JPS6260241B2 - - Google Patents
Info
- Publication number
- JPS6260241B2 JPS6260241B2 JP14151681A JP14151681A JPS6260241B2 JP S6260241 B2 JPS6260241 B2 JP S6260241B2 JP 14151681 A JP14151681 A JP 14151681A JP 14151681 A JP14151681 A JP 14151681A JP S6260241 B2 JPS6260241 B2 JP S6260241B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- paulownia
- wood
- impregnated
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002023 wood Substances 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 20
- 239000002202 Polyethylene glycol Substances 0.000 claims description 15
- 229920001223 polyethylene glycol Polymers 0.000 claims description 15
- 229920001451 polypropylene glycol Polymers 0.000 claims description 13
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 claims description 12
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- FZERHIULMFGESH-UHFFFAOYSA-N N-phenylacetamide Chemical compound CC(=O)NC1=CC=CC=C1 FZERHIULMFGESH-UHFFFAOYSA-N 0.000 claims description 8
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 8
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 claims description 8
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 claims description 7
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 claims description 4
- 239000005711 Benzoic acid Substances 0.000 claims description 4
- 229960001413 acetanilide Drugs 0.000 claims description 4
- 235000010233 benzoic acid Nutrition 0.000 claims description 4
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 claims description 4
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 claims description 4
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 claims description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 4
- BHAAPTBBJKJZER-UHFFFAOYSA-N p-anisidine Chemical compound COC1=CC=C(N)C=C1 BHAAPTBBJKJZER-UHFFFAOYSA-N 0.000 claims description 4
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 claims description 3
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 claims description 3
- 244000055346 Paulownia Species 0.000 description 49
- 239000000835 fiber Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 229920000570 polyether Polymers 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 238000005470 impregnation Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000012768 molten material Substances 0.000 description 5
- 239000004200 microcrystalline wax Substances 0.000 description 4
- 235000019808 microcrystalline wax Nutrition 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229940037312 stearamide Drugs 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 241001106462 Ulmus Species 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- BJEMXPVDXFSROA-UHFFFAOYSA-N 3-butylbenzene-1,2-diol Chemical compound CCCCC1=CC=CC(O)=C1O BJEMXPVDXFSROA-UHFFFAOYSA-N 0.000 description 1
- 244000283070 Abies balsamea Species 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- 241001337993 Agathis <wasp> Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 235000017788 Cydonia oblonga Nutrition 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 241000549546 Fraxinus spaethiana Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 241000218378 Magnolia Species 0.000 description 1
- 240000005819 Magnolia denudata Species 0.000 description 1
- 235000016094 Magnolia denudata Nutrition 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 244000004774 Sabina virginiana Species 0.000 description 1
- 235000015392 Sesbania grandiflora Nutrition 0.000 description 1
- 244000204900 Talipariti tiliaceum Species 0.000 description 1
