% 時の重量(■) Wl、:温度25℃、関係湿度30% 時の重量(■) 〈ぬれの感触〉 試験片を温度25℃、関係湿度30チ(平衡含水率6%
)に調整されたデシケータ−中に10日間放容重た後の
ぬれの感触の程度を官能検査により評価し、次に温度2
5℃、関係湿度85チ(平衡含水率18%)に調整され
たデシケータ−中にlO日間放置した後のぬれの感触の
程度を同様に官能検査により評価した。
Elution amount -W□-'2 (mg) W□: Weight before immersion at a temperature of 25°C and relative humidity of 50% (mq) W2: Weight after immersion at a temperature of 25°C and relative humidity of 50% (η) <Hygroscopicity> The test piece was placed at a temperature of 25℃ and a relative humidity of 30℃ (equilibrium moisture content 6q).
6) After being left for 10 days in a desiccator adjusted to 60 Moisture absorption amount - F3 - F4 (η) W3: Weight at temperature 25℃, relative humidity 85% (■) Wl: Temperature 25℃, relative humidity 30% Weight (■) <Feel of wetness> The test piece was placed at a temperature of 25℃ and relative humidity of 30℃ (equilibrium moisture content of 6%).
) The degree of wetness after being left in a desiccator for 10 days was evaluated by a sensory test.
After being left in a desiccator adjusted to 5° C. and a relative humidity of 85° (equilibrium moisture content 18%) for 10 days, the degree of wet feeling was similarly evaluated by a sensory test.

○印 ぬれの感触認められず △印 ぬれの感触弱し ×印 ぬれの感触強し 尚、以下の実施例、比較例に於ても本計算式及び方法に
もとすいて算出した。
◯ mark: Wetting sensation not observed △ mark: Wetting sensation is weak × mark: Wetting sensation is strong The following examples and comparative examples were also calculated based on this calculation formula and method.

比較例 l 加圧容器中で95℃に加熱溶融したポリエチレ、、/タ
リコール(平均分子量200)10重量%、水90重量
%の混合溶融物中に繊維方向う關、半径方向30u1接
線方向30tmxに切断した桐を浸漬した後9 K9 
/ c!lで3時間加圧含浸させた後常圧となし含浸材
をとり出し冷却し温度25℃、関係湿度50チ(平衡含
水率9%)の室内に放置し乾燥し、ポリエチレ、7クリ
コールを桐材中に含浸せしめた(混合溶融物の含浸量は
桐の体積に対し0−639/cr!であった)。
Comparative Example l In a mixed melt of 10% by weight of polyethylene/thalicol (average molecular weight 200) and 90% by weight of water heated and melted at 95°C in a pressurized container, the fiber direction was 30ul, the radial direction was 30u1, and the tangential direction was 30tmx. After soaking the cut paulownia 9 K9
/c! After impregnation under pressure for 3 hours at normal pressure, the impregnated material was taken out, cooled, and left in a room at a temperature of 25°C and relative humidity of 50 cm (equilibrium moisture content: 9%) to dry. (The amount of impregnation of the mixed melt was 0-639/cr! based on the volume of paulownia wood).

試験結果は第1表に示すとおりである。The test results are shown in Table 1.

実施例 2 加熱容器中で110℃に加熱溶融したポリづ0ヒレシク
リ]−ル(平均分子量400)15重量%、マイク0タ
リスタリシワックス+0重i%、イソフタル酸ジメチル
40重量%及びテレフタル酸ジメチル35重量%の混合
溶融物中に繊維方向5UI%半径方向30藺、接線方向
30mに切断した桐を浸漬した後、5 Ky / a/
lで2時間加圧含浸させた後、常圧となし含浸材をとり
出し冷却し混合溶融物を桐材中に固定化させた(混合溶
融物の含浸量は桐の体積に対し0.6Of/−であった
)。
Example 2 15% by weight of polysilyl (average molecular weight 400), 40% by weight of dimethyl isophthalate, and 35% by weight of dimethyl isophthalate (average molecular weight 400) heated and melted at 110°C in a heating container. After immersing paulownia cut in the fiber direction 5UI% radial direction 30m and tangential direction 30m into the mixed melt of 5Ky/a/
After pressure impregnation for 2 hours at normal pressure, the impregnated material was taken out and cooled to fix the mixed melt in the paulownia wood (the impregnated amount of the mixed melt was 0.6Of per the volume of paulownia). /-).

試験結果は第1表に示すとおシ良好な結果を得た。The test results are shown in Table 1. Good results were obtained.