- 240000007313 Tilia cordata Species 0.000 description 1
- 241000190021 Zelkova Species 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000001520 savin Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000010875 treated wood Substances 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
Landscapes
- Chemical And Physical Treatments For Wood And The Like (AREA)
Description
産業上の利用分野
本発明は木質材料の寸法安定化処理方法に関す
る。
従来の技術及びその問題点
木質材料は周知の如く相当大きな伸縮性を示す
材料でその伸縮性は、これら材料の本来の構造組
織とその含有水分に由来する。例えば木材組織中
に含まれる水分の内細胞内腔および細胞間隙に含
まれて存在する水を自由水あるいは遊離水、細胞
膜に吸着されて存在する水を結合水あるいは吸着
水と称する。伐採直後の木材、すなわち生材は結
合水および自由水を保有している。その含水率は
樹種、産地等の条件により可成り相違があり、約
30%以上多いものは150%以上にも達するものが
ある。生材を天然に放置して天然乾燥するか又は
人工的に同様の状態に乾燥すると気乾状態まで含
水率は低下する。木材が乾燥される過程では先ず
自由水が放出され次いで吸着水の一部が放出され
た状態に相当する。そしてこれが樹種、放置乾燥
される場所の温度と湿度によつて決まる。平衡含
水率等により多少の差はあるが、ほぼ一定であつ
て標準的に12〜15%である。また気乾状態に至る
前の細胞膜が結合水で飽和され自由水を含まない
状態を繊維飽和点と呼び含水率も一般にほぼ一定
で28%前後である。木材の含水率と伸縮性との関
係は次の如くである。すなわち木材は繊維飽和点
以上の含水率においては、その増減にかかわらず
伸縮は起きないが繊維飽和点以下においては含水
率の増減に比例して伸縮を生ずる。
木質材料は食器棚、タンス、鏡台等の家具類及
び建築物等に構成材料として広範に利用されてい
る材料である。しかし乍らその主な欠点の一つは
伸縮性が可成り大きいこと、すなわち寸法安定性
が欠けていることである。従つて通常の使用状態
において最も伸縮の少ない状態、すなわち気乾状
態まで乾燥された状態で構成材料用として供され
る。しかしながら使用場所の平衡含水率の変化に
応じ含水率の変動を招き、従つてなお相当の伸縮
をし、変型、狂い、割れなどを発生することは、
木材加工の分野においては重要な課題であり、し
かも木質材料固有の性質の故に解決困難な課題で
もある。
このために寸法安定化の方法が種々考えられて
来た。即ち高温加熱処理による方法、合成樹脂の
注入による方法、ホルムアルデヒドによるホルマ
ール化処理方法、アセチル基によるアセチル化処
理方法、ポリエーテル類注入処理方法等が知られ
ているが、性能においても経済性においても満足
できる結果が得られていない。これらの処理方法
の中で現在利用し得る方法として最も注目されて
いるのがポリエーテル類注入処理方法であるが、
この方法に於いてはポリエーテル類はそれ自身大
きな親水性を有しているため吸湿性も大きく、ま
た木材の寸法安定化に使用し得る低分子量のもの
は液体又は半固体のものでそのために処理木材の
表面にぬれの感触を与え汚染をひきおこしやすく
又通常使用される状態において経目的に浸出す
る。更に水と接触させた場合、容易に溶出して寸
法安定化の効果を減少させる欠点を有していた。
問題点を解決するための手段
本発明者はこれ等の欠点を除くために従来から
鋭意研究を続けて来た結果、ポリエーテル類と特
定の物質とを併用するときには、所期の目的が達
成されることを見出し、茲に本発明を完成するに
至つた。
即ち本発明は、
(i) ポリエチレングリコール及び/又はポリプロ
ピレングリコール15〜30重量%、並びに
(ii) 固形ワツクス、エチレン尿素、パルミチン酸
アマイド、オレイン酸アマイド、ステアリン酸
アマイド、アセトアニリド、p−アニシジン、
無水マレイン酸、イソフタル酸ジメチル、テレ
フタル酸ジメチル、ナフタリン、α−ナフトー
ル、安息香酸、4−t−ブチルカテコール及び
パラジクロルベンゼンの少なくとも一種85〜70
重量%からなる混合物を加熱して液状化し、こ
れを木質材料に含浸させることを特徴とする木
質材料の寸法安定化方法に係る。
本発明に於ては、特定の常温で固体の物質とポ
リエーテル類との混合物を通常40〜180℃程度で
加熱して液状化せしめ、これを木質材料に含浸せ
しめた後、冷却固化させることにより木質材料中
で固定化し、ポリエーテル類の浸出、溶出及び吸
湿を抑制し、寸法安定化を賦与しうるものであ
る。
本発明に於て使用されるポリエーテル類として
はポリエチレングリコール、ポリプロピレングリ
コール等を例示出来、又これ等を混合使用するこ
ともできる。
本発明に於ては、ポリエーテル類と併用する常
温で固体の物質として、固形パラフイン、植物ロ
ウ、動物ロウ、カルナバワツクス、マイクロクリ
スタリンワツクス等の固形ワツクス、エチレン尿
素、パルミチン酸アマイド、オレイン酸アマイ
ド、ステアリン酸アマイド、アセトアニリド、p
−アニシジン、無水マレイン酸、イソフタル酸ジ
メチル、テレフタル酸ジメチル、ナフタリン、α
−ナフトール、安息香酸、4−t−ブチルカテコ
ール及びパラジクロルベンゼンの少なくとも1種
を用いる。
本発明においてポリエーテル類と組み合わせて
用いる上記各物質は、全て、40〜180℃程度では
液状であるが、これを常温とすれば結晶化、固化
等により固体となる物質である。従つて、上記各
物質とポリエーテル類との混合物を液状化するに
際しては、上記物質とポリエーテル類との混合物
を該物質の融点以上、通常40〜180℃程度に加熱
して熱融解すればよい。
本発明に於て液状化したものを木質材料に含浸
せしめるに際しては、含浸方法としては特に制限
はなく、常圧、減圧、加圧、減圧−加圧などの各
種の手段が有効に適用され、たとえば上記した常
温で固体の物質とポリエーテル類の混合溶融物に
木質材料を浸漬し通常加圧50Kg/cm2以下の圧力で
含浸せしめる方法を例示出来る。ポリエーテル類
と上記常温で固体の物質との割合は、前者15〜30
重量%、後者85〜70重量%とする。
本発明に於て使用される木質材料としては、た
とえば木材、繊維板、パーテイクルボード、合板
等を例示出来る。木材としてはモミ、ヒノキ、ス
ギ、カラマツ、トウヒ、マツ、トガサクラ、ツ
ガ、コウヤマキ、アガチス、カエデ、ハンノキ、
カバ、ブナ、トネリコ、ユリノキ、モクレン、ハ
コヤナギ、ニレ、ケヤキ、セン、タモ、クス、シ
ナノキ、ラワン、キリ、シオジ、ジヨンコン、ゼ
ルトン、プライ、ネムノキ、ゴムノキ、ペンシル
シダー、カロフイラム、タウン、カリン、ブビン
ガー等が例示出来る。
発明の効果
本発明の寸法安定化方法で処理された木質材料
は、その表面にぬれの感触を与えず、吸湿性が改
善されるばかりでなく、ポリエーテル類の溶出及
び浸出も大巾に改善され、その結果として表面汚
染もなくなり、該木質材料で構築された家具及び
建築物等の寸法安定化がはかれるものである。
実施例
以下に実施例及び比較例を挙げて本発明を具体
的に説明する。
実施例 1
加圧容器中で110℃に加熱溶融されたポリエチ
レングリコール(平均分子量1540)20重量%、マ
イクロクリスタリンワツクス65重量%、エチレン
尿素15重量%を含む混合物中に、繊維方向5mm、
半径方向30mm、接線方向30mmに切断した桐を浸漬
し、7Kg/cm2にて3時間加圧含浸させた後常圧と
なし、含浸材を取り出し冷却し、混合溶融物を桐
材中に固定化させた(混合物の含浸量は桐の体積
に対し0.60g/cm3であつた)。
この様にして得られた木質材料の寸法安定化の
程度を確認するために収縮率、抗収縮率を以下の
計算式にもとずいて算出、又従来ポリエーテル類
注入処理による欠点である溶出性、吸湿性、ぬれ
の感触がどの程度改善されたか確認するためにそ
れぞれ溶出量、吸湿量、ぬれの感触を以下の計算
式及び方法にもとずいて算出した。試験結果は第
1表に示すとおり良好な結果を得た。
<収縮率並びに抗収縮率>
試験片を温度25℃、関係湿度85%に調整された
デシケーター中に30日間放置した後の寸法を測定
し、次に温度25℃、関係湿度30%に調整されたデ
シケーター中に30日間放置した後の寸法を測定
し、下記式により計算した。
収縮率=L1−L2/L1×100
L1:温度25℃、関係湿度85%時(平衡含水率18
%)の寸法
L2:温度25℃、関係湿度30%時(平衡含水率6
%)の寸法
抗収縮率=Dp−D/Dp×100
Dp:無処理材の収縮率(%)
D:処理材の収縮率(%)
<溶出性>
試験片を温度25℃、関係湿度50%(平衡含水率
9%)に調整されたデシケーター中に10日間放置
し重量を測定し、次に温度25℃の水中に8時間浸
漬した後再び温度25℃、関係湿度50%に調整され
たデシケーター中に10日間放置し重量を測定し下
記式により計算した。
溶出量=W1−W2(mg)
W1:浸漬前の温度25℃、関係湿度50%時の重量
(mg)
W2:浸漬後の温度25℃、関係湿度50%時の重量
(mg)
<吸湿性>
試験片を温度25℃、関係湿度30%(平衡含水率
6%)に調整されたデシケーター中に10日間放置
した後の重量を測定し、次に温度25℃、関係湿度
85%(平衡含水率18%)に調整されたデシケータ
ー中に24時間放置した後の重量を測定し、下記式
により計算した。
吸湿量=W3−W4(mg)
W3:温度25℃、関係湿度85%時の重量(mg)
W4:温度25℃、関係湿度30%時の重量(mg)
<ぬれの感触>
試験片を温度25℃、関係湿度30%(平衡含水率
6%)に調整されたデシケーター中に10日間放置
した後のぬれの感触の程度を官能検査により評価
し、次に温度25℃、関係湿度85%(平衡含水率18
%)に調整されたデシケーター中に10日間放置し
た後のぬれの感触の程度を同様に官能検査により
評価した。
〇印 ぬれの感触認められず
△印 ぬれの感触弱し
×印 ぬれの感触強し
尚、以下の実施例、比較例に於ても本計算式及
び方法にもとずいて算出した。
比較例 1
加圧容器中で110℃に加熱されたポリエチレン
グリコール(平均分子量1540)20重量%を含む水
溶液中に繊維方向5mm、半径方向30mm、接線方向
30mmに切断した桐を浸漬し、7Kg/cm2にて3時間
加圧含浸させた後常圧となし、含浸材を取り出
し、室温25℃、関係湿度50%(平衡含水率9%)
下に放置し乾燥した(ポリエチレングリコールの
含浸量は桐の体積に対し0.59g/cm3であつた)。
試験結果は第1表に示すとおりである。
実施例 2
加熱容器中で110℃に加熱溶融したポリプロピ
レングリコール(平均分子量400)15重量%、マ
イクロタリスタリンワツクス10重量%、イソフタ
ル酸ジメチル40重量%及びテレフタル酸ジメチル
35重量%の混合溶融物中に繊維方向5mm、半径方
向30mm、接線方向30mmに切断した桐を浸漬した
後、5Kg/cm2で2時間加圧含浸させた後、常圧と
なし含浸材をとり出し冷却し混合溶融物を桐材中
に固定化させた(混合溶融物の含浸量は桐の体積
に対し0.60g/cm3であつた)。
試験結果は第1表に示すとおり良好な結果を得
た。
比較例 2
加圧容器中で110℃に加熱溶融したポリプロピ
レングリコール(平均分子量400)15重量%及び
水85重量%の混合溶融物中に繊維方向5mm、半径
方向30mm、接線方向30mmに切断した桐を浸漬した
後5Kg/cm2で2時間加圧含浸させた後常圧となし
含浸材をとり出し冷却し温度25℃、関係湿度50%
(平衡含水率9%)の室内に放置し、乾燥しポリ
プロピレングリコールを桐材中に含浸せしめた
(混合溶融物の含浸量は桐の体積に対し0.60g/
cm3であつた)。
試験結果は第1表に示すとおりである。
実施例 3
加圧容器中で100℃に加熱溶融したオレイン酸
アマイド10重量%、ステアリン酸アマイド60重量
%及びポリエチレングリコール(平均分子量
600)30重量%の混合溶融物中に、繊維方向5
mm、半径方向30mm、接線方向30mmに切断した桐を
浸漬した後7Kg/cm2で4時間加圧含浸させた後常
圧となし含浸材をとり出し冷却し混合溶融物を桐
材中に固定化させた(混合溶融物の含浸量は桐の
体積に対し0.61g/cm3であつた)。
試験結果は第1表に示すとおり良好な結果を得
た。
比較例 3
加圧容器中で100℃に加熱溶融したポリエチレ
ングリコール(平均分子量600)30重量%及び水
70重量%の混合溶融物中に、繊維方向5mm、半径
方向30mm、接線方向30mmに切断した桐を浸漬した
後、7Kg/cm2で4時間加圧含浸させた後、常圧と
なし含浸材をとり出し冷却し温度25℃、関係湿度
50%(平衡含水率9%)の室内に放置し、乾燥し
ポリエチレングリコールを桐材中に含浸せしめた
(混合溶融物の含浸量は桐の体積に対し0.62g/
cm2であつた)。
試験結果は第1表に示すとおりである。
比較例 4
木質材料として使用した無処理桐の試験結果は
第1表に示すとおりである。
実施例 4
加圧容器中で110℃に加熱溶融したカルナバワ
ツクス50重量%、アセトアニリド10重量%、p−
アニシジン20重量%及びポリプロピレングリコー
ル(平均分子量400)5重量%、ポリエチレング
リコール(平均分子量1540)15重量%より成る混
合物中に繊維方向5mm、半径方向30mm、接線方向
30mmに切断した桐を浸漬し、9Kg/cm2にて4時間
加圧含浸した後常圧となし、含浸材を取り出して
冷却し、混合溶融物を桐材中に固定化させた(混
合溶融物の含浸量は桐の体積に対し0.62g/cm3で
あつた)。
試験結果は第1表に示すとおり良好な結果であ
つた。
比較例 5
加圧容器中で110℃に加熱されたポリプロピレ
ングリコール(平均分子量400)5重量%、ポリ
エチレングリコール(平均分子量1540)15重量%
を含む水溶液中に繊維方向5mm、半径方向30mm、
接線方向30mmに切断した桐を浸漬し、9Kg/cm2に
て4時間加圧含浸後常圧となし、含浸材を取り出
し、室温25℃、関係湿度50%(平衡含水率9%)
下に放置し乾燥した(混合物の含浸量は桐の体積
に対し0.61g/cm3であつた)。
試験結果は第1表に示すとおりである。
実施例 5
加圧容器中で100℃に加熱溶融したナフタリン
60重量%、テレフタル酸ジメチル10重量%及びポ
リエチレングリコール(平均分子量600)30重量
%より成る混合物中に繊維方向5mm、半径方向30
mm、接線方向30mmに切断した桐を浸漬し、7Kg/
cm2で4時間加圧含浸した後常圧となし、含浸材を
取り出して冷却し、混合溶融物を桐材中に固定化
させた(混合物の含浸量は桐の体積に対し0.61
g/cm3であつた)。
試験結果は第1表に示すとおり良好な結果であ
つた。
実施例 6
加圧容器中で85℃に加熱溶融されたp−ジクロ
ルベンゼン60重量%、ステアリン酸アマイド10重
量%、ポリエチレングリコール(平均分子量
600)30重量%より成る混合物中に繊維方向5
mm、半径方向30mm、接線方向30mmに切断した桐を
浸漬し、7Kg/cm2で4時間加圧含浸した後常圧と
なし、含浸材を取り出し、冷却し、混合溶融物を
桐材中に固定化させた(混合物の含浸量は桐の体
積に対し0.62g/cm3であつた)。試験結果は第1
表に示すとおり良好な結果であつた。
実施例 7
加圧容器中で110℃に加熱溶融された4−t−
ブチルカテコール20重量%、α−ナフトール25重
量%、無水マレイン酸30重量%、マイクロクリス
タリンワツクス10重量%及びポリプロピレングリ
コール(平均分子量400)15重量%より成る混合
物中に、繊維方向5mm、半径方向30mm、接線方向
30mmに切断した桐を浸漬し、5Kg/cm2で2時間加
圧含浸した後常圧となし、含浸材を取り出し冷却
し、混合溶融物を桐材中に固定化させた(混合物
の含浸量は桐の体積に対し0.60g/cm3であつ
た)。試験結果は第1表に示すとおり良好な結果