比較例 2 加圧容器中で110℃に加熱溶融したポリづロヒレシク
リコール(平均分子量400)15重量%及び水85重
量%の混合溶融物中に繊維方向511半径方向30wm
、接線方向30mに切断した桐を浸漬した後5〜/ml
で2時間加圧含浸させた後常圧となし含浸材をとり出し
冷却し温度25℃、関係湿度50%(平衡含水率9チ)
の室内に放置し、乾燥しポリづ0ヒレシクリコールを桐
材中に含浸せしめた(混合溶融物の含浸量は桐の体積に
対し0−60f/caでアッタ)。
Comparative Example 2 In a mixed melt of 15% by weight polydurohireclicol (average molecular weight 400) and 85% by weight water heated and melted at 110°C in a pressurized container, 511 mm in the fiber direction and 30 wm in the radial direction were mixed.
, 5~/ml after soaking paulownia cut in a tangential direction of 30 m
After being impregnated under pressure for 2 hours at normal pressure, the impregnated material was taken out and cooled at a temperature of 25°C and relative humidity of 50% (equilibrium moisture content of 9 cm).
The paulownia wood was left to stand in a room for drying, and the paulownia wood was impregnated with polysiloxane (the impregnated amount of the mixed melt was 0 to 60 f/ca relative to the volume of paulownia wood).

試験結果は第1表に示すとおりである。The test results are shown in Table 1.

実施例 3 加圧容器中で100℃に加熱溶融したオレイシ酸アマイ
ドlO重量%、ステアリシ酸アマイド60重量%及びポ
リエチレ、、/クリコール(平均分子景600)30重
量%の混合溶融物中に、繊維方向5闘、半径方向30m
、接線方向30yに切断した桐を浸漬した後7 Kg/
 crAで4時間加圧含浸させた後常圧となし含浸材を
とり出し冷却し混合溶融物を桐材中に固定化させた(混
合溶融物の含浸量は桐の体積に対し0.61r/cJで
あった)。
Example 3 Fibers were added to a mixed melt of 10% by weight of oleic acid amide, 60% by weight of stearic acid amide, and 30% by weight of polyethylene, . 5 directions, 30m in radial direction
, after soaking paulownia cut in the tangential direction 30y 7 Kg/
After pressure impregnation with crA for 4 hours, the pressure was reduced to normal pressure, the impregnated material was taken out and cooled, and the mixed melt was fixed in the paulownia wood (the impregnated amount of the mixed melt was 0.61 r/w with respect to the volume of paulownia). cJ).

試験結果は第1表に示すとおシ良好な結果を得た。The test results are shown in Table 1. Good results were obtained.

比較例 3 加圧容器中で100℃に加熱溶融したポリエチレンクリ
コール(平均分子量600)30重量%及び水70重量
−の混合溶融物中に、繊維方向511J11半径方向3
0藺、接線方向30mに切断した桐を浸漬した後、7K
g/cdで4時間加圧含浸させた後、常圧となし含浸材
をとり出し冷却し温度25℃、関係湿度50%(平衡含
水率9チ)の室内に放置し、乾燥しポリエチレンクリコ
ールを桐材中に含浸せしめた(混合溶融物の含浸量は桐
の体積に対し0.629/CJであった)。
Comparative Example 3 In a mixed melt of 30% by weight of polyethylene glycol (average molecular weight 600) and 70% by weight of water heated and melted at 100°C in a pressurized container, fiber direction 511J11 radial direction 3
After soaking paulownia cut in 30m in tangential direction, 7K
After pressure impregnation for 4 hours at normal pressure, the impregnated material was taken out, cooled, and left in a room at a temperature of 25°C and a relative humidity of 50% (equilibrium moisture content of 9g), dried, and made into polyethylene glycol. was impregnated into paulownia wood (the amount of impregnation of the mixed melt was 0.629/CJ based on the volume of paulownia wood).

試験結果は第1表に示すとおりである。The test results are shown in Table 1.

比較例 4 木質材料として使用した無処理桐の試験結果は第1表に
示すとおりである。
Comparative Example 4 The test results of untreated paulownia used as a wood material are shown in Table 1.

第  1  表 (以 上) 65Table 1 (that's all) 65

Claims (1)

【特許請求の範囲】[Claims] ■ ポリエーテル類と常温で固体の物質とを木質材料に
含浸せしめることを特徴とする木質材料の寸法安定化方
法。
■ A method for dimensional stabilizing wood materials, which is characterized by impregnating wood materials with polyethers and substances that are solid at room temperature.
JP14151681A 1981-09-07 1981-09-07 Stabilizing treatment method for size of woody material Granted JPS5842411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14151681A JPS5842411A (en) 1981-09-07 1981-09-07 Stabilizing treatment method for size of woody material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14151681A JPS5842411A (en) 1981-09-07 1981-09-07 Stabilizing treatment method for size of woody material

Publications (2)

Publication Number Publication Date
JPS5842411A true JPS5842411A (en) 1983-03-11
JPS6260241B2 JPS6260241B2 (en) 1987-12-15

Family

ID=15293779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14151681A Granted JPS5842411A (en) 1981-09-07 1981-09-07 Stabilizing treatment method for size of woody material

Country Status (1)