であつた。
実施例 8
加圧容器中で110℃に加熱溶融された安息香酸
20重量%、マイクロクリスタリンワツクス60重量
%、ポリエチレングリコール(平均分子量1540)
20重量%よりなる混合物中に繊維方向5mm、半径
方向30mm、接線方向30mmに切断した桐を浸漬し、
7Kg/cm2で3時間加圧含浸した後、常圧となし、
含浸材を取り出し混合溶融物を桐材中に固定化さ
せた(混合溶融物の含浸量は桐の体積に対し0.62
g/cm3であつた)。試験結果は第1表に示すとお
り良好な結果であつた。
FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method for dimensional stabilizing treatment of wood materials. Prior Art and its Problems As is well known, wood materials exhibit considerable elasticity, and the elasticity originates from the original structural organization of these materials and their moisture content. For example, water contained in the inner cell lumen and intercellular spaces of wood tissue is called free water or free water, and water adsorbed to cell membranes is called bound water or adsorbed water. Wood immediately after being felled, ie, green wood, contains bound water and free water. The moisture content varies considerably depending on the tree species, production area, etc., and approximately
In some cases, the increase is more than 30%, and in some cases it is even more than 150%. When raw materials are left to dry naturally or are artificially dried to a similar state, the moisture content decreases to an air-dried state. In the process of drying wood, first free water is released and then some of the adsorbed water is released. This is determined by the tree species and the temperature and humidity of the area where it is left to dry. Although there are some differences depending on the equilibrium moisture content, etc., it is almost constant and is typically 12 to 15%. Furthermore, the state where the cell membrane is saturated with bound water and contains no free water before air-drying is called the fiber saturation point, and the water content is generally approximately constant at around 28%. The relationship between moisture content and elasticity of wood is as follows. That is, when the moisture content is above the fiber saturation point, wood does not expand or contract regardless of its increase or decrease, but when it is below the fiber saturation point, it expands or contracts in proportion to the increase or decrease in the moisture content. Wood materials are widely used as constituent materials for furniture such as cupboards, chests of drawers, dressing tables, and buildings. However, one of its main drawbacks is its considerable stretchability, ie its lack of dimensional stability. Therefore, it is used as a constituent material in a state in which it has the least expansion and contraction under normal usage conditions, that is, in a state that has been dried to an air-dry state. However, the moisture content may fluctuate in response to changes in the equilibrium moisture content of the location where it is used, resulting in considerable expansion and contraction, resulting in deformation, distortion, cracking, etc.
This is an important issue in the field of wood processing, and it is also a difficult issue to solve due to the unique properties of wood materials. For this reason, various methods of dimensional stabilization have been considered. Namely, methods using high-temperature heat treatment, methods using synthetic resin injection, formalization treatment using formaldehyde, acetylation treatment using acetyl groups, polyether injection treatment, etc., are known, but none of them are effective in terms of performance or economy. Satisfactory results have not been obtained. Among these treatment methods, the one that is currently attracting the most attention is the polyether injection treatment method.
In this method, polyethers themselves have high hydrophilicity and therefore have high hygroscopicity, and low molecular weight ones that can be used for dimensional stabilization of wood are liquid or semi-solid. It imparts a wet feel to the surface of treated wood, tends to cause contamination, and leaches over time under conditions of normal use. Furthermore, when it comes into contact with water, it easily dissolves out, reducing its dimensional stabilizing effect. Means for Solving the Problems The present inventor has continued to conduct intensive research to eliminate these drawbacks, and has found that when polyethers and specific substances are used together, the desired purpose can be achieved. The present invention was finally completed based on this discovery. That is, the present invention comprises (i) 15 to 30% by weight of polyethylene glycol and/or polypropylene glycol, and (ii) solid wax, ethylene urea, palmitic acid amide, oleic acid amide, stearic acid amide, acetanilide, p-anisidine,
At least one of maleic anhydride, dimethyl isophthalate, dimethyl terephthalate, naphthalene, α-naphthol, benzoic acid, 4-t-butylcatechol, and paradichlorobenzene 85-70
% by weight to liquefy the mixture and impregnate the wood material with the liquefied mixture. In the present invention, a mixture of a specific substance that is solid at room temperature and polyethers is usually heated at about 40 to 180°C to liquefy it, impregnated into a wood material, and then cooled and solidified. It can be immobilized in wood materials, suppressing leaching, elution and moisture absorption of polyethers, and imparting dimensional stability. Examples of polyethers used in the present invention include polyethylene glycol and polypropylene glycol, and these may also be used in combination. In the present invention, solid paraffin, vegetable wax, animal wax, solid wax such as carnauba wax, microcrystalline wax, ethylene urea, palmitic acid amide, and olein are used in combination with polyethers. Acid amide, stearamide, acetanilide, p
- Anisidine, maleic anhydride, dimethyl isophthalate, dimethyl terephthalate, naphthalene, α
- At least one of naphthol, benzoic acid, 4-t-butylcatechol and paradichlorobenzene is used. All of the above-mentioned substances used in combination with polyethers in the present invention are liquid at about 40 to 180°C, but become solid by crystallization, solidification, etc. when brought to room temperature. Therefore, when liquefying a mixture of each of the above substances and polyethers, the mixture of the above substances and polyethers is heated to a temperature above the melting point of the substance, usually about 40 to 180°C to melt it. good. In the present invention, when impregnating a wood material with the liquefied material, there is no particular restriction on the impregnation method, and various means such as normal pressure, reduced pressure, pressurization, reduced pressure-pressure, etc. can be effectively applied. For example, a method can be exemplified in which a wood material is immersed in the above-mentioned melted mixture of a substance that is solid at room temperature and a polyether, and impregnated at a pressure of usually 50 kg/cm 2 or less. The ratio of polyethers to the above substances that are solid at room temperature is 15 to 30.
% by weight, the latter 85-70% by weight. Examples of wood materials used in the present invention include wood, fiberboard, particle board, plywood, and the like. Woods include fir, cypress, cedar, larch, spruce, pine, togasakura, hemlock, koyamaki, agathis, maple, alder,
Birch, beech, ash, lily tree, magnolia, cottonwood, elm, zelkova, sen, ash, camphor, linden, lauan, thorn, shioji, jiyonkon, zelton, ply, elm tree, rubber tree, pencil cedar, carophyllum, town, quince, bubinger etc. can be exemplified. Effects of the Invention Wood materials treated with the dimensional stabilization method of the present invention do not give a wet feel to the surface, and not only have improved hygroscopicity, but also greatly improve the dissolution and leaching of polyethers. As a result, surface contamination is eliminated, and the dimensions of furniture, buildings, etc. constructed with the wood material can be stabilized. Examples The present invention will be specifically described below with reference to Examples and Comparative Examples. Example 1 In a mixture containing 20% by weight of polyethylene glycol (average molecular weight 1540), 65% by weight of microcrystalline wax, and 15% by weight of ethylene urea, which was heated and melted at 110°C in a pressurized container, 5 mm in the fiber direction,
Paulownia cut 30mm in the radial direction and 30mm in the tangential direction was immersed, impregnated under pressure at 7 kg/cm 2 for 3 hours, then brought to normal pressure, the impregnated material was removed and cooled, and the mixed melt was fixed in the paulownia wood. (The amount of impregnation of the mixture was 0.60 g/cm 3 based on the volume of paulownia). In order to confirm the degree of dimensional stabilization of the wood material obtained in this way, the shrinkage rate and anti-shrinkage rate were calculated based on the following formula. In order to confirm the extent to which the moisture absorption, moisture absorption, and wet feel were improved, the elution amount, moisture absorption, and wet feel were calculated based on the following formulas and methods. As shown in Table 1, good test results were obtained. <Shrinkage rate and anti-shrinkage rate> Measure the dimensions after leaving the test piece in a desiccator adjusted to a temperature of 25℃ and a relative humidity of 85% for 30 days, and then place it in a desiccator adjusted to a temperature of 25℃ and a relative humidity of 30%. The dimensions were measured after being left in a desiccator for 30 days, and calculated using the following formula. Shrinkage rate = L 1 - L 2 / L 1 × 100 L 1 : At a temperature of 25°C and relative humidity of 85% (equilibrium moisture content of 18
%) Dimension L 2 : Temperature 25℃, relative humidity 30% (equilibrium moisture content 6
%) Dimensions Anti-shrinkage rate = D p - D / D p × 100 D p : Shrinkage rate of untreated material (%) D: Shrinkage rate of treated material (%) <Dissolution> The test piece was heated at a temperature of 25°C. The sample was left in a desiccator adjusted to relative humidity 50% (equilibrium moisture content 9%) for 10 days and weighed, then immersed in water at a temperature of 25°C for 8 hours, and then returned to a temperature of 25°C and relative humidity of 50%. The sample was left in an adjusted dessicator for 10 days, the weight was measured, and the weight was calculated using the following formula. Elution amount = W 1 - W 2 (mg) W 1 : Weight (mg) at temperature 25℃ and relative humidity 50% before immersion (mg) W 2 : Weight (mg) at temperature 25℃ and relative humidity 50% after immersion ) <Hygroscopicity> The test piece was left in a desiccator adjusted to a temperature of 25°C and a relative humidity of 30% (equilibrium moisture content 6%), and then its weight was measured.