Country Link
JP (1) JPS5842411A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135910A (en) * 1982-02-09 1983-08-12 Toshiba Corp Automatic range controller
JPS629906A (en) * 1985-07-08 1987-01-17 永大産業株式会社 Manufacture of reinforced veneer
US4909624A (en) * 1988-02-08 1990-03-20 Nikon Corporation Active distance measuring apparatus
JPH02199900A (en) * 1989-01-27 1990-08-08 Fuji Mach Mfg Co Ltd Device for mounting of electronic component
WO2005007369A1 (en) * 2003-07-14 2005-01-27 FRÖHNER, Jürgen Method for introducing wax in thermal wood
FR2922139A1 (en) * 2007-10-12 2009-04-17 Arc Nucleart Groupement D Inte Substrate i.e. wood substrate, chemical stabilizing method for e.g. kitchen furniture, of building, involves drying substrate to eliminate water presented inside wood, and contacting substrate with solution containing carboxylic monoacids
US8091952B2 (en) 2007-09-19 2012-01-10 Prolam, Societe En Commandite Hardwood truck flooring with wood preservatives
US9682493B2 (en) 2008-05-09 2017-06-20 Prolam, Societe En Commandite Method for impregnation of wood component with solid paraffin wax, apparatus therefor and wood component so impregnated
JP6478179B1 (en) * 2018-07-30 2019-03-06 パナソニックIpマネジメント株式会社 Manufacturing method of wooden building materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762565B2 (en) * 2017-10-18 2020-09-30 株式会社ウエキ産業 Processing disk material and manufacturing method of processing disk material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135910A (en) * 1982-02-09 1983-08-12 Toshiba Corp Automatic range controller
JPS6316686B2 (en) * 1982-02-09 1988-04-11 Tokyo Shibaura Electric Co
JPS629906A (en) * 1985-07-08 1987-01-17 永大産業株式会社 Manufacture of reinforced veneer
US4909624A (en) * 1988-02-08 1990-03-20 Nikon Corporation Active distance measuring apparatus
JPH02199900A (en) * 1989-01-27 1990-08-08 Fuji Mach Mfg Co Ltd Device for mounting of electronic component
WO2005007369A1 (en) * 2003-07-14 2005-01-27 FRÖHNER, Jürgen Method for introducing wax in thermal wood
US8091952B2 (en) 2007-09-19 2012-01-10 Prolam, Societe En Commandite Hardwood truck flooring with wood preservatives
FR2922139A1 (en) * 2007-10-12 2009-04-17 Arc Nucleart Groupement D Inte Substrate i.e. wood substrate, chemical stabilizing method for e.g. kitchen furniture, of building, involves drying substrate to eliminate water presented inside wood, and contacting substrate with solution containing carboxylic monoacids
US9682493B2 (en) 2008-05-09 2017-06-20 Prolam, Societe En Commandite Method for impregnation of wood component with solid paraffin wax, apparatus therefor and wood component so impregnated
US10926285B2 (en) 2008-05-09 2021-02-23 Prolam, Société En Commandite Method for impregnation of wood component with solid paraffin wax, apparatus therefor and wood component so impregnated
JP6478179B1 (en) * 2018-07-30 2019-03-06 パナソニックIpマネジメント株式会社 Manufacturing method of wooden building materials
JP2020019148A (en) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 Producing method of woody building material

Also Published As

Publication number Publication date
JPS6260241B2 (en) 1987-12-15

Similar Documents

Publication Publication Date Title
Stamm et al. Dimensional stabilization of wood.
JPS5842411A (en) Stabilizing treatment method for size of woody material
USRE24011E (en) Product thereof
Esteves et al. Improvement of termite resistance, dimensional stability and mechanical properties of pine wood by paraffin impregnation
JPS6141481B2 (en)
CA1103476A (en) Preservation of douglas fir needles
Obataya et al. Influence of moisture content on the vibrational properties of hematoxylin-impregnated wood
US2692183A (en) Method for treating cellulose and product thereof
EP1597039B1 (en) Process for upgrading wood parts
CA1159643A (en) Stabilization method
US2606843A (en) Animal tissues
US2629648A (en) Impregnated fibrous wallboard and method of making
JPS5839404A (en) Method of stabilizing size of woody material
Kininmonth Effect of timber drying temperature on subsequent moisture and dimensional changes
USRE24003E (en) Impregnated fibrous board and method
JPH0145402B2 (en)
JPS58181604A (en) Method of improving woody material
JP3112314B2 (en) Chemicals for flame retardant wood, flame retardant wood and method of processing flame retardant wood
JPS5859801A (en) Crack arrester for wood
JPS63162601A (en) Water holding agent for cut flower
JPS6176313A (en) Method of treating woody material
Tan et al. Morphological behavior of densified low-density plantation wood species: A preliminary study
JPH0236904A (en) Prevention of peeling and dimensional stabilization method for bark
JPS62128704A (en) Preparation of particle board
JPH0435903A (en) Manufacture of acylated woody material