After being left in a desiccator adjusted to 85% (equilibrium moisture content 18%) for 24 hours, the weight was measured and calculated using the following formula. Moisture absorption = W 3 - W 4 (mg) W 3 : Weight at temperature 25℃ and relative humidity 85% (mg) W 4 : Weight at temperature 25℃ and relative humidity 30% (mg) <Feel of wetness> The test piece was left in a desiccator adjusted to a temperature of 25℃ and a relative humidity of 30% (equilibrium moisture content 6%) for 10 days, and then the degree of wetness was evaluated by a sensory test. Humidity 85% (equilibrium moisture content 18
The degree of wet feeling after being left in a desiccator adjusted to %) for 10 days was similarly evaluated by a sensory test. 〇 Mark: Wetting feeling not observed △ mark: Wetting feeling is weak × mark: Wetting feeling is strong In addition, calculations were made based on this formula and method in the following Examples and Comparative Examples as well. Comparative Example 1 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction in an aqueous solution containing 20% by weight of polyethylene glycol (average molecular weight 1540) heated to 110°C in a pressurized container.
Paulownia cut into 30 mm pieces was immersed and impregnated under pressure at 7 kg/cm 2 for 3 hours, then the pressure was reduced to normal pressure, the impregnated material was taken out, and the room temperature was 25°C and relative humidity was 50% (equilibrium moisture content 9%).
The paulownia wood was left to dry (the amount of polyethylene glycol impregnated was 0.59 g/cm 3 based on the volume of paulownia wood).
The test results are shown in Table 1. Example 2 15% by weight of polypropylene glycol (average molecular weight 400), 10% by weight of microtalistaline wax, 40% by weight of dimethyl isophthalate and dimethyl terephthalate heated and melted at 110°C in a heating container.
After immersing paulownia cut into a 35% by weight mixed melt at 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction, the material was impregnated under pressure at 5 kg/cm 2 for 2 hours, and then the impregnation material was reduced to normal pressure. It was taken out and cooled, and the mixed melt was fixed in the paulownia wood (the amount of the mixed melt impregnated was 0.60 g/cm 3 based on the volume of paulownia). As shown in Table 1, good test results were obtained. Comparative Example 2 Paulownia wood cut into 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction in a mixed melt of 15% by weight of polypropylene glycol (average molecular weight 400) and 85% by weight of water heated and melted at 110°C in a pressurized container. After soaking, the material was impregnated under pressure at 5 kg/cm 2 for 2 hours, then the impregnated material was removed from normal pressure and cooled at a temperature of 25°C and relative humidity of 50%.
The paulownia wood was left in a room with an equilibrium water content of 9% and dried to impregnate the paulownia wood with polypropylene glycol (the impregnated amount of the mixed melt was 0.60 g per paulownia volume).
cm3 ). The test results are shown in Table 1. Example 3 10% by weight of oleic acid amide, 60% by weight of stearamide and polyethylene glycol (average molecular weight
600) In a 30% by weight mixed melt, fiber direction 5
After soaking the paulownia cut into 30 mm in the radial direction and 30 mm in the tangential direction, the paulownia wood was impregnated with a pressure of 7 kg/cm 2 for 4 hours, then the impregnated material was removed from normal pressure and cooled, and the mixed melt was fixed in the paulownia material. (The amount of impregnation of the mixed melt was 0.61 g/cm 3 based on the volume of paulownia). As shown in Table 1, good test results were obtained. Comparative Example 3 30% by weight of polyethylene glycol (average molecular weight 600) and water heated and melted at 100°C in a pressurized container
After immersing paulownia cut into a 70% by weight mixed melt at 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction, the material was impregnated under pressure at 7 kg/cm 2 for 4 hours, and then reduced to normal pressure. Take it out and cool it to a temperature of 25℃ and relative humidity.
It was left in a room at 50% (equilibrium moisture content 9%) and dried to impregnate the paulownia wood with polyethylene glycol (the impregnated amount of the mixed melt was 0.62 g per paulownia volume).
cm2 ). The test results are shown in Table 1. Comparative Example 4 The test results of untreated paulownia used as a wood material are shown in Table 1. Example 4 50% by weight of carnauba wax, 10% by weight of acetanilide, p-
5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction in a mixture consisting of 20% by weight of anisidine, 5% by weight of polypropylene glycol (average molecular weight 400), and 15% by weight of polyethylene glycol (average molecular weight 1540).
Paulownia cut into 30 mm pieces was immersed and impregnated under pressure at 9 kg/cm 2 for 4 hours, then brought to normal pressure, the impregnated material was taken out and cooled, and the mixed molten material was fixed in the paulownia wood (mixed molten material). The amount of material impregnated was 0.62 g/cm 3 based on the volume of paulownia). The test results were good as shown in Table 1. Comparative Example 5 5% by weight polypropylene glycol (average molecular weight 400) and 15% by weight polyethylene glycol (average molecular weight 1540) heated to 110°C in a pressurized container.
5 mm in the fiber direction, 30 mm in the radial direction,
Paulownia cut 30mm in the tangential direction was immersed and impregnated at 9 kg/cm 2 for 4 hours before being brought to normal pressure.The impregnated material was removed, and the room temperature was 25°C and relative humidity was 50% (equilibrium moisture content 9%).
The mixture was left to dry (the amount of impregnation of the mixture was 0.61 g/cm 3 based on the volume of paulownia). The test results are shown in Table 1. Example 5 Naphthalene heated and melted at 100°C in a pressurized container
60% by weight, 10% by weight of dimethyl terephthalate and 30% by weight of polyethylene glycol (average molecular weight 600), 5mm in the fiber direction and 30% in the radial direction.
mm, paulownia cut 30mm in the tangential direction, soaked, 7Kg/
After pressure impregnation at cm 2 for 4 hours, the pressure was reduced to normal pressure, the impregnated material was taken out and cooled, and the mixed melt was fixed in the paulownia wood (the impregnated amount of the mixture was 0.61 per paulownia volume).
g/ cm3 ). The test results were good as shown in Table 1. Example 6 60% by weight of p-dichlorobenzene, 10% by weight of stearamide, polyethylene glycol (average molecular weight
600) fiber direction 5 in a mixture consisting of 30% by weight
Paulownia cut into 30 mm, radial direction, and tangential direction 30 mm was immersed and impregnated under pressure at 7 kg/cm 2 for 4 hours, then brought to normal pressure, the impregnated material was taken out, cooled, and the mixed melt was poured into the paulownia wood. It was fixed (the amount of the mixture impregnated was 0.62 g/cm 3 based on the volume of paulownia). The test result is the first
As shown in the table, the results were good. Example 7 4-t- heated and melted at 110°C in a pressurized container
In a mixture consisting of 20% by weight of butylcatechol, 25% by weight of α-naphthol, 30% by weight of maleic anhydride, 10% by weight of microcrystalline wax and 15% by weight of polypropylene glycol (average molecular weight 400), 5 mm in the fiber direction and 5 mm in the radial direction. 30mm, tangential
Paulownia cut into 30 mm pieces was immersed and impregnated under pressure at 5 kg/cm 2 for 2 hours, then brought to normal pressure, the impregnated material was taken out and cooled, and the mixed melt was fixed in the paulownia material (the amount of impregnation of the mixture was 0.60 g/cm 3 based on the volume of paulownia). The test results were good as shown in Table 1. Example 8 Benzoic acid heated and melted at 110°C in a pressurized container
20% by weight, 60% by weight of microcrystalline wax, polyethylene glycol (average molecular weight 1540)
Paulownia wood cut into 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction is immersed in a mixture consisting of 20% by weight,
After pressure impregnation at 7Kg/ cm2 for 3 hours, normal pressure was removed.
The impregnating material was taken out and the mixed molten material was fixed in the paulownia wood (the impregnated amount of the mixed molten material was 0.62% of the volume of paulownia wood).
g/ cm3 ). The test results were good as shown in Table 1.
【表】
実施例 9
加圧容器中で95℃に加熱溶融したポリプロピレ
ングリコール(平均分子量700)20重量%及びパ
ルミチン酸アマイド80重量%の混合溶融物中に繊
維方向5mm、半径方向30mm、接線方向30mmに切断
した桐を浸漬した後9Kgf/cm3で3時間加圧含浸
させた後、常圧となし含浸材を取り出し冷却し混
合溶融物を桐材中に固定化させた。混合溶融物の
含浸量は桐の体積に対し0.62g/cm3であつた。試
験結果を第2表に示す。
比較例 6
ポリプロピレングリコール(平均分子量700)
20重量%水溶液を用いる以外は、実施例9と同様
にして桐材中にポリプロピレングリコールを含浸
させた。
試験結果は第2表に示す通りである。
実施例 10
加圧容器中で85℃に加熱溶融されたテレフタル
酸ジメチル70重量%及びポリエチレングリコール
(平均分子量600)30重量%よりなる混合物中に繊
維方向5mm、半径方向30mm、接線方向30mmに切断
した桐を浸漬し、7Kgf/cm3で4時間加圧含浸さ
せた後、常圧となし、含浸材を取り出し、混合溶
融物を桐材中に固定化させた。混合溶融物の桐材
への含浸量は桐の体積に対し0.60g/cm3であつ
た。試験結果を第2表に示す。
実施例 11
加圧容器中で110℃に加熱溶融されたポリプロ
ピレングリコール(平均分子量400)15重量%及
びナフタリン85重量%よりなる混合溶融物中に繊
維方向5mm、半径方向30mm、接線方向30mmに切断
した桐を浸漬し、5Kgf/cm3で2時間加圧含浸さ
せた後、常圧となし含浸材を取り出し冷却し、混
合溶融物を桐材中に固定化させた。混合溶融物の
含浸量は桐の体積に対し0.60g/cm3であつた。試
験結果を第2表に示す。[Table] Example 9 A mixed melt of 20% by weight of polypropylene glycol (average molecular weight 700) and 80% by weight of palmitic acid amide heated and melted at 95°C in a pressurized container contains 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction. Paulownia cut into 30 mm pieces was immersed and impregnated under pressure at 9 Kgf/cm 3 for 3 hours.The impregnated material was then removed from the atmosphere and cooled to fix the mixed molten material in the paulownia wood. The amount of impregnation of the mixed melt was 0.62 g/cm 3 based on the volume of paulownia. The test results are shown in Table 2. Comparative example 6 Polypropylene glycol (average molecular weight 700)
Polypropylene glycol was impregnated into paulownia wood in the same manner as in Example 9 except that a 20% by weight aqueous solution was used. The test results are shown in Table 2. Example 10 A mixture of 70% by weight dimethyl terephthalate and 30% by weight polyethylene glycol (average molecular weight 600) heated and melted at 85°C in a pressurized container was cut into 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction. The paulownia wood was soaked and impregnated under pressure at 7 Kgf/cm 3 for 4 hours, then the pressure was reduced to normal pressure, the impregnation material was taken out, and the mixed melt was fixed in the paulownia material. The amount of the mixed melt impregnated into the paulownia wood was 0.60 g/cm 3 based on the volume of the paulownia wood. The test results are shown in Table 2. Example 11 A mixed melt consisting of 15% by weight of polypropylene glycol (average molecular weight 400) and 85% by weight of naphthalene heated and melted at 110°C in a pressurized container was cut into 5 mm in the fiber direction, 30 mm in the radial direction, and 30 mm in the tangential direction. The paulownia wood was immersed and impregnated under pressure at 5 kgf/cm 3 for 2 hours, and then the pressure was reduced to normal. The impregnated material was taken out and cooled, and the mixed melt was fixed in the paulownia wood. The amount of impregnation of the mixed melt was 0.60 g/cm 3 based on the volume of paulownia. The test results are shown in Table 2.
Claims (1)
プロピレングリコール15〜30重量%、並びに (ii) 固形ワツクス、エチレン尿素、パルミチン酸
アマイド、オレイン酸アマイド、ステアリン酸
アマイド、アセトアニリド、p−アニシジン、
無水マレイン酸、イソフタル酸ジメチル、テレ
フタル酸ジメチル、ナフタリン、α−ナフトー
ル、安息香酸、4−t−ブチルカテコール及び
パラジクロルベンゼンの少なくとも一種85〜70
重量% からなる混合物を加熱して液状化し、これを木質
材料に含浸させることを特徴とする木質材料の寸
法安定化方法。[Scope of Claims] 1 (i) 15 to 30% by weight of polyethylene glycol and/or polypropylene glycol, and (ii) solid wax, ethylene urea, palmitic acid amide, oleic acid amide, stearic acid amide, acetanilide, p-anisidine ,
At least one of maleic anhydride, dimethyl isophthalate, dimethyl terephthalate, naphthalene, α-naphthol, benzoic acid, 4-t-butylcatechol, and paradichlorobenzene 85-70
% by weight to liquefy the mixture and impregnate the wood material with the liquefied mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14151681A JPS5842411A (en) | 1981-09-07 | 1981-09-07 | Stabilizing treatment method for size of woody material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14151681A JPS5842411A (en) | 1981-09-07 | 1981-09-07 | Stabilizing treatment method for size of woody material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5842411A JPS5842411A (en) | 1983-03-11 |
JPS6260241B2 true JPS6260241B2 (en) | 1987-12-15 |
Family
ID=15293779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14151681A Granted JPS5842411A (en) | 1981-09-07 | 1981-09-07 | Stabilizing treatment method for size of woody material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5842411A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019072969A (en) * | 2017-10-18 | 2019-05-16 | 株式会社ウエキ産業 | Processed disc material and production method of processed disc material |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58135910A (en) * | 1982-02-09 | 1983-08-12 | Toshiba Corp | Automatic range controller |
JPS629906A (en) * | 1985-07-08 | 1987-01-17 | 永大産業株式会社 | Manufacture of reinforced veneer |
JP2676759B2 (en) * | 1988-02-08 | 1997-11-17 | 株式会社ニコン | Active ranging device |
JPH0770872B2 (en) * | 1989-01-27 | 1995-07-31 | 富士機械製造株式会社 | Electronic component mounting device |
DE20310745U1 (en) * | 2003-07-14 | 2003-10-02 | Burger, Hans-Joachim, 93059 Regensburg | Solidification of thermowood |
CA2639695C (en) | 2007-09-19 | 2015-07-07 | Prolam, Societe En Commandite | Hardwood truck flooring with wood preservative |
FR2922139B1 (en) * | 2007-10-12 | 2009-12-04 | Arc Nucleart | PROCESS FOR MAKING VERY HYDROPHOBIC WOOD |
US9682493B2 (en) | 2008-05-09 | 2017-06-20 | Prolam, Societe En Commandite | Method for impregnation of wood component with solid paraffin wax, apparatus therefor and wood component so impregnated |
JP6478179B1 (en) * | 2018-07-30 | 2019-03-06 | パナソニックIpマネジメント株式会社 | Manufacturing method of wooden building materials |
-
1981
- 1981-09-07 JP JP14151681A patent/JPS5842411A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019072969A (en) * | 2017-10-18 | 2019-05-16 | 株式会社ウエキ産業 | Processed disc material and production method of processed disc material |
Also Published As
Publication number | Publication date |
---|---|
JPS5842411A (en) | 1983-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1328024C (en) | Furan polymer impregnated wood | |
Stamm et al. | Dimensional stabilization of wood. | |
USRE24011E (en) | Product thereof | |
NO152175B (en) | PROCEDURE FOR THE PREPARATION OF AN ANTI-OXYDE CONDENSATE AND USE OF THE CONDENSATE FOR THE PROTECTION OF FOOD AND COSMETIC PRODUCTS AGAINST OXIDATION | |
JPS6260241B2 (en) | ||
JP2009298132A (en) | Improved lumber and method of manufacturing the same | |
ZA200506412B (en) | Process for upgrading wood parts | |
Obataya et al. | Influence of moisture content on the vibrational properties of hematoxylin-impregnated wood | |
US3894569A (en) | Method for plasticizing wood | |
US2692183A (en) | Method for treating cellulose and product thereof | |
US2398649A (en) | Treatment of wood | |
JPS63199604A (en) | Method of improving woody material | |
US3788929A (en) | Method for plasticizing wood | |
JPH0649283B2 (en) | Wood material improvement method | |
JPH0225761B2 (en) | ||
EP1651402B1 (en) | Treatment of thermally modified wood | |
JPH056481B2 (en) | ||
JP6762565B2 (en) | Processing disk material and manufacturing method of processing disk material | |
CN107599092B (en) | Nitrogen hydroxymethyl ethylene urea resin modifier and application thereof | |
JPH0435903A (en) | Manufacture of acylated woody material | |
JP4872059B2 (en) | Method for producing wood material having humidity control and dimensional stability and wood material | |
FI91503C (en) | A method for softening wood, especially for shaping | |
JPH0145402B2 (en) | ||
WO2024014037A1 (en) | Method for producing modified wood | |
JPH03253303A (en) | Processing method for hardening surface and stabilizing dimension of wood by impregnating with resin